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Part III : The differential

1 Submersions

In this section we will introduce topological and PL submersions and we will
prove that each closed submersion with compact fibres is a locally trivial fibra-
tion.

We will use Γ to stand for either Top or PL and we will suppose that we are
in the category of Γ–manifolds without boundary.

1.1 A Γ–map p : Ek → Xl between Γ–manifolds is a Γ–submersion if p
is locally the projection Rk πl−→Rl on the first l–coordinates. More precisely,
p : E → X is a Γ–submersion if there exists a commutative diagram

E
p

// X

Uy
∩
Rk

φy

OO

πl //

Ux
∩
Rl

φx

OO

where x = p(y), Uy and Ux are open sets in Rk and Rl respectively and ϕy ,
ϕx are charts around x and y respectively.

It follows from the definition that, for each x ∈ X , the fibre p−1(x) is a Γ–
manifold.

1.2 The link between the notion of submersions and that of bundles is very
straightforward. A Γ–map p : E → X is a trivial Γ–bundle if there exists a Γ–
manifold Y and a Γ–isomorphism f : Y ×X → E , such that pf = π2 , where
π2 is the projection on X .

More generally, p : E → X is a locally trivial Γ–bundle if each point x ∈ X has
an open neighbourhood restricted to which p is a trivial Γ–bundle.

Even more generally, p : E → X is a Γ–submersion if each point y of E has
an open neighbourhood A, such that p(A) is open in X and the restriction
A→ p(A) is a trivial Γ–bundle.
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78 III : The differential

Note A submersion is not, in general, a bundle. For example consider E =
R2 − {0}, X = R and p projection on the first coordinate.

1.3 We will now introduce the notion of a product chart for a submersion.
If p : E → X is a Γ–submersion, then for each point y in E , there exist a
Γ–manifold U , and an open neighbourhood S of x = p(y) in X and a Γ–
embedding

ϕ: U × S → E

such that Imϕ is a neighbourhood of y in E and, also, p ◦ ϕ is the projection
U × S → S ⊂ E . Therefore, as we have already observed, p−1(x) is a Γ–
manifold. Let us now assume that ϕ satisfies further properties:

(a) U ⊂ p−1(x)

(b) ϕ(u, x) = u for each u ∈ U .

Then we can use interchangeably the following terminology:

(i) the embedding ϕ is normalised

(ii) ϕ is a product chart around U for the submersion p

(iii) ϕ is a tubular neighbourhood of U in E with fibre S with respect to the
submersion p.

The second is the most suitable and most commonly used.

With this terminology, p : E → X is a Γ–bundle if, for each x ∈ X , there
exists a product chart ϕ: p−1(x)× S → E around the fibre p−1(x), such that
the image of ϕ coincides with p−1(S).

1.4 The fact that many submersions are fibrations is a consequence of the
fundamental isotopy extension theorem, which we will state here in the version
that is more suited to the problem that we are tackling.

Let V be an open set in the Γ–manifold X , Q another Γ–manifold which acts
as the parameter space and let us consider an isoptopy of Γ–embeddings

G: V ×Q→ X ×Q.

Given a compact subset C of V and a point q in Q, we are faced with the
problem of establishing if and when there exists a neighbourhood S of q in
Q and an ambient isotopy G′ : X × S → X × S , which extends G on C , ie
G′ | C × S = G | C × S .
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1 Submersions 79

Isotopy extension theorem Let C ⊂ V ⊂ X and G: V ×Q → X ×Q be
defined as above. Then there exists a compact neighbourhood C+ of C in V
and an extension G′ of G on C , such that the restriction of G′ to (X−C+)×S
is the identity.

This remarkable result for the case Γ = Top is due to [Černavskii 1968], [Lees
1969], [Edwards and Kirby 1971], [Siebenmann 1972].

For the case Γ = PL instead we have to thank [Hudson and Zeeman 1964] and
[Hudson 1966]. A useful bibliographical reference is [Hudson 1969].

Note In general, there is no way to obtain an extension of G to the whole
open set V . Consider, for instance, V =

◦
Dm , X = Rm , Q = R and

G(v, t) =
(

v

1− t‖v‖ , t
)

for t ∈ Q and v ∈
◦
Dm and t ∈ [0, 1], and G(v, t) stationary outside [0, 1]. For

t = 1, we have
G1(

◦
Dm) = Rm.

Therefore G1 does not extend to any homeomorphism G′1 : Rm → Rm , and
therefore G does not admit any extension on V .

1.5 Let us now go back to submersions. We have to establish two lemmas, of
which the first is a direct consequence of the isotopy extension theorem.

Lemma Let p : Y ×X → X be the product Γ–bundle and let x ∈ X . Further
let U ⊂ Yx = p−1(x) be a bounded open set and C ⊂ U a compact set. Finally,
let

ϕ: U × S → Yx ×X

be a product chart for p around U . Then there exists a product chart

ϕ1 : Yx × S1 → Yx ×X
for the submersion p around the whole of Yx , such that

(a) ϕ = ϕ1 on C × S1

(b) ϕ1 = the identity outside C+ × S1 , where, as usual, C+ is a compact
neighbourhood of C in U .

Proof Apply the isotopy extension theorem with X , or better still S , as the
space of the parameters and Yx as ambient manifold.
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80 III : The differential

C

X

S1

Yx

x

p

Glueing Lemma Let p : E → X be a submersion, x ∈ X , with C and D
compact in p−1(x). Let U , V be open neighbourhoods of C , D in p−1(x); let
ϕ: U × S → E and ψ : V × S → E be products charts. Then there exists a
product chart ω : M × T → E , where M is an open neighbourhood of C ∪D
in p−1(x). Furthermore, we can chose ω such that ω = ϕ on C×T and ω = ψ
on (D − U)× T .

H
Proof Let C+ ⊂ U and D+ ⊂ V be compact neighbourhoods of C,D in
p−1(x).

φ ψ

U
V

C
D

Applying the lemma above to V ×X → X we deduce that there exists a product
chart for p around V

ψ1 : V × S1 → E

such that

(a) ψ1 = ψ on (V − U)× S1

(b) ψ1 = ϕ on (C+ ∩D+)× S1

Let M1 =
◦
C+ ∪

◦
D+ and T1 = S ∩ S1 and define

ω : M1 × T1 → E

by putting

ω |
◦
C+ × T1 = ϕ |

◦
C+ × T1 and ω |

◦
D+ × T1 = ψ1 |

◦
D+ × T1
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1 Submersions 81

Essentially, this is the required product chart. Since ω is obtained by glueing
two product charts, it suffices to ensure that ω is injective. It may not be injec-
tive but it is locally injective by definition and furthermore, ω|M1 is injective,
being equal to the inclusion M1 ⊂ p−1(x). Now we restrict ω firstly to the
interior of a compact neighbourhood of C ∪D in M1 , let us say M . Once this
has been done it will suffice to show that there exists a neighbourhood T of x
in X , contained in T1 , such that ω |M ×T1 is injective. The existence of such
a T1 follows from a standard argument, see below. This completes the proof.

The standard argument which we just used is the same as the familiar one which
establishes that, if N ⊂ A are differential manifolds, with N compact and E(ε)
is a small ε–neighbourhood of the zero–section of the normal vector bundle of
N in A, then a diffeomorphism between E(ε) and a tubular neighbourhood of
N in A is given by the exponential function, which is locally injective on E(ε).

N

Theorem (Siebenmann) Let p : E → X be a closed Γ–submersion, with
compact fibres. Then p is a locally trivial Γ–bundle.

Proof The glueing lemma, together with a finite induction, ensures that, if
x ∈ X , then there exists a product chart

ϕ: p−1(x)× S → E

around p−1(x). The set N = p(E − Imϕ) is closed in X , since p is a closed
map. Furthermore N does not contain x. If S1 = S − (X − N), then the
restricted chart p−1(x) × S1 → E has image equal to p−1(S1). In fact, when
p(y) ∈ S1 , we have that p(y) /∈ N and therefore y ∈ Imϕ. This ends the proof
of the theorem.

We recall that a continuous map between metric spaces and with compact fibres,
is closed if and only if it is proper, ie, if the preimage of each compact set is
compact.

1.6 Submersions p : E → X between manifolds with boundary

Submersions between manifolds with boundary are defined in the same way
and the theory is developed in an analogous way to that for manifolds without
boundary. The following changes apply:

(a) for i = k, l in 1.1, we substitute Ri+ ≡ {x1 ≥ 0}for Ri

(b) in 1.4 the isotopy Gt : V → X must be proper, ie, formed by embeddings
onto open subsets of X (briefly, Gt must be an isotopy of open embeddings).

Addendum to the isotopy extension lemma 1.4 If Q = In , then we can
take S to be the whole of Q.

Geometry & Topology Monographs, Volume 6 (2003)



82 III : The differential

Note Even in the classical case Q = [0, 1] the extension of the isotopy cannot,
in general, be on the whole of V . For example the isotopy G(v, t):

◦
Dm × I →

Rm × I of note 1.4, ie,

G(v, t) =
(

v

1− t‖v‖ , t
)
,

with t ∈ [0, 1], connects the inclusion
◦
Dm ⊂ Rm(t = 0) with G1 , which cannot

be extended. A fortiori, G cannot be extended.

Rm

◦
Dm

0

1

1.7 Differentiable submersions

These are much more familiar objects than the topological ones. Changing the
notation slightly, a differentiable map f : X → Y between manifolds without
boundary is a submersion if it verifies the conditions in 1.1 and 1.2, taking now
Γ = Diff . However the following alternative definition is often used: f is a
submersion if its differential is surjective for each point in X .

Theorem A proper submersion, with compact fibres, is a differentiable bun-
dle.

Proof For each y ∈ Y , a sufficiently small tubular neighbourhood of p−1(y)
is the required product chart.

1.8 As we saw in 1.2 there are simple examples of submersions with non-
compact fibres which are not fibrations.

We now wish to discuss a case which is remarkable for its content and difficulty.
This is a case where a submersion with non-compact fibres is a submersion.
This result has a central role in the theorem of classification of PL structures
on a topological manifold.
Let ∆ be a simplex or a cube and let Mm be a topological manifold without
boundary which is not necessarily compact and let also Θ be a PL structure
on ∆×M such that the projection

p : (∆×M)Θ → ∆
is a PL submersion.
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1 Submersions 83

Fibration theorem (Kirby–Siebenmann 1969) If m 6= 4, then p is a PL
bundle (necessarily trivial).

Before starting to explain the theorem’s intricate line of the proof we observe
that in some sense it might appear obvious. It is therefore symbolic for the
hidden dangers and the possibilities of making a blunder found in the study
of the interaction between the combinatorial and the topological aspects of
manifolds. Better than any of my efforts to represent, with inept arguments,
the uneasiness caused by certain idiosyncrasies is an outburst of L Siebenmann,
which is contained in a small note of [Kirby–Siebenmann 1977, p. 217], which
is referring exactly to the fibration theorem:

“This modest result may be our largest contribution to the final classi-
fication theorem; we worked it out in 1969 in the face of a widespread
belief that it was irrelevant and/or obvious and/or provable for all
dimensions (cf [Mor3 ], [Ro2 ] and the 1969 version of [Mor4 ]). Such
a belief was not so unreasonable since 0.1 is obvious in case M is
compact: every proper cat submersion is a locally trivial bundle”.
(L Siebenmann)

H
Proof We will assume ∆ = I . The general case is then analogous with some
more technical detail. We identify M with 0×M and observe that, since p is
a submersion, then Θ restricts to a PL structure on M = p−1(0). This enables
us to assume that M is a PL manifold. We filter M by means of an ascending
chain

M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mi ⊂ · · ·
of PL compact m–submanifolds, such that each Mi is in a regular neighbour-

hood of some polyhedron contained in M and, furthermore, Mi ⊂
◦
M i+1 and

M = ∪iMi . Such a chain certainly exists. Furthermore, since Mi is a regular
neighbourhood, its frontier Ṁi is PL bicollared in M and we can take open
disjoint PL bicollars Vi ≈ Ṁi × R, such that Vi ∩Mi = Mi × (−∞, 0]. Let us
fix an index i and, for the sake simplicity, we will write N instead of Mi . We
will work in E = (I × Ṅ × R)Θ , equipped with Cartesian projections.

The reader can observe that, even if I × Ṅ is a PL manifold with the PL
manifold structure coming from M , it is not, a priori, a PL submanifold of E.
It is exactly this situation that creates some difficulties which will force us to
avoid the dimension m = 4.

E
p

//

π

��

I

R
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84 III : The differential

I ×N

I × Ṅ × R

0

1

p

N

1.8.1 First step

We start by recalling the engulfing theorem proved in I.4.11:

Theorem Let Ww be a closed topological manifold with w 6= 3, let Θ be
a PL structure on W × R and C ⊂ W × R a compact subset. Then there
exists a PL isotopy G of (W × R)Θ having compact support and such that
G1(C) ⊂W × (−∞, 0].

The theorem tells us that the tide, which rises in a PL way, swamps every
compact subset of (W × R)Θ , even if W is not a PL manifold.

Corollary (Engulfing from below) For each λ ∈ I and for each pair of inte-
gers a < b, there exists a PL isotopy with compact support

Gt : (λ× Ṅ × R)Θ → (λ× Ṅ × R)Θ

such that
G1(λ× Ṅ × (−∞, a)) ⊃ λ× Ṅ × (−∞, b]

provided that m 6= 4 .

The proof is immediate.

1.8.2 Second step (Local version of engulfing from below)

By theorem 1.5 each compact subset of the fibre of a submersion is contained
in a product chart. Therefore, for each integer r and each point λ of I , there
exists a product chart

ϕ : λ× Ṅ × (−r, r)× Iλ → E

for the submersion p, where Iλ indicates a suitable open neighbourhood of λ
in I . If a ≤ b are any two integers, then Corollary 1.8.1 ensures that r can be
chosen such that[a, b] ⊂ (−r, r) and also that there exists a PL isotopy,

Gt : λ× Ṅ × (−r, r)→ λ× Ṅ × (−r, r),
which engulfs level b inside level a and also has a compact support. Now
let f : I → I be a PL map, whose support is contained in Iλ and is 1 on a
neighbourhood of λ. We define a PL isotopy

Ht : E → E
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1 Submersions 85

in the following way:

(a) Ht|Imϕ is determined by the formula

Ht(ϕ(x,µ)) = ϕ(Gf(µ)t(x), µ)

where x ∈ λ× Ṅ × (−r, r) and µ ∈ Iλ .

(b) Ht is the identity outside Imϕ .

It results that Ht is an isotopy of all of E which commutes with the projection
p, ie, Ht is a spike isotopy.

0

1

Iλ
A possibilty for f : I → I

The effect of Ht is that of including level b inside level a , at least as far as
small a neighbourhood of λ.

1.8.3 Third step (A global spike version of the Engulfing form below)

For each pair of integers a < b, there exists a PL isotopy

Ht : E → E,

which commutes with the projection p, has compact support and engulfs the
level b inside the level a , ie,

H1(I × Ṅ × (−∞, a)) ⊃ I × Ṅ × (−∞, b].
The proof of this claim is an instructive exercise and is therefore left to the
reader. Note that I will have to be divided into a finite number of sufficiently
small intervals, and that the isotopies of local spike engulfing provided by the
step 1.8.2 above will have to be wisely composed.

1.8.4 Fourth step (The action of Z)

For each pair of integers a < b , there exists an open set E(a, b) of E , which
contains π−1[a, b] and is such that

p: E(a, b)→ I

is a PL bundle.
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86 III : The differential

Proof Let H1 : E → E be the PL homeomorphism constructed in 1.8.3. Let
us consider the compact set

C(a, b) = H1(π−1(−∞, a]) \ π−1(−∞, a)

and the open set

E(a, b) =
⋃
n∈Z

Hn
1 (C(a, b)).

There is a PL action of Z on E(a, b), given by

q :Z× E(a, b)→ E(a, b)

(1, x) 7→ H1(x)

This action commutes with p.

If B = E(a, b)/Z is the space of the orbits then we have a commutative diagram

E(a, b)
q

//

p

""E
EE

EE
EE

EE
B

p′
����
��
��
��

I

Since H1 is PL, then B inherits a PL structure which makes q into a PL
covering; therefore since p is a PL submersion, then p′ also is a submersion.
Furthermore each fibre of p′ is compact, since it is the quotient of a compact
set, and p′ is closed. So p′ is a PL bundle, and from that it follows that p also
is such a bundle (some details have been omitted).

1.8.5 Fifth step (Construction of product charts around the manifolds Mi )

Until now we have worked with a given manifold Mi ⊂M and denoted it with
N . Now we want to vary the index i . Step 1.8.4 ensures the existence of an
open subset

E′i ⊂ Ei = (I × Ṁi × R)Θ

which contains I × Ṁi × 0 such that it is a locally trivial PL bundle on I . We
chose PL trivialisations

hi : I×Y ′i
≈ //

##G
GG

GG
GG

GG
E′i ⊂ I×Vi

zzuu
uu
uu
uu
uu

I

and we write M ′i for Y ′i ∩Mi = Y ′i ∩ (Ṁi × (−∞, 0]).

We define a PL submanifold Xi of (I ×M)Θ , by putting

Xi = {(I ×Mi − E′i) ∪ hi(I ×M ′i)}Θ

and observe that Xi ⊂
◦
Xi+1 and

⋃
iXi = (I ×M)Θ .
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1 Submersions 87

The projection pi : Xi → I is a PL submersion and we can say that the whole
proof of the theorem developed until now has only one aim: ensure for i the
existence of a PL submersion of type pi .

Now, since Xi is compact, the projection pi is a locally trivial PL bundle and
therefore we have trivialisations

I×Mi

gi //

""E
EE

EE
EE

EE
Xi

pi
��~~
~~
~~
~~

I

1.8.6 Sixth step (Compatibility of the trivialisations)

In general we cannot expect that gi coincides with gi+1 on I×Mi . However it
is possible to alter gi+1 in order to obtain a new chart g′i+1 which is compatible
with gi . To this end let us consider the following commutative diagram

I ×Mi+1 ⊃

Γi
&&MM

MM
MM

MM
MM

I ×Mi ≈
gi //

γi

��

Xi ⊂ (I ×M)Θ⋂
I ×Mi+1

gi+1 // Xi+1 ⊂ (I ×M)Θ

where all the maps are intended to be PL and they also commute with the
projection on I. The map γi is defined by commutativity and Γi exists by the
isotopy extension theorem of Hudson and Zeeman. It follows that

g′i+1 := gi+1Γi

is the required compatible chart.

1.8.7 Conclusion

In light of 1.8.6. and of an infinite inductive procedure we can assume that the
trivialisations {gi} are compatible with each other. Then

g :=
⋃
i

gi

is a PL isomorphism I ×MΘ ≈ (I ×M)Θ , which proves the theorem.

N

Note I advise the interested reader who wishes to study submersions in more
depth, including also the case of submersions of stratified topological spaces, as
well as other difficult topics related to the spaces of homomorphisms, to consult
[Siebenmann, 1972].

To the reader who wishes to study in more depth the theorem of fibrations for
submersions with non compact fibres, including extension theorems of sliced
concordances, I suggest [Kirby–Siebemann 1977 Essay II].
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88 III : The differential

2 The space of the PL structures on a topological
manifold M

Let Mm be a topological manifold without boundary, which is not necessarily
compact.

2.1 The complex PL(M)

The space PL(M) of PL structures on M is the ss–set which has as typical
k–simplex σ a PL structure Θ on ∆k ×M , such that the projection

(∆k ×M)Θ
π1−→∆k

is a PL submersion. The semisimplicial operators are defined using fibred prod-
ucts. More precisely, if λ : ∆l → ∆k is in ∆∗ , then λ#(σ) is the PL structure
on ∆l ×M , which is obtained by pulling back π1 by λ:

λ#(σ)


(∆l ×M)λ∗Θ −→ (∆k ×M)Θ

π1 ↓ ↓ π1

∆l λ−→ ∆k

An equivalent definition is that a k–simplex of PL(M) is an equivalence class
of commutative diagrams

∆k×M
f

//

π1
##G

GG
GG

GG
GG

Q

p
~~~~
~~
~~
~~

∆k

where Q is a PL manifold, p a PL submersion, f a topological homeomorphism
and the two diagrams are equivalent if f ′ = ϕ ◦ f , where ϕ: Q → Q′ is a PL
isomorphism.

Under this definition a k–simplex of PL(M) is a sliced concordance of PL
structures on M .
H

In order to show the equivalence of these two definitions, let temporarily PL′(M)
(respectively PL′′(M)) be the ss–set obtained by using the first (respectively
the second) definition. We will show that there is a canonical semisimplicial
isomorphism α : PL′(M)→ PL′′(M). Define α(∆×M)Θ to be the equivalence
class of Id : ∆ × M → (∆ × M)Θ where ∆ = ∆k . Now let β : PL′′(M) →
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2 PL structures on a topological manifold 89

PL′(M) be constructed as follows. Given f : ∆ × M → QPL , let Θ be a
maximal PL atlas on QPL . Then set β(f) := (∆ ×M)f∗(Θ) . The map β is
well defined since, if f ′ is equivalent to f in PL′′(M), then

(∆×M)f ′∗Θ′ = (∆×M)(φ◦f)∗Θ′ = (∆×M)f∗φ∗Θ′ = (∆×M)f∗Θ.

The last equality follows from the fact that φ is PL, henceφ∗Θ′ = Θ. Now
let us prove that each of α and β is the inverse of the other. It is clear that
β ◦ α = IdPL′(M) . Moreover

α ◦ β(∆×M f→ Q) = α(∆×M)f∗Θ = (∆×M Id→ (∆×M)f∗Θ).

But f ◦ Id = f : (∆×M)f∗Θ → Q is PL by construction, therefore α ◦ β is the
identity.

Since the submersion condition plays no relevant role in the proof, we have
established that PL′(M) and PL′′(M) are canonically isomorphic.

N

Observations (a) If M is compact, we know that the submersion π1 is a
trivial PL bundle. In this case a k–simplex is a k–isotopy of structures on M .
See also the next observation.

(b) (Exercise) If M is compact then the set π0(PL(M)) of path components
of PL(M) has a precise geometrical meaning: two PL structures Θ,Θ′ on M
are in the same path component if and only if there exists a topological isotopy
ht : M → M , with h0 = 1M and h1 : MΘ → MΘ′ a PL isomorphism. This
is also true if M is non-compact and the dimension is not 4 (hint: use the
fibration theorem).

(c) PL(M) 6= ∅ if and only if M admits a PL structure.

(d) If PL(M) is contractible then M admits a PL structure and such a struc-
ture is strongly unique. This means that two structures Θ, Θ′ on M are isotopic
(or concordant). Furthermore any two isotopies (concordances) between Θ and
Θ′ can be connected through an isotopy (concordance respectively) with two
parameters, and so on.

(e) If m ≤ 3, Kerékjárto (1923) and Moise (1952, 1954) have proved that
PL(M) is contractible. See [Moise 1977].

2.2 The ss–set PL(TM)

Now we wish to define the space of PL structures on the tangent microbundle
on M . In this case it will be easier to take as TM the microbundle

M
∆−→M ×M π2−→M ,
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90 III : The differential

where π2 is the projection on the second factor. Hirsch calls this the second
tangent bundle. This is obviously a notational convention since if we swap the
factors we obtain a canonical isomorphism between the first and the second
tangent bundle.

More generally, let, ξ : X i−→E(ξ)
p−→X be a topological m–microbundle on a

topological manifold X . A PL structure Θ on ξ is a PL manifold structure
on an open neighbourhood U of i(X) in E(ξ), such that p : UΘ → X is a PL
submersion.

If Θ′ is another PL structure on ξ , we say that Θ is equal to Θ′ if Θ and
Θ′ define the same germ around the zero-section, ie, if Θ = Θ′ in some open
neighbourhood of i(X) in E(ξ). Then Θ really represents an equivalence class.

Note A PL structure Θ on ξ is different from a PL microbundle structure on
ξ , namely a PLµ–structure, as it was defined in II.4.1. The former does not
require that the zero–section i : X → UΘ is a PL map. Consequently i(X) does
not have to be a PL submanifold of UΘ , even if it is, obviously, a topological
submanifold.

The space of the PL structures on ξ , namely PL(ξ), is the ss–set, whose typical
k–simplex is the germ around ∆k×X of a PL structure on the product micro-
bundle ∆k×ξ . The semisimplicial operators are defined using the construction
of the induced bundle.

Later we shall see that as far as the classification theorem is concerned the
concepts of PL structures and PLµ–structures on a topological microbundle
are effectively the same, namely we shall prove (fairly easily) that the ss–sets
PL(ξ) and PLµ(ξ) have the same homotopy type (proposition 4.8). However
the former space adapts naturally to the case of smoothings (Part V) when
there is no fixed PL structure on M .

Lemma PL(M) and PL(TM) are kss–sets.

Proof This follows by pulling back over the PL retraction ∆k → Λk .
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3 Relation between PL(M) and PL(TM) 91

3 Relation between PL(M) and PL(TM)

From now on, unless otherwise stated, we will introduce a hypothesis, which is
only apparently arbitrary, on our initial topological manifold M .

(*) We will assume that there is a PL structure fixed on M.

The arbitrariness of this assumption is in the fact that it is our intention to
tackle jointly the two problems of existence and of the classification of the PL
structures on M . However this preliminary hypothesis simplifies the exposition
and makes the technique more clear, without invalidating the problem of the
classification. Later we will explain how to avoid using (*), see section 5.

3.1 The differential

Firstly we define an ss–map

d : PL(M)→ PL(TM),

namely the differential, by setting, for Θ ∈ PL(M)(k) , dΘ to be equal to the
PL structure Θ×M on E(∆k × TM) = ∆k ×M ×M .

Our aim is to prove that the differential is a homotopy equivalence, except in
dimension m = 4.

Classification theorem d : PL(M) → PL(TM) is a homotopy equivalence
for m 6= 4.

The philosophy behind this result is that infinitesimal information contained
in TM can be integrated in order to solve the classification problem on M . In
other words d is used to linearise the classification problem.

The theorem also holds for m = 4 if none of the components of M are compact.
However the proof uses results of [Gromov 1968] which are beyond the scope of
this book.

We now set the stage for the proof of theorem 3.1.

3.2 The Mayer–Vietoris property

Let U be an open set of M. Consider the PL structure induced on U by the
one fixed on M. The correspondences U → PL(U) and U → PL(TU) define
contravariant functors from the category of the inclusions between open sets of
M , with values in the category of ss–sets. Note that TU = TM |U .

Notation We write F (U) to denote either PL(U) or PL(TU) without dis-
tinction.
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Lemma (Mayer–Vietoris property) The functor F transforms unions into
pullbacks, ie, the following diagram

F (U ∪ V ) //

��

F (U)

��
F (V ) // F (U ∩ V )

is a pull back for each pair of open sets U, V ⊂M .

The proof is an easy exercise.

3.3 Germs of structures

Let A be any subset of M. The functor F can then be extended to A using
the germs. More precisely, we set

PL(A ⊂M) := lim
→
{PL(U) : A ⊂ U open in M}

PL(TM |A) := lim
→
{PL(TU) : A ⊂ U open in M} .

The differential can also be extended to an ss–map

dA : PL(A ⊂M)→ PL(TM |A)

which is still defined using the rule Θ→ Θ× U .

Finally, the Mayer–Vietoris property 3.2 is still valid if, instead of open sets
we consider closed subsets. This implies that, when we write F (A) for either
PL(A ⊂M) or PL(TM |A), then the diagram of restrictions

F (A ∪B) //

��

F (A)

��
F (B) // F (A ∩B)

(3.3.1)

is a pullback for closed A,B ⊂M .

3.4 Note about base points

If Θ ∈ PL(M)(0) , ie, Θ is a PL structure on M , there is a canonical base point
∗ for the ss–set PL(M), such that

∗k = ∆k ×Θ.

In this way we can point each path component of PL(M) and correspondingly
of PL(TM). Furthermore we can assume that d is a pointed map on each path
component. The same thing applies more generally for PL(A ⊂ M) and its
related differential. In other words we can always assume that the diagram
3.3.1 is made up of ss–maps which are pointed on each path component.
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4 Proof of the classification theorem

The method of the proof is based on immersion theory as viewed by Haefliger
and Poenaru (1964) et al. Among the specialists, this method of proof has been
named the Haefliger and Poenaru machine or the immersion theory machine.
Various authors have worked on this topic. Among these we cite [Gromov 1968],
[Kirby and Siebenmann 1969], [Lashof 1970] and [Rourke 1972].

There are several versions of the immersion machine tailored to the particular
theorem to be proved. All versions have a common theme. We wish to prove
that a certain (differential) map d connecting functors defined on manifolds, or
more generally on germs, is a homotopy equivalence. We prove:

(1) The functors satisfy a Mayer–Vietoris property (see for example 3.2 above).

(2) The differential is a homotopy equivalence when the manifold is Rn .

(3) Restrictions to certain subsets are Kan fibrations.

Once these are established there is a transparent and automatic procedure which
leads to the conclusion that d is a homotopy equivalence. This procedure could
even be decribed with axioms in terms of categories. We shall not axiomatise
the machine. Rather we shall illustrate it by example.

The versions differ according to the precise conditions and subsets used. In
this section we apply the machine to prove theorem 3.1. We are working in the
topological category and we shall establish (3) for arbitrary compact subsets.
The Mayer–Vietoris property was established in 3.2. We shall prove (2) in
sections 4.1–4.4 and (3) in section 4.5 and 4.6. The machine proof itself comes
in section 4.7.

In the next part (IV.1) we shall use the machine for its original purpose, namely
immersion theory. In this version, (3) is established for the restricion of X to
X0 where X is obtained from X0 attaching one handle of index < dimX .

The classification theorem for M = Rm

4.1 The following proposition states that the function which restricts the PL
structures to their germs in the origin is a homotopy equivalence in Rm.

Proposition If M = Rm with the standard PL structure, then the restriction
r : PL(Rm)→ PL(0 ⊂ Rm) is a homotopy equivalence.
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Proof We start by stating that, given an open neighbourhood U of 0 in Rm ,
there always exist a homeomorphism ρ between Rm and a neighbourhood of 0
contained in U , which is the identity on a neighbourhood of 0. There also exists
an isotopy H : I × Rm → Rm , such that H(0, x) = x, H(1, x) = ρ(x) for each
x ∈ Rm and H(t, x) = x for each t ∈ I and for each x in some neighbourhood
of 0.

In order to prove that r is a homotopy equivalence we will show that r induces
an isomorphism between the homotopy groups.

(a) Consider a ss–map Si → PL(0 ⊂ Rm). This is nothing but an i–sphere
of structures on an open neighbourhood U of 0, ie, a diagram:

Si × U
φ

//

π1
""F

FF
FF

FF
FF

(Si × U)Θ

p
zzuuu

uu
uu
uu
u

Si

where Θ is a PL structure, p is a PL submersion and ϕ is a homeomorphism.
Then the composed map

Si × Rm f−→Si × U ϕ−→(Si × U)Θ,

where f(τ, x) = (τ, ρ(x)), gives us a sphere of structures on the whole of Rm.
The germ of this structure is represented by ϕ. This proves that r induces an
epimorphism between the homotopy groups.

(b) Let
f0 : Si × Rm → (Si × Rm)Θ0

and
f1 : Si × Rm → (Si × Rm)Θ1

be two spheres of structures on Rm and assume that their germs in Si × 0
define homotopic maps of Si in PL(0 ⊂ Rm). This implies that there exists a
PL structure Θ and a homeomorphism

G: I × Si × U → (I × Si × U)Θ

which represents a map of I × Si in PL (0 ⊂ Rm) and which is such that

G(0, τ, x) = f0(τ, x) G(1, τ, x) = f1(τ, x)

for τ ∈ Si , x ∈ U .

We can assume that G(t, τ, x) is independent of t for 0 ≤ t ≤ ε and 1 − ε ≤
t ≤ 1. Also consider, in the topological manifold I × Si ×Rm, the structure Θ
given by

Θ0 × [0, ε) ∪Θ ∪ (1− ε, 1] ×Θ1.
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The three structures coincide since Θ restricts to Θi on the overlaps, and
therefore Θ is defined on a topological submanifold Q of I × Si × Rm .

Finally we define a homeomorphism

F : I × Si × Rm → QΘ

with the formula

F (t, τ, x) =


G
(
t, τ,H

(
t
ε , x
))

0 ≤ t ≤ ε
G (t, τ, ρ(x)) ε ≤ t ≤ 1− ε
G
(
t, τ,H

(
1−t
ε , x

))
1− ε ≤ t ≤ 1.

(x ∈ Rm). The map F is a homotopy of Θ0 and Θ1 , and then r induces
a monomorphism between the homotopy groups which ends the proof of the
proposition.

4.2 The following result states that a similar property applies to the structures
on the tangent bundle Rm .

Proposition The restriction map

r : PL(TRm)→ PL(TRm|0)

is a homotopy equivalence.

Proof We observe that TRm is trivial and therefore we will write it as

Rm ×X πX−→X
with zero–section 0 × X , where X is a copy of Rm with the standard PL
structure.

Given any neighbourhood U of 0, let H : I×X → X be the isotopy considered
at the beginning of the proof of 4.1. We remember that a PL structure on
TRm is a PL structure of manifolds around the zero- -section. Furthermore
πX is submersive with respect to this structure. The same applies for the PL
structures on TU , where U is a neighbourhood of 0 in X . It is then clear
that by using the isotopy H , or even only its final value ρ : X → U , each PL
structure on TU expands to a PL structure on the whole of TRm. The same
thing happens for each sphere of structures on TU . This tells us that r induces
an epimorphism between the homotopy groups. The injectivity is proved in a
similar way, by using the whole isotopy H . It is not even necessary for H to
be an isotopy, and in fact a homotopy would work just as well.

Summarising we can say that proposition 4.1 is established by expanding iso-
topically a typical neighbourhood of the origin to the whole of Rm , while propo-
sition 4.2 follows from the fact that 0 is a deformation retract of Rm .
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4.3 We will now prove that, still in Rm , if we pass from the structures to
their germs in 0, the differential becomes in fact an isomorphism of ss–sets (in
particular a homotopy equivalence).

Proposition d0 : PL(0 ⊂ Rm) → PL(TRm|0) is an isomorphism of com-
plexes.

Proof As above, we write

TRm : Rm ×X πX−→X (X = Rm)

and we observe that a germ of a structure in TRm|0 is locally a product in
the following way. Given a PL structure Θ near U in Rm × U , where U is
a neighbourhood of 0 in X , then, since πX is a PL submersion, there exists
a neighbourhood V ⊂ U of 0 in X and a PL isomorphism between Θ|TV
and ΘV × U , where ΘV is a PL structure on V , which defines an element of
PL(0 ⊂ Rm). Since the differential d = d0 puts a PL structure around 0 in
the fibre of TRm , then it is clear that d0 is nothing but another way to view
the same object.

4.4 The following theorem is the first important result we were aiming for. It
states that the differential is a homotopy equivalence for M = Rm .

In other words, the classification theorem 3.1 holds for M = Rm .

Theorem d : PL(Rm)→ PL(TRm) is a homotopy equivalence.

Proof Consider the commutative diagram

PL(Rm) d //

r

��

PL(TRm)

r

��
PL(0 ⊂ Rm)

d0

// PL(TRm|0)

By 4.1 and 4.2 the vertical restrictions are homotopy equivalences. Also by 4.3
d0 is a homeomorphism and therefore d is a homotopy equivalence.

The two fundamental fibrations

4.5 The following results which prepare for the proof the classification theo-
rem have a different tone. In a word, they establish that the majority of the
restriction maps in the PL structure spaces are Kan fibrations.
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Theorem For each compact pair C1 ⊂ C2 of M the natural restriction

r : PL(TM |C2)→ PL(TM |C1)

is a Kan fibration.

Proof We need to prove that each commutative diagram

Λk //

��

PL(TM |C2)

r

��
∆k // PL(TM |C1)

can be completed by a map

∆k → PL(TM |C2)

which preserves commutativity.

In order to make the explanation easier we will assume C2 = M and we will
write C = C1 . The general case is completely analogous, the only difference
being that the are more “germs” (To those in C1 we need to add those in C2 ).

We will give details only for the lifting of paths when (k = 1), the general case
being identical.

We start with a simple observation. If ξ/X is a topological m–microbundle on
the PL manifold X , if Θ is a PL structure on ξ and if r : Y → X is a PL map
between PL manifolds, then Θ gives the induced bundle r∗ξ a PL structure in
a natural way using pullback. We will denote this structure by r∗Θ. This has
already been used (implicitly) to define the degeneracy operators ∆i+1 → ∆i

in PL(ξ), in the particular case of elementary simplicial maps cf 2.2.

Consider a path in PL(TM |C), ie, a PL structure Θ′ on I×TU = I×(TM |U),
with U an open neighbourhood of C . A lifting of the starting point of this
path to PL(TM) gives us a PL structure Θ′′ on TM , such that Θ′ ∪ Θ′′ is
a PL structure Θ on the microbundle 0 × TM ∪ I × TU . Without asking for
apologies we will ignore the inconsistency caused by the fact that the base of
the last microbundle is not a PL manifold but a polyhedron given by the union
of two PL manifolds along 0×U . This inconsistency could be eliminated with
some effort. We want to extend Θ to the whole of I × TM . We choose a PL
map r : I ×M → 0 ×M ∪ I × U which fixes 0×M and some neighbourhood
of I × C . Then r∗Θ is the required PL structure.

This ends the proof of the theorem.
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4.6 It is much more difficult to establish the property analogous to 4.5 for the
PL structures on the manifold M , rather than on its tangent bundle:

Theorem For each compact pair C1 ⊂ C2 ⊂Mm the natural restriction

r : PL(C2 ⊂M)→ PL(C1 ⊂M)

is a Kan fibration, if m 6= 4.

Proof If we use cubes instead of simplices we need to prove that each com-
mutative diagram

Ik //

��

PL(C2 ⊂M)

r

��
Ik+1 // PL(C1 ⊂M)

can be completed by a map

Ik+1 → PL(C2 ⊂M)

which preserves commutativity.

We will assume again that C2 = M and we will write C1 = C .

We have a PL k–cube of PL structures on M and an extension to a (k+1)–cube
near C. This implies that we have a structure Θ on Ik ×M and a structure
Θ′ on I(k+1) × U , where U is some open neighbourhood of C . By hypothesis
the two structures coincide on the overlap, ie, Θ | Ik × U = Θ′ | 0× Ik × U .

We want to extend Θ∪Θ′ to a structure Θ over the whole of Ik+1 ×M , such
that Θ coincides with Θ′ on Ik+1× some neighbourhood of C which is possibly
smaller than U .

We will consider first the case k = 0, ie, the lifting of paths.

By the fibration theorem 1.8, if m 6= 4 there exists a sliced PL isomorphism
over I

h : (I × U)Θ′ → I × UΘ

(recall that Θ′|0 = Θ). There is the natural topological inclusion j : I × U ⊂
I ×M so that the composition

j ◦ h : I × U → I ×M
gives a topological isotopy of U in M and thus also of W in M , where W is the
interior of a compact neighbourhood of C in U . From the topological isotopy
extension theorem we deduce that the isotopy of W in M given by (j ◦ h) |W

Geometry & Topology Monographs, Volume 6 (2003)



4 Proof of the classification theorem 99

extends to an ambient topological isotopy F : I×M → I×M . Now endow the
range of F with the structure I ×MΘ .

Since it preserves projection to I , the map F provides a 1-simplex of PL(M ),
ie a PL structure Θ on I ×M . It is clear that Θ coincides with Θ′ at least on
I ×W . In fact F | I ×W is the composition of PL maps

(I ×W )Θ′ ⊂ (I × U)Θ′
h→ I × UΘ ⊂ I ×MΘ

and therefore is PL, which is the same as saying that Θ = Θ′ on I ×W .

In the general case of two cubes (Ik+1, Ik) write X∗ for Ik ×X and apply the
above argument to M∗ , U∗ ,W ∗ .

4.7 The immersion theory machine

Notation We write F (X), G(X) for PL(X ⊂ M) and PL(TM |X) respec-
tively.

We can now complete the proof of the classification theorem 4.1 under hypoth-
esis (*).

Proof of 4.1 All the charts on M are intended to be PL homeomorphic
images of Rm and the simplicial complexes are intended to be PL embedded in
some of those charts.

(1) The theorem is true for each simplex A, linearly embedded in a chart of
M .

Proof We can suppose that A ⊂ Rm and observe that A has a base of
neighbourhoods which are canonically PL isomorphic to Rm . The result follows
from 4.4 taking the direct limits.

More precisely, A is the intersection of a nested countable family V1 ⊃ V2 ⊃
· · ·Vi ⊃ · · · of open neighbourhoods each of which is considered as a copy of
Rm . Then

F (A) = lim
→
F (Vi) G(A) = lim

→
G(Vi) dA = lim

→
dVi

Since each dVi is a weak homotopy equivalence by 4.4, then dA is also a weak
homotopy equivalence and hence a homotopy equivalence.

(2) If the theorem is true for the compact sets A,B,A ∩B , then it is true for
A ∪B .
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Proof We have a commutative diagram.

F (A ∪B) //

r1

��

dA∪B &&MM
MM

MM
MM

MM
F (B)

r3

��

dBxxqqq
qq
qq
qq
q

G(A ∪B) //

r2

��

G(B)

r4

��
G(A) // G(A ∩B)

F (A) //

dA

88qqqqqqqqqq
F (A ∩B)

dA∩B
ffMMMMMMMMMM

where the ri are fibrations, by 4.5 and 4.6, and dA , dB , and dA∩B are homotopy
equivalences by hypothesis. It follows that d is a homotopy equivalence between
each of the fibres of r3 and the corresponding fibre of r4 (by the Five Lemma).
By 3.3.1 each of the squares is a pullback, therefore each fibre of r1 is isomorphic
to the corresponding fibre of r3 and similarly for r2 , r4 . Therefore d induces a
homotopy equivalence between each fibre of r1 and the corresponding fibre of
r2 . Since dA is a homotopy equivalence, it follows from the Five Lemma that
dA∪B is a homotopy equivalence. In a word, we have done nothing but appy
proposition II.1.7 several times.

(3) The theorem is true for each simplicial complex (which is contained in a
chart of M ). With this we are saying that if K ⊂ Rm is a simplicial complex,
then

dK : PL(K ⊂ Rm)→ PL(TRm|K)

is a homotopy equivalence.

Proof This follows by induction on the number of simplices of K , using (1)
and (2).

(4) The theorem is true for each compact set C which is contained in a chart.
With this we are saying that if C is a compact set of Rm , then

dC : PL(C ⊂ Rm)→ PL(TRm|C)

is a homotopy equivalence.

Proof C is certainly an intersection of finite simplicial complexes. Then the
result follows using (3) and passing to the limit.

(5) The theorem is true for any compact set C ⊂M .
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Proof C can be decomposed into a finite union of compact sets, each of which
is contained in a chart of M . The result follows applying (2) repeatedly.

(6) The theorem is true for M .

Proof M is the union of an ascending chain of compact sets C1 ⊂ C2 ⊂ · · ·
with Ci ⊂

◦
Ci+1 .

From definitions we have

F (M) = lim
←
F (Ci) G(M) = lim

←
G(Ci) dM = lim

←
dCi

Each dCi is a weak homotopy equivalence by (5), hence dM is a weak homotopy
equivalence.

This concludes the proof of (6) and the theorem

To extend theorem 3.1 to the case m = 4 we would need to prove that, if M is
a PL manifold and none of whose components is compact, then the differential

d : PL(M)→ PL(TM)

is a homotopy equivalence without any restrictions on the dimension.

We will omit the proof of this result, which is established using similar tech-
niques to those used for the case m 6= 4. For m = 4 one will need to use
a weaker version of the fibration property 4.6 which forces the hypothesis of
non-compactness (Gromov 1968).

However it is worth observing that in 4.4 we have already established the result
in the particular case of Mm = Rm which is of importance. Therefore the
classification theorem also holds for R4 , the Euclidean space which astounded
mathematicians in the 1980’s because of its unpredictable anomalies.

Finally, we must not forget that we still have to prove the classification theorem
when Mm is a topological manifold upon which no PL structure has been fixed.
We will do this in the next section.

The proof of the classification theorem gives us a stronger result: if C ⊂ M is
closed, then

dC : PL(C ⊂M)→ PL(TM |C) (4.7.1)

is a homotopy equivalence.

Proof C is the intersection of a nested sequence V1 ⊃ . . . Vi ⊃ of open neigh-
bourhoods in M . Each dVi is a weak homotopy equivalence by the theorem
applied with M = Vi . Taking direct limits we obtain that dC is also a weak
homotopy equivalence.
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Classification via sections

4.8 In order to make the result 4.6 usable and to arrive at a real structure
theorem for PL(M) we need to analyse the complex PL(TM) in terms of
classifying spaces. For this purpose we wish to finish the section by clarifying
the notion of PL structure on a microbundle ξ/X .

As we saw in 2.2 when Θ defines a PL structure on ξ/X we do not need to
require that i : X → UΘ is a PL map. When this happens, as in II.4.1, we say
that a PLµ–structure is fixed on ξ . In this case

X
i−→UΘ

p−→X
is a PL microbundle, which is topologically micro–isomorphic to ξ/X .

Alternatively, we can say that a PLµ–structure on ξ is an equivalence class
of topological micro–isomorphisms f : ξ → η , where η/X is a PL microbundle
and f ∼ f ′ if f ′ = h ◦ f , and h : η → η′ is a PL micro–isomorphism.

In II.4.1 we defined the ss–set PLµ(ξ), whose typical k–simplex is an equiva-
lence class of commutative diagrams

∆k × ξ
f

//

##G
GG

GG
GG

G
η

����
��
��
��

∆k

where f is a topological micro–isomorphism and η is a PL microbundle.

Clearly
PLµ(ξ) ⊂ PL(ξ).

Proposition The inclusion PLµ(ξ) ⊂ PL(ξ) is a homotopy equivalence.

H
Proof We will prove that

πk(PL(ξ),PLµ(ξ)) = 0.

Let k = 0 and Θ ∈ PL(ξ)(0) . In the microbundle

I × ξ : I ×X 1×i−→I × E(ξ)
p−→I ×X

we approximate the zero–section 1 × i using a zero–section j which is PL on
0×X (with respect to the PL structure I × Θ) and which is i on 1×X .
This can be done by the simplicial ε–approximation theorem of Zeeman. This
way we have a new topological microbundle ξ′ on I × X , whose zero–section
is j . To this topological microbundle we can apply the homotopy theorem for
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microbundles in order to obtain a topological micro–isomorphism I × ξ h−→ξ′ .
If we identify I × ξ with ξ′ through h, we can say that the PL structure I ×Θ
gives us a PL structure on ξ′ . This structure coincides with Θ on 1×X and is,
by construction, a PLµ–structure on 0×X . This proves that each PL structure
can be connected to a PLµ–structure using a path of PL structures.
An analogous reasoning establishes the theorem for the case k > 0 starting
from a sphere of PL structures on ξ/X .

N

4.9 Let ξ = TM and let

TM
f //

��

γmTop

��
M

f
// BTop

be a fixed classifying map. We will recall here some objects which have been
defined previously. Let

B : Topm/PLm −→ BPLm
pm−→BTopm

be the fibration II.3.15; let

TMf = f∗(B) = TM [Topm/PLm]

be the bundle associated to TM with fibre Topm/PLm , and let

Lift(f)

be the space of the liftings of f to BPLm .

Since there is a fixed PL structure on M , we can assume that f is precisely a
map with values in BPLm composed with pm.

Classification theorem via sections Assuming the hypothesis of theorem
3.1 we have homotopy equivalences

PL(M) ' Lift(f) ' SectTM [Topm/PLm].

Proof Apply 3.1, 4.8, II.4.1, II.4.1.1.

The theorem above translates the problem of determining PL(TM) to an ob-
struction theory with coefficients in the homotopy groups πk(Topm/PLm).
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5 Classification of PL–structures on a
topological manifold M . Relative versions

We will now abandon the hypothesis (*) of section 3, ie, we do not assume that
there is a PL structure fixed on M and we look for a classification theorem for
this general case. Choose a topological embedding of M in an open set N of
an Euclidean space and a deformation retraction r : N → M ⊂ N. Consider
the induced microbundle r∗TM whose base is the PL manifold N . The reader
is reminded that

r∗TM : N j−→M ×N p2−→N

where p2 is the projection and j(y) = (r(y), y). Since N is PL, then the space
PL(r∗TM) is defined and it will allow us to introduce a new differential

d : PL(M)→ PL(r∗TM)

by setting dΘ := Θ×N .

5.1 Classification theorem

d : PL(M)→ PL(r∗TM) is a homotopy equivalence provided that m 6= 4.

The proof follows the same lines as that of Theorem 3.1, with some technical
details added and is therefore omitted.

5.2 Theorem Let f : M → BTopm be a classifying map for TM . Then

PL(M) ' Sect(TMf ).

Proof Consider the following diagram of maps of microbundles

TM
i //

��

r∗TM //

��

TM
f //

��

γmTop

��
M

i // N
r // M

f
// BTopm.

Passing to the bundles induced by the fibration

B : Topm/PLm → BPLm → BTopm

we have
PL(r∗TM) ' Sect((r∗TM)f◦r)

i∗' Sect(TMf ).
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Therefore PL(M) is homotopically equivalent to the space of sections of the
Topm/PLm–bundle associated to TM.

It follows that in this case as well the problem is translated to an obstruction
theory with coefficients in πk(Topm/PLm).

5.3 Relative version

Let M be a topological manifold with the usual hypothesis on the dimension,
and let C be a closed set in M. Also let PL(MrelC) be the space of PL struc-
tures of M , which restrict to a given structure, Θ0 , near C , and let PL(TM
rel C) be defined analogously.

Theorem d : PL(M rel C)→ PL(TM rel C) is a homotopy equivalence.

Proof Consider the commutative diagram

PL(M) d //

r1

��

PL(M)

r2

��
PL(C ⊂M)

d
// PL(TM |C)

where we have written TM for r∗TM and TM |C for r∗TM |r−1(C) ; Θ0 defines
basepoints of both the spaces in the lower part of the diagram and r1 , r2 are
Kan fibrations. The complexes PL(M rel C), and PL(TM rel C) are the fibres
of r1 and r2 respectively. The result follows from 4.7.1 and the Five lemma.

Corollary PL(MrelC) is homotopically equivalent to the space of those sec-
tions of the Topm/PLm– bundle associated to TM which coincide with a sec-
tion near C (precisely the section corresponding to Θ0 ).

5.4 Version for manifolds with boundary

The idea is to reduce to the case of manifolds without boundary. If Mm is
a topological manifold with boundary ∂M , we attach to M an external open
collar, thus obtaining

M+ = M ∪∂ ∂M × [0, 1)

and we define TM := TM+|M .

If ξ is a microbundle on M , we define ξ ⊕ Rq (or even better ξ ⊕ εq ) as the
microbundle with total space E(ξ)× Rq and projection

E(ξ)× Rq → E(ξ)
pξ−→M.
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This is, obviously, a particular case of the notion of direct sum of locally trivial
microbundles which the reader can formulate.

Once a collar (−∞, 0] × ∂M ⊂M is fixed we have a canonical isomorphism

TM+|∂M ≈ T (∂M) ⊕R (5.4.1)

and we require that a PL structure on TM is always so that it can be des-
ospended according to (5.4.1) on the boundary ∂M. We can then define a
differential

d : PL(M)→ PL(TM)

and we have:

Theorem If m 6= 4, 5, then d is a homotopy equivalence .

Proof (Hint) Consider the diagram of fibrations

PL(M+rel ∂M × [0, 1)) d //

��

PL(TM+rel ∂M × [0, 1))

��
PL(M) d //

r1

��

PL(TM)

r2

��
PL(TM) d // PL(T∂M)

The reader can verify that the restrictions r1 , r2 exist and are Kan fibrations
whose fibres are homotopically equivalent to the upper spaces and that d is a
morphism of fibrations. The differential at the bottom is a homotopy equiva-
lence as we have seen in the case of manifolds without boundary, the one at the
top is a homotopy equivalence by the relative version 5.3 Therefore the result
follows from the Five lemma.

5.5 The version for manifolds with boundary can be combined with the rel-
ative version. In at least one case, the most used one, this admits a good
interpretation in terms of sections.

Theorem If ∂M ⊂ C and m 6= 4, (giving the symbols the obvious meanings)
then there is a homotopy equivalence:

PL(MrelC) ' Sect (TMf relC)

where f : M → BTopm is a classifying map which extends such a map already
defined near C .
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Note If ∂M 6⊂ C , then Sect(TMf ) has to be substituted by a more com-
plicated complex, which takes into account the sections on ∂M with values
in Topm−1/PLm−1 . However it can be proved, in a non trivial way, that, if
m ≥ 6, then there is an equivalence analogous to that expressed by the theorem.

Corollary If M is parallelizable, then M admits a PL structure.

Proof (TM+)f is trivial and therefore there is a section.

Proposition Each closed compact topological manifold has the same homo-
topy type of a finite CW complex.

Proof [Hirsch 1966] established that, if we embed M in a big Euclidean space
RN , then M admits a normal disk bundle E .

E is a compact manifold, which has the homotopy type of M and whose tangent
microbundle is trivial. Therefore the result follows from the Corollary.

5.6 We now have to tackle the most difficult part, ie, the calculation of the
coefficients πk(Topm/PLm) of the obstructions. For this purpose we need to
recall some important results of the immersion theory and this will be done in
the next part.

Meanwhile we observe that, since

PLm ⊂ Topm → Topm/PLm

is a Kan fibration, we have:

πk(Topm/PLm) ≈ πk(Topm,PLm).
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