Part II : Microbundles

1 Semisimplicial sets

The construction of simplicial homology and singular homology of a simplicial complex or a topological space is based on a simple combinatorial idea, that of incidence or equivalently of face operator.
In the context of singular homology, a new operator was soon considered, namely the degeneracy operator, which locates all of those simplices which factorise through the projection onto one face. Those were, rightly, called degenerate simplices and the guess that such simplices should not contribute to homology turned out to be by no means trivial to check.
Semisimplicial complexes, later called semisimplicial sets, arose round about 1950 as an abstraction of the combinatorial scheme which we have just referred to (Eilenberg and Zilber 1950, Kan 1953). K an in particular showed that there exists a homotopy theory in the semisimplicial category, which encapsulates the combinatorial aspects of the homotopy of topological spaces [K an 1955].
Furthermore, the semisimplicial sets, despite being purely algebraically de ned objects, contain in their DNA an intrinsic topology which proves to beextremely useful and transparent in the study of some particular function spaces upon which there is not given, it is not desired to give or it is not possible to give in a straightforward way, a topology corresponding to the posed problem. Thus, for example, while the space of loops on an ordered simplicial complex is not a simplicial complex, it can nevertheless be de ned in a canonical way as a semisimplicial set.
The most complete bibliographical reference to the study of semisimplicial objects is [May 1967]; we also recommend [Moore 1958] for its conciseness and clarity.

1.1 The semisimplicial category

Recall that the standard simplex $m \quad \mathbb{R}^{m}$ is

$$
m=f\left(x_{1} ;::: ; x_{m}\right) 2 \mathbb{R}^{m}: x_{i} \quad 0 \text { and } \quad x_{i} \quad 1 g:
$$

The vertices of m are ordered $0 ; \mathrm{e}_{1} ; \mathrm{e}_{2} ;::: ; \mathrm{e}_{\mathrm{m}}$, where e_{e} is the unit vector in the $\mathrm{i}^{\text {th }}$ coordinate Let be the category whose objects are the standard
simplices $k \quad \mathbb{R}^{k}(k=0 ; 1 ; 2 ;:::)$ and whose morphisms are the simplicial monotone maps : j ! k . A semisimplicial object in a category C is a contravariant functor
X: ! C:

If C is the category of sets, X is called a semisimplicial set. If C is the cate gory of monoids (or groups), X is called a semisimplicial monoid (or group, respectively).

We will focus, for the moment, on semisimplicial sets, abbreviated ss\{sets.
We write $X^{(k)}$ instead of $X\left({ }^{k}\right)$ and call $X^{(k)}$ the set of k ssimplices of X. The morphism induced by will be denoted by $\#: X^{(k)}!X^{(j)}$. A simplex of X is called degenerate if it is of the form \# , with non injective; if, on the contrary, is injective, \# is said to be a face of .

A simplicial complex K is said to be ordered if a partial order is given on its vertices, which induces a total order on the vertices of each simplex in K. In this case K determines an ss\{set \mathbf{K} de ned as follows:

$$
\mathbf{K}^{(n)}=\mathrm{ff}:{ }^{\mathrm{n}}!\mathrm{K}: \mathrm{f} \text { is a simplicial monotone mapg: }
$$

If 2 , then $\#_{f}$ is de ned as f. In particular, if ${ }^{k}$ is a standard simplex, it determines an ss\{set ${ }^{k}$.

The most important example of an ss\{set is the singular complex, Sing(A), of a topological space A. A k \{simplex of Sing(A) is a map f: k ! A and, if : $\mathrm{j}!\mathrm{k}$ is in , then ${ }^{\#}(\mathrm{f})=\mathrm{f}$

We notice that, if A is a one\{point set , each simplex of dimension >0 in Sing() is degenerate.

If X ; Y are ss\{sets, a semisimplicial map $\mathrm{f}: \mathrm{X}$! Y , (abbreviated to ss \{map), is a natural transformation of functors from X to Y. Therefore, for each k, we have maps $f^{(k)}: X^{(k)}!Y^{(k)}$ which make the following diagrams commute

for each : ${ }^{j}$! k in .

Geometry \& Topology M onographs, Volume 6 (2003)

Examples

(a) A map g: A! B induces an ss\{map Sing(A)! Sing(B) by composition.
(b) If X is an ss\{set, a k \{simplex of X determines a characteristic map : ${ }^{k}$! X de ned by setting
() := \# ():

The composition of two ss\{maps is again an ss\{map. Therefore we can de ne the semisimplicial category (denoted by $\mathbf{S S}$) of semisimplicial sets and maps. Finally, there are obvious notions of sub ss\{set $A \quad X$ and pair ($X ; A$) of ss\{sets.

1.2 Semisimplicial operators

In order to have a concrete understanding of the category SS we will examine in more detail the category
Each morphism of is a composition of morphisms of two distinct types:
(a) i: m! m-1, 0 i m-1,
${ }_{0}\left(\mathrm{t}_{1} ;::: ; \mathrm{t}_{\mathrm{m}}\right)=\left(\mathrm{t}_{2} ;::: ; \mathrm{t}_{\mathrm{m}}\right)$
${ }_{i}\left(t_{1} ;::: ; t_{m}\right)=\left(t_{1} ;::: ; t_{i-1} ; t_{i}+t_{i+1} ; t_{i+2} ;::: ; t_{m}\right)$ for $i>0$
(b) $i: m!m+1,0$ i $m+1$, ${ }_{0}\left(t_{1} ;::: ; t_{m}\right)=\left(1-{ }^{P}{ }_{1}^{n} t_{i} ; t_{1} ;::: ; t_{m}\right)$.
${ }_{i}\left(\mathrm{t}_{1} ;::: ; \mathrm{t}_{\mathrm{m}}\right)=\left(\mathrm{t}_{1} ;::: ; \mathrm{t}_{\mathrm{i}-1} ; 0 ; \mathrm{t}_{\mathrm{i}} ;::: ; \mathrm{t}_{\mathrm{m}}\right)$ for $\mathrm{i}>0$.
The morphism ; flattens the simplex on the face opposite the vertex v_{i}, pre serving the order.

Example

The morphism i embeds the simplex into the face opposite to the vertex v_{i}.

Example

The following relations hold:

$\mathrm{i}=\mathrm{i} j-1$	i < j
$j i^{\prime}=\mathrm{i} j+1$	i j
$\mathrm{j} \mathrm{i}=\mathrm{i} j-1$	i < j
$j_{j}=j_{j+1}=1$	
$\mathrm{j} \mathrm{i}=\mathrm{i}-1 \mathrm{j}$	$\mathrm{i}>\mathrm{j}+1$

If 2 is injective, then is a composition of morphisms of type i, otherwise is a composition of morphisms i and morphisms j_{j}. Therefore, if X is an $\operatorname{ss}\left\{s e t\right.$ and if we denote ${ }_{i}^{\#}$ by s_{i} and ${ }_{j}^{\#}$ by $@$, we get a description of X as a sequence of sets
where the arrows pointing left are the face operators $@$ and the remaining arrows are the degeneracy operators s_{i}. Obviously, we require the following relations to hold:

$$
\begin{array}{ll}
@ @=@_{-1} @ & \\
\mathrm{~s}_{\mathrm{i}} \mathrm{~s}_{\mathrm{j}}=\mathrm{s}_{\mathrm{j}+1} \mathrm{~s}_{\mathrm{i}} & \mathrm{i} \quad \mathrm{j} \\
\text { @s } & =@_{+1} \mathrm{~s}_{\mathrm{j}}=1
\end{array}
$$

In the case of the singular complex $\operatorname{Sing}(\mathrm{A})$, the map $@$ is the usual face operator, ie, if f: k! A is a k \{singular simplex in A, then $@ f$ is the $(k-1)$ \{singular simplex in A obtained by restricting f to the $i\{t h$ face of k :
@f: k-1_! k-f A:

On the other hand, $\mathrm{s}_{\mathrm{j}} \mathrm{f}$ is the $(\mathrm{k}+1)$ \{singular simplex in A obtained by projecting ${ }^{k+1}$ on the j fth face and then applying f :

$$
\mathrm{s}_{\mathrm{j}}^{\mathrm{f}:} \mathrm{k}^{\mathrm{k}+1}-\mathrm{l} \quad \mathrm{k}-\mathrm{f} \mathrm{~A}:
$$

The following lemma is easy to check and the theorem is a corollary.

Lemma (Unique decomposition of the morphisms of) If ' is a morphism of , then ' can be written, in a unique way, as

$$
\prime=\left\{\frac { i _ { 1 } \quad i _ { 2 } } { \text { injective } } \left\{\begin{array}{l}
i_{p} \\
i^{\prime}
\end{array} \left\lvert\, \frac{\left(s_{j_{1}}\right.}{\text { surjective }}\left\{z \quad s_{j_{t}}\right)=^{\prime} 1{ }^{\prime}{ }_{2}\right.:\right.\right.
$$

Theorem (Eilenberg\{Zilber) If X is an ss\{set and is an $n\{$ simplex in X, then there exist a unique non-degenerate simplex and a unique surjective morphism 2 , such that

$$
()=:
$$

1.3 Homotopy

If X; Y are ss\{sets, their product, $X \quad Y$, is de ned as follows:

$$
\begin{aligned}
& \left(\begin{array}{ll}
\mathrm{X} & \mathrm{Y}
\end{array}\right)^{(\mathrm{k})}:=\mathrm{X}^{(\mathrm{k})} \quad \mathrm{Y}^{(\mathrm{k})} \\
& \text { \# }(\mathrm{x} ; \mathrm{y}):=\left({ }^{\#} \mathrm{x} ;{ }^{\#} \mathrm{y}\right)
\end{aligned}
$$

Example $\operatorname{Sing}\left(\begin{array}{ll}A & B\end{array}\right) \quad \operatorname{Sing}(A) \quad \operatorname{Sing}(B)$.
Let us write $\mathbf{I}={ }^{1}, \mathbf{I}={ }^{1}$. Then \mathbf{I} has thre non-degenerate simplices, ie $0 ; 1 ; 1$, or, more precisely, ${ }^{0}!0,{ }^{0}!1,{ }^{1}!1$. Write $\mathbf{0}$ for the $s s\{s e t$ obtained by adding to the simplex 0 all of its degeneracies, corresponding to the simplicial maps
k ! 0;
$k=1 ; 2 ;::$. Hence, $\mathbf{0}$ has a k ssimplex in each dimension. For $k>0$, the k \{simplex is degenerate and it consists of the singular simplex (1.3.1).
Proceed in a similar manner for $\mathbf{1}$. One could also say, more concisely,

$$
\mathbf{0}=\operatorname{Sing}(0) \quad \mathbf{1}=\operatorname{Sing}(1):
$$

Now, let $f_{0} ; f_{1}: X!Y$ be two semisimplicial maps.
A homotopy between f_{0} and f_{1} is a semisimplicial map

$$
F: I \quad X!Y
$$

such that $\mathrm{Fj0} \quad \mathrm{X}=\mathrm{f}_{0}$ and $\mathrm{Fj1} \quad \mathrm{X}=\mathrm{f}_{1}$ through the canonical isomorphisms $0 \times 1 \quad \mathrm{X}$.

In this case, we say that f_{0} is homotopic to f_{1}, and write $f_{0}{ }^{\prime} f_{1}$. Unfortunately homotopy is not an equivalence relation. Let us look at the simplest
situation: $X={ }^{0}$. Suppose we have two homotopies $F ; G: I!Y$, with $F(\mathbf{1})=G(\mathbf{0})$. If we set $F(I)=y_{0} 2 Y^{(1)}$ and $G(I)=y_{1} 2 Y^{(1)}$, we have

$$
@ y_{0}=@ y_{1}:
$$

What transitivity requires, is the existence of an element $y^{0} 2 Y^{(1)}$ such that

$$
@ y^{0}=@ y_{0} \quad @ y^{0}=@ y_{1}:
$$

In general such an element does not exist.

It was rst observed by Kan (1957) that this di culty can be avoided by assuming in Y the existence of an element y $2 Y^{(2)}$ such that

$$
\mathrm{y}_{0}=@ y \quad \text { and } \quad \mathrm{y}_{1}=@ y
$$

If such a simplex y exists, then $y^{0}=@ y$ is the simplex we were looking for. In fact

$$
\begin{aligned}
& @ y^{0}=@ @ y=@ @ y=@ y_{0} \\
& @ y^{0}=@ @ y=@ @ y=@ y_{1}:
\end{aligned}
$$

We are now ready for the general de nition:
De nition An ss \{set Y satis es the K an condition if, given simplices

$$
y_{0} ;::: ; y_{k-1} ; y_{k+1} ;::: ; y_{n+1} 2 Y^{(n)}
$$

such that $@ y_{j}=@-1 y_{i}$ for $i<j$ and $i ; j \in k$, there exists y $2 Y^{(n+1)}$ such that $@ y=y_{i}$ for $i \leqslant k$.

Such an ss\{set is said to be Kan. We shall prove later that for semisimplicial maps with values in a Kan ss\{set, homotopy is an equivalence relation. [f]ss, or [f] for short, denotes the homotopy class of f. We abbreviate Kan ss\{set to kss\{set.

Example Sing(A) is a kss\{set. This follows from the fact that the star $S\left(v ;\right.$ _) is a deformation retract of for each vertex $v 2={ }^{n}$.

The union of three faces of the pyramid is a retract of the whole pyramid.

Exercise If is a standard simplex, a horn of is, by de nition, the star $\mathrm{S}(\mathrm{v}$; _), where v is a vertex of . Check that an ss\{set X is K an if and only if each ss\{map ! X extends to an ss\{map ! X .

This exercise gives us an alternative de nition of a kss\{set.

Note The extension property allowed D M Kan to develop the homotopy the ory in the whole category of ss\{sets. The original work of Kan in this direction was based on semicubical complexes, but it was soon clear that it could betranslated to the semisimplicial environment. For technical reasons, the category of ss\{sets replaced the anal ogous semicubical category, which, recently, regained a certain attention in several contexts, not the least in computing sciences.

In brief the greatest inconvenience in the semicubical category is the fact that the cone on a cube is not a combinatorial cube, while the cone on a simplex is still a simplex.

1.4 The topological realisation of an ss\{set (Milnor 1958)

Let X be an $\mathrm{ss}\{\mathrm{set}$ and

$$
\bar{X}={ }^{a} \quad n \quad X^{(n)} ;
$$

where $X^{(n)}$ has the discrete topology and denotes the disjoint union.

We de ne the topological realisation of X, written $j X j$, to be the quotient space of \bar{X} with respect to the equivalence reation generated by the following identi cations
(t; \#) ((t););
wheret $2 \mathrm{n}, 2$ and 2 X .
Thus, the starting point is an in nite union of standard simplices each labelled by an element of X : We denote those simplices by ${ }^{n}$ instead of ${ }^{n}$ ($2 X^{(n)}$).
The relation is de ned on labelled simplices by using the composition of the two elementary operations (a) and (b) described below. Let us consider $n-1$ and n :
(a) if $=@$ for some $i=0 ;::: ; n$, then identi es ${ }^{n-1}$ to $@\left({ }^{n}\right)$, ie, glues to each simplex its faces
(b) if $=s_{j}$ for some $j=0 ;:: ; n-1$, then squeezes the simplex ${ }^{n}$ on its j \{th face, which in turn is identi ed with ${ }^{\mathrm{n}-1}$.

$$
j=0
$$

As a result jXj acquires a cw \{structure, with a k \{cell for each non degenerate k \{simplex of X with a canonical characteristic map ${ }^{k}$! X.

Examples

(a) If K is a simplicial complex and \mathbf{K} is its associated ss $\{$ set, then $j \mathbf{K} j=K$. In particular

$$
j \quad{ }^{n} j={ }^{n} ; \quad j \mathbf{l} j=1=[0 ; 1] ; \quad j \mathbf{0}=0 ; \quad j \mathbf{l} j=1:
$$

(b) $\mathrm{j} \operatorname{Sing}(\mathrm{l} \mathrm{j}=$.
(c) In general it can be proved that, for each cw \{complex X, the realisation $j \operatorname{Sing}(X) j$ is homotopicy equivalent to X by the map

$$
[\mathrm{t} ; \quad] \mathrm{J} \quad \text { (t) }
$$

where : ${ }^{n}$! X and $t 2{ }^{n}$ and [] indicates equivalence class in $j \operatorname{Sing}(X) j$. (d) If X ; Y are ss\{sets then $\mathrm{jX} \quad \mathrm{Yj}$ can be identi ed with jXj jY j .

1.5 Approximation

Now we want to describe the realisation of an ss\{map. If $f: X!Y$ is such a map, we de ne its realisation jf j: jXj! jY j by setting

$$
\text { [t;] } \overline{0}[t ; f()]:
$$

Clearly jf j is well de ned, since if $[\mathrm{t} ; \mathrm{]}=[\mathrm{s} ; \mathrm{]}$ and there is 2 , with \# ()$=$ and $(\mathrm{t})=\mathrm{s}$, then

$$
\begin{aligned}
& =[(\mathrm{t}) ; \mathrm{f}(\mathrm{)}]=\mathrm{jfj} \mathrm{j}(\mathrm{t}) ; \quad]=\mathrm{jfj}[\mathrm{~s} ; \quad \mathrm{l}:
\end{aligned}
$$

We say that a (continuous) map $h: j X j!j Y j$ is realized if $h=j f j$ for some $\mathrm{f}: \mathrm{X}$! Y .
The following result is very useful.
Semisimplicial Approximation Theorem Let $Z \quad X$ and Y bess\{sets, with Y a kss\{set, and let g : jXj ! jYj be such that its restriction to jZj is the realisation of an ss \{map. Then there is a homotopy

$$
\mathrm{g}^{\prime} \mathrm{g}^{0} \mathrm{rel} \mathrm{jZj}
$$

such that g^{0} is the realisation of an ss \{map.
A very short and elegant proof of the approximation theorem is due to [Sanderson 1975].
1.5.1 Corollary Let Y be a kss\{set. Two ss\{maps with values in Y are homotopic if and only if their realisations are homotopic.
1.5.2 Corollary Homotopy between ss\{maps is an equivalence relation, if the codomain is a kss\{set.

This is the result announced after De nition 1.3.
Exercise Convinceyourself that an ordered simplicial complex seldom satis es the Kan condition.

It is not a surprise that the semisimplicial approximation theorem provides a quick proof of Zeman's relative simplicial approximation theorem (1964), given here in an intrinsic form:

Theorem (Zeeman 1959) Let X ; Y be polyhedra, Z a closed subpolyhedron in X and let $f: X!Y$ be a map such that $f Z$ is $P L$. Then, given " >0, there exists a PL map $\mathrm{g}: \mathrm{X}$! Y such that
(1) $\mathrm{fjZ}=\mathrm{gj} \mathrm{Z}$
(2) $\operatorname{dist}(f ; g)<"$
(3) f' g rel Z:

The above theorem is important because, as observed by Zeeman himself, if L K and T are simplicial complexes, a standard result of Alexander (1915) tells us that each map f: jK j! jTj, with f jL simplicial, may be approximated by a simplicial map $\mathrm{g}: \mathrm{K}^{0}$! T , where $\mathrm{K} \% / \mathrm{K}$ such that fjL in turn is approximated by gjL^{0}. However, while this is su cient in algebraic topology, in geometric topology we frequently need the strong version

$$
\mathrm{f} \mathrm{jL}^{0}=\mathrm{gj} \mathrm{~L}^{0}
$$

The interested reader might wish to consult [Glaser 1970, pp. 97\{103], [Zeeman 1964].

1.6 Homotopy groups

If X is an ss $\left\{\right.$ set, we call the base point of X a $0\left\{\right.$ simplex $\times 2 X^{(0)}$ or, equivalently, the sub ss\{set $\quad X$, generated by x. An ss\{map $f: X!Y$ is a pointed map if $f(x)=y$.

As a consequence of the semisimplicial approximation theorem, the homotopy theory of ss \{sets coincides with the usual homotopy theory of their realisations.

More precisely, let X;Y be pointed ss\{sets, with Y X. We de ne homotopy groups by setting

$$
\begin{gathered}
{ }_{n}(X ;):={ }_{n}(j X j ;) \\
{ }_{n}(X ; Y ;):={ }_{n}(j X j ; j Y j ;):
\end{gathered}
$$

We recall that from the approximation theorem that, if K is a simplicial complex and X a kss\{set, then each map $\mathrm{f}: \mathrm{K}$! jXj is homotopic to a map $\mathrm{f}^{\mathrm{O}}: \mathrm{K}!\mathrm{jXj}$ which is the realisation of an ss\{map. Moreover, if f is already the realisation of a map on the subcomplex L K , the homotopy can betaken to be constant on L . This property allows us to choose, according to our needs, suitable representatives for the elements of ${ }_{n}(X ;)$. As an example, we have:

$$
{ }_{n}(X ;):=\left[I^{n} ; L^{n} ; X ;\right]_{s s}=[{ }^{n} ; \underbrace{n} ; X ;]_{s s}=\left[S^{n} ; 1 ; X ;\right]_{s s} ;
$$

where I^{n}, or S^{n}, is given the structure of an ss\{set by any ordered triangula tion, which is, for convenience, very often omitted in the notation.

1.7 Fibrations

An ss\{map p: E ! B is a Kan bration if, for each commutative square of ss\{maps

there exists an ss\{map ! E , which preserves commutativity. Here and represent a standard simplex and one of its horns respectively.
An equivalent de nition of K an bration is the following: if $\times 2 \mathrm{~B}_{\mathrm{q}+1}$ and $\mathrm{y}_{0} ;::: ; \mathrm{y}_{\mathrm{k}-1} ; \mathrm{y}_{\mathrm{k}+1} ;::: ; \mathrm{y}_{\mathrm{q}+1} 2 \mathrm{E}^{(\mathrm{q})}$ are such that $\mathrm{p}\left(\mathrm{y}_{\mathrm{i}}\right)=@ \mathrm{x}$ and $@ \mathrm{y}_{\mathrm{j}}=@_{-1} \mathrm{y}_{\mathrm{i}}$ per $\mathrm{i}<\mathrm{j}$ and $\mathrm{j} \in \mathrm{k}$, then there is y $2 \mathrm{E}^{(q+1)}$, such that $@ y=y_{i}$, for $\mathrm{i} \in \mathrm{k}$ and $p(y)=x$.
If F is the preimage in E of the base point, then F is an ss\{set, known as the bre over.

Lemma Let $\mathrm{p}: \mathrm{E}$! B beaKan bration:
(a) if F is the breover a point in B, then F is a kss\{set,
(b) if p is surjective, E is K an if and only if B is K an.

The proof is left to the reader, who may appeal to [May 1967, pp. 25\{27].
Theorem [Quillen 1968] The geometric realisation of a Kan bration is a Serre bration.

Remark Quillen's proof is very short, but it relies on the theory of minimal brations, which we will not introduce in our brief outline of thess\{category as it it is not explicitly used in the rest of the book. The same remark applies to Sanderson's proof of the simplicial approximation lemma. We refer the reader to [May 1967, pages 35\{43]

As a consequence of this theorem and the de nition of homotopy groups we deduce that, provided p: E! B is a K an bration with B a kss\{set, the there is a homotopy long exact sequence:

$$
-!\quad n(F)-!\quad n(E)-\underline{n} \quad n(B)-!\quad n-1(F)-!
$$

Suppose now that we have two ss\{ brations $p_{i}: E_{i}!B_{i}(i=1 ; 2)$ and let $f: E_{1}!\quad E_{2}$ be an ss\{map which covers an ss\{map $f_{0}: B_{1}!B_{2}$. Assume all the ss\{sets are Kan and x a base point in each path component so that $p_{i} ; f ; f_{0}$ are pointed maps.

Proposition Let $p_{i} ; f ; f_{0}$ be as above Any two of the following properties imply the remaining one:
(a) f is a homotopy equivalence,
(b) f_{0} is a homotopy equivalence,
(c) the restriction of f to the bre of E_{1} over the base point of each path component B_{1} is a homotopy equivalence with the corresponding bre of E_{2}.

Proof This result is an immediate consequence of the long exact sequence in homotopy, Whitehead's Theorem and the Five Lemma.

1.8 The homotopy category of ss\{sets

Although it will beused very little, the content of this section is quite important, as it dari es the role of the category of ss\{sets in homotopy theory.
We denote by $\mathbf{S S}$ (resp $\mathbf{K} \mathbf{S S}$) the category of ss\{sets (resp kss\{sets) and ss\{ maps, and by CW the category of cw-complexes and continuous maps.
The geometric realisation gives rise to a functor $\mathrm{j} j$: SS ! CW. We also consider the singular functor S: CW! SS.

Theorem (Milnor) The functors j j and S induce inverse isomorphisms be tween the homotopy category of kss\{sets and the homotopy category of cw \{ complexes:

$$
h \mathbf{K S S S} \underset{\mathrm{~S}}{\stackrel{\mathrm{j} j}{\rightleftarrows}} \mathrm{~h} \mathbf{C W}
$$

For a full proof, see, for instance, [May 1967, pp. 61\{62].
Hence, there is a natural bijection between the homotopy dasses of ss\{maps [Sing (X); Y] and the homotopy classes of maps [X ; $\mathrm{j} \mathrm{Y} j$], provided that X has the homotopy type of a cw \{complex and Y is a kss\{set. Sometimes, we write just [X;Y] for either set.
In conclusion, as indicated earlier, we observe that the semisimplicial structure provides us with a simple, safe and e ective way to introduce a good topology, even a cw structure, on the PL function spaces that we will consider. This topology will allow the application of tools from dassical homotopy theory.
Terminology For convenience, whenever there is no possibility of misunderstandings we will confuse X and its realisation jX j. Moreover, unless otherwise stated, all the maps from jXj to jYj are always intended to be realised and, therefore, abusing language, we will refer to such maps as semisimplicial maps.

2 Topological and PL microbundles

Each smooth manifold has a well determined tangent vector bundle. The same does not hold for topological manifolds. However there is an appropriate generalisation of the notion of a tangent bundle, introduced by Milnor (1958) using microbundles.

2.1 Topological microbundles

A microbundle , with base a topological space B, is a diagram of maps

$$
B-!E-P B
$$

with $\mathrm{p} i=1_{B}$, where i is the zero\{section and p is the projection of .
A microbundle is required to satisfy a local triviality condition which we will state after some examples and notation.

Notation We write $E=E(), B=B(), p=p, i=i$ etc. We also write $=B$ and $E=B$ to refer to . Further B is often identi ed with $i(B)$.

Examples

(a) The product microbundle, with bre \mathbb{R}^{m} and base B, is given by

$$
\min _{B}^{m}: B-\dot{C} \quad \mathbb{R}^{m}-!^{1} B
$$

with $i(b)=(b ; 0)$ and ${ }_{1}(b ; v)=b$.
(b) More generally, any vector bundle with bre \mathbb{R}^{m} is, in a natural way, a microbundle.
(c) If M is a topological manifold without boundary, the tangent microbundle of M, written $T M$, is the diagram

$$
M-!M \quad M-!^{1} M
$$

where is the diagonal map and ${ }_{1}$ is the projection on the rst factor. a

Geometry \& Topology M onographs, Volume 6 (2003)

Microbundles maps

2.2 An isomorphism, between microbundles on the same base B,

$$
: B \dot{i}_{!} E \quad \underline{p}_{!} B \quad(=1 ; 2) ;
$$

is a commutative diagram

where V is an open neighbourhood of $i(B)$ in E and' is a homeomorphism.
2.2.1 In particular, if $\mathrm{E}=\mathrm{B}$ is a microbundle and U is an open neighbourhood of $i(B)$ in E, then $U=B$ is a microbundle isomorphic to $E=B$.

Exercise

Provethat, if M is a smooth manifold, its tangent vector bundle and its tangent microbundle are isomorphic as microbundles.
Hint Put a metric on M. If the points $x ; y 2 M$ are close enough, consider the unique short geodesic from x to y and associate to ($x ; y$) the pair having x as rst component and the velocity vector at x as second component.

Observation Any $\left(\mathbb{R}^{m} ; 0\right)$ \{bundle on B is a microbundle, and isomorphic bundles are isomorphic as microbundles.
2.3 More generally, a microbundle map

$$
: B \dot{I}_{!} E \quad \underline{p}_{!} B \quad=1 ; 2
$$

is a commutative diagram

Geometry \& Topology M onographs, Volume 6 (2003)
where V_{1} is an open neighbourhood of $i_{1}\left(B_{1}\right)$ in E_{1} and f, f are continuous maps. We write $f:{ }_{1}!\quad 2$ meaning that f covers $f: B_{1}!B_{2}$. Occasionally, in order to be more precise, we will write (f;f): 1_{1} ! ${ }_{2}$. For isomorphisms we shall use the imprecise notation since, by de nition, each isomorphism : ${ }_{1}=B \quad{ }_{2}=B$ covers 1_{B}.
A map f:M! N of topological manifolds induces a map between tangent microbundles
f:TM! TN;
known as the di erential of f and de ned as follows

Note As we have already observed, each microbundle is isomorphic to any open neighbourhood of its zero\{section; in other words, what really matters in a microbundle is its behaviour near its zero\{section.

In particular, thetangent microbundle TM can, in principle, beconstructed by choosing, in a continuous way, a chart U_{x} around x as a bre over $\times 2 \mathrm{M}$: Yet, as we do not have canonical charts for M, such a choice is not a topological invariant of M : this is where the notion of microbundle comes in to solve the problem, telling us that we are not forced to select a speci c chart U_{x}, since a germ of a chart (de ned below) is su cient. The name microbundle is due to Arnold Shapiro.

2.4 Induced microbundle

If is a microbundle on B and $A \quad B$, the restriction $j A$ is the microbundle obtained by restricting the total space, ie,

$$
j A: A!p^{-1}(A)-1
$$

More generally, if $=B$ is a microbundle and $f: A!B$ is a map of topological spaces, the induced microbundle $\mathrm{f}(\mathrm{)}$) is de ned via the usual categorical construction of pull \{back of the map p over the map f.

Example If $\mathrm{f}: \mathrm{M}$! N is a map of topological manifolds, then f (TN) is the microbundle

$$
M-!M \quad N-!^{1} M
$$

with $i(x)=(x ; f(x))$.

2.5 Germs

Two microbundle maps (f;f): 1 ! 2 and $(\mathbf{g} ; \mathbf{g})$: $_{1}$! 2 are germ equivalent if \mathbf{f} and \mathbf{g} agree on some neighbourhood of B_{1} in E_{1}. The germ equivalence class of ($\mathbf{f} ; \mathbf{f}$) is called the germ of ($\mathbf{f} ; \mathrm{f}$) or less precisely the germ of \mathbf{f}. The notion of the germ of a map (or isomorphism) is far more useful and flexible then that of map or isomorphism of microbundles because unlike maps and isomorphisms, germs can be composed. Therefore we have the category of mi crobundles and germs of maps of microbundles.

From now on, unless there is any possibility of confusion, we will use interchangeably, both in the notation and in the exposition, the germs and their representatives.

2.6 Local triviality

A microbundle $=B$ is locally trivial, of dimension or rank m, or, more simply, an m \{microbundle, if it is locally isomorphic to the product microbundle "m. This means that each point of B has a neighbourhood U in B such that " U jU.

An m \{microbundle $=B$ is trivial if it is isomorphic to "m.

locally trivial

A non trivial microbundle on S^{1}

Examples

(a) The tangent microbundle TM^{m} is locally trivial of rank m .

In fact, let $\times 2 \mathrm{M}$ and (U ;') be a chart of M on a neighbourhood of x such that '(U) \mathbb{R}^{m}. De ne h_{x} : U \mathbb{R}^{m} ! $U \quad U$ near $U \quad 0$ by

$$
h_{x}(u ; v)=\left(u ;^{\prime-1}(\prime(u)+v)\right):
$$

(b) If $=B$ is an m \{microbundleand $f: A$! B is continuous, then theinduced microbundle $f()$ is locally trivial. This follows from two simple facts:
(1) If is trivial, then $f()$ is trivial.
(2) If $U \quad B$ and $V=f^{-1}(U) \quad A$, then

$$
\mathrm{f}(\mathrm{l} \mathrm{jV}=(\mathrm{f} \mathrm{jV})(\mathrm{jU}):
$$

Terminology From now on the term microbundle will always mean locally trivial microbundle.

2.7 Bundle maps

With the notation used in 2.3, the germ of a map ($\mathbf{f} ; \mathrm{f}$) of m \{microbundles is said to be locally trivial if, for each point x; of B_{1}, \mathbf{f} restricts to a germ of an isomorphism of ${ }_{1} \mathrm{jx}$ and ${ }_{2} \mathrm{jf}(\mathrm{x})$. Once the local trivialisations have been chosen this germ is nothing but a germ of isomorphism of ($\mathbb{R}^{m} ; 0$) (as a microbundle over 0) to itself.

A locally trivial map is called a bundle map. Thus a map is a bundle map if, restricted to a convenient neighbourhood of the zero-section, it respects the bres and it is an open topological embedding on each bre Note that an isomorphism between m \{microbundles is automatically a bundle map.

Terminology We often refer to an isomorphism between m\{microbundles as a micro\{isomorphism.

Examples

(a) If $\mathrm{f}: \mathrm{M}$! N is a homeomorphism of topological manifolds, its di erential of : TM ! TN is a bundle map. It will be enough to observe that, since it is a local property, it is su cient to consider the case of a homeomorphism $\mathrm{f}: \mathbb{R}^{\mathrm{m}}!\mathbb{R}^{\mathrm{m}}$. This is a simple exercise.
(b) Going back to theinduced bundle, thereis a natural bundlemap f: f ()! . The universal property of the bre product implies that \mathbf{f} is, essentially, the
only example of a bundlemap. In fact, if \mathbf{f}^{0} : ! is a bundlemap which covers f , then there exists a unique isomorphism \mathbf{h} : ! f() such that $\mathbf{f} \mathbf{h}=\mathbf{f}^{0}$:

(c) It follows from (b) that if $\mathrm{f}: \mathrm{A}$! B is a continuous map then each isomorphism' : ${ }_{1}=B!{ }_{2}=B$ induces an isomorphism $f(\prime): f(1)!f(2)$.

2.8 The K ister \{M azur theorem.

Let : B $-\mathrm{E} \xrightarrow{\text { P }} \mathrm{B}$ be an m \{microbundle, then we say that admits or contains a bundle, if there exists an open neighbourhood E_{1} of $i(B)$ in E, such that $p: E_{1}!B$ is a topological bundle with bre $\left(\mathbb{R}^{m} ; 0\right)$ and zero\{section $i(B)$. Such a bundle is called admissible.
Thereader is reminded that an isomorphism of ($\mathbb{R}^{m} ; 0$) \{bundles is a topological isomorphism of \mathbb{R}^{m} \{bundles, which is the identity on the $0\{$ section.

Theorem (Kister, Mazur 1964) If an m \{microbundle has base B which is an ENR then admits a bundle, unique up to isomorphism.

The reader is reminded that ENR is the acronym for Euclidean Neighbourhood Retract and therefore the result is valid, in particular, in those cases when B is a locally nite Euclidean polyhedron or a topological manifold. The proof of this di cult theorem, for which we refer the reader to [K ister 1964], is based upon a lemma which is interesting in itself. Let G_{0} be the space of the topological embeddings of ($\mathbb{R}^{m} ; 0$) in itself with the compact open topology and let H_{0} be the subspace of proper homeomorphisms of $\left(\mathbb{R}^{m} ; 0\right)$. Thelemma states that H_{0} is a deformation retract of G_{0}, ie, there exists a continuous map $F: G_{0} \mid!G_{0}$ so that $F(g ; 0)=g, F(g ; 1) 2 H_{0}$ for each $g 2 G_{0}$ and $F(h ; t) 2 H_{0}$ for each t 2 I and $\mathrm{h} 2 \mathrm{H}_{0}$.

In the light of this result it makes sense to expect the fact that two admissible bundles are not only isomorphic but even isotopic. This fact is proved by Kister.

Note In principle K ister's theorem would allow us to work with genuine \mathbb{R}^{m} \{ bundles which are more familiar objects than microbundles. In fact, according to de nition 2.5, a microbundle is micro-isomorphic to each of its admissible bundles.

It is not surprising if Kister's discovery took, at rst, some of the sparkle from the idea of microbundle. Nevertheless, it is in the end convenient to maintain the more sophisticated notion of microbundle, since, for instance, the tangent microbundle of a topological manifold is a canonical object while the admissible tangent bundle is de ned only up to isomorphism.

2.9 Microbundle homotopy theorem

The microbundle homotopy theorem states that each microbundle $\Rightarrow \mathrm{I}$, where X is a paracompact Hausdor space, admits an isomorphism ' :

1 , where is a copy of $j \times \quad 0$. There is also a relative version of this result, where given C a closed subset of X and an isomorphism ' $0:(j U) I$, where U is an open neighbourhood of C in X, it is possible to chose' to coincide with ' ${ }^{0}$ on an appropriate neighbourhood of C.
Kister's result reduces this theorem to the analogous and more familiar result concerning bundles with bre \mathbb{R}^{m} [cf Steenrod 1951, section 11].
The following important property follows immediately from the homotopy the orem.

Proposition If $f ; g$ are continuous homotopic maps, of a paracompact Hausdor space X to Y and if $=Y$ is an $m\{$ microbundle, then $f() g()$.

2.10 PL microbundles

The category of PL microbundles and maps is de ned in analogy to the corresponding topological case using polyhedra and PL maps, with obvious changes. For example, each PL manifold without boundary M admits a well de ned PL tangent microbundle given by

$$
M-!M \quad M-!^{1} M:
$$

A PL map f: M^{m} ! N^{m} induces a di erential $\mathrm{f}: \mathrm{TM}$! TN, which is a PL map of PL m\{microbundles. The PL microbundle f (), induced by a PL map of polyhedra, is de ned in the usual way through the categorical construction of the pullback and the natural map $f()!$ is locally trivial (ie is a PL bundle map) if is locally trivial.
As it the topological case PL microbundle will always mean PL locally trivial microbundle.

The PL version of Kister\{Mazur theorem is proved in [Kuiper\{Lashof 1966].
Finally, the homotopy theorem for the PL case asserts that, if X is a polyhedron, then $=\mathrm{X} \quad \mathrm{I}$, with $=j \mathrm{X} \quad 0$. Nevertheless the proposition that follows from it is less obvious than its topological counterpart.

Proposition Let f;g: X! Y be PL maps of polyhedra and assume that $f ; g$ are continuously homotopic. Let $=Y$ bea PL m\{microbundle. Then
f () plg():

Proof Let F: X I ! Y be homotopy of f and g. By Zeeman's relative simplicial approximation theorem, there exists a homotopy $\mathrm{F}^{0}: \mathrm{X} \quad \mathrm{I}!\mathrm{Y}$ of f and g, with F^{0} a PL map. The remaining part of the proof is then clear.

3 The classifying spaces $B P L_{m}$ and $B T_{m}$

Now we want to prove theexistence of classifying spaces for PL m \{microbundles and topological m \{microbundles. The question ts in the general context of the construction of the classifying space B G of a simplicial group (monoid) G. On this problem, at the time, a large amount of literature was produced and of this we will just cite, also making a reference for the reader, [Eilenberg and MacLane 1953, 1954], [Maclane 1954], [Heler 1955], [Milnor 1961], [Barratt, Gugenheim and Moore 1959], [May 1967], [Rourke and Sanderson 1971]. The rst to construct a semisimplicial model for $\mathrm{BPL}_{\mathrm{m}}$ and $\mathrm{BTop} \mathrm{m}_{\mathrm{m}}$ was Milnor prior to 1961.

The semisimplicial groups $\mathrm{Top}_{\mathrm{m}}$ and PL_{m}
3.1 We remind the reader that a semisimplicial group G is a contravariant functor from the category to the category of groups. From now on e_{m} will denote the identity in $\mathrm{G}^{(\mathrm{m})}=\mathrm{G}(\mathrm{m})$.

We de ne the ss\{set Top m to have typical k \{simplex ' a micro-isomorphism

$$
\text { , : } k \quad \mathbb{R}^{m}!\quad k \quad \mathbb{R}^{m}:
$$

For each : '! k in , we de ne

$$
\text { \# : } \operatorname{Top}_{\mathrm{m}}^{(\mathrm{k})}!\operatorname{Top}_{\mathrm{m}}^{(1)}
$$

by setting \#(') to beequal to the micro-isomorphism induced by ' according to 2.7 (c):

Theoperation of composition of micro-isomorphisms makes Top $_{\mathrm{m}}^{(\mathrm{k})}$ into a group and \# a homomorphism of groups. Therefore $\mathrm{Top}_{\mathrm{m}}$ is a semisimplicial group.
3.2 In topological m \{microbundle theory Top $_{m}$ plays the role played by the linear group $\mathrm{GL}(\mathrm{m} ; \mathbb{R})$ in vector bundle theory. Furthermore it can be thought of as the singular complex of the space of germs of the homeomorphisms of $\left(\mathbb{R}^{m} ; 0\right)$ to itself.
3.3 Since $\mathrm{j}_{\mathrm{kj}} \mathrm{j} \mathrm{k}_{\mathrm{k}} \mathrm{lj}$, it follows that $\mathrm{Top}_{\mathrm{m}}$ satis es the K an condition. On the other hand we have the following general result, whose proof is left to the reader.

Proposition Each semisimplicial group satis es the Kan condition.
Proof See [May 1967, p. 67].
3.4 The semisimplicial group PL_{m} is de ned in a totally analogous manner and, from now on, the exposition will concentrate on the PL case.

3.5 Steenrod's criterion

The classi cation of bundles of base X in the classical approach of [Steenrod 1951] is done through the following steps:
(a) there is a one to one canonical correspondence
$\left[\mathbb{R}^{m}\right.$ \{vector bundles] [GL($m ; \mathbb{R}$) \{principal bundles]
More generally
[bundles with bre F and structure group G] [G \{principal bundles]
where [] indicates the isomorphism classes;
(b) recognition criterion: there exists a classifying principal bundle

$$
\gamma_{G}: G!E G!B G
$$

which is characterised by thefact that E is path connected and ${ }_{q}(E)=0$ if q 1. The homotopy type of BG is well de ned and it is called the classifying space of the group G, or also classifying space for principal G \{bundles with base a cw \{complex.
The correspondence (a) assigns to a bundle , with group G and bre F , the associated principal bundle Princ(), which is obtained by assuming that the transitions maps of do not operate on F any longer but operate by translation on G itself. The inverse correspondence assigns to a principal G \{bundle, $\mathrm{E}=\mathrm{X}$, the bundle obtained by changing the bre, ie the bundle

F! E GF! X:
It follows that by changing the bre of γ_{G}, we obtain the classifying bundle for the bundles with group G and bre F, so that BG is the classifying space also for those bundles. Obviously we are assuming that there is a left action of G on the space F, which is not necessarily e ective, so that

$$
\mathrm{E} \quad \text { G } F:=\mathrm{E} \quad \mathrm{~F}=(\mathrm{xg} ; \mathrm{y}) \quad(\mathrm{x} ; \mathrm{gy}) ; \quad \text { y } 2 \mathrm{~F}:
$$

We will follow the outline explained above adapting it to the semisimplicial case

3.6 Semisimplicial principal bundles

Let G bea semisimplicial group. Then a fre action of G on thess\{set E is an ss\{map E G! E, such that, for each $2 E^{(k)}$ and $g^{0} ; g^{\infty} 2 G^{(k)}$, we have: (a) $\left(g^{9}\right) g^{\infty}=\left(g^{0} g^{\infty}\right) ;(b) \quad e_{k}=$; (c) $g^{0}=g^{\infty}, g^{0}=g^{\infty}$.

The space X of the orbits of E with respect to the action of G is an ss\{set and the natural projection $\mathrm{p}: \mathrm{E}!\mathrm{X}$ is called a G \{principal bundle. The reader can observe that neither E , nor X are assumed to be K an ss $\{$ sets.

Proposition p: E! X is a Kan bration.

Proof Let ${ }^{k}$ bethe k \{horn of ${ }^{k}$, ie ${ }^{k}=S\left(v_{k} ;^{k}\right)$. We need to prove the existence of a map which preserves the commutativity of the diagram below.

To start with consider any lifting ${ }^{0}$ of , which is not necessarily compatible with $\mathbf{\gamma}$. Let ": ${ }^{k}$! G be de ned by the formula

$$
{ }^{0}(x)^{\prime \prime}(x)=y(x):
$$

Since G satis es the Kan condition, " extends to ": k! G. If we set

$$
(x):={ }^{0}(x)^{\prime \prime}(x) ;
$$

then is the required lifting.

The theory of semisimplicial principal G \{bundles is analogous to the theory of principal bundles, developed by [Steenrod, 1951] for the topological case. In particular we leave to the reader the task of de ning the notion of isomorphism of G \{bundles, of trivial G \{bundle, of G \{bundle map, of induced G \{bundle and we go straight to the main point.

For each ss\{set X let Princ (X) be the set of isomorphism classes of principal G \{bundles on X and, for each ss\{map $f: X!Y$, let $f: \operatorname{Princ}(Y)$! $\operatorname{Princ}(X)$ be the induced map: Princ is a contravariant functor with domain the category SS. Our aim is to represent this functor.

3.7 The construction of the universal bundle

Steenrod's recognition criterion 3.5 (b) is carried unchanged to the semisimplicial case with a similar proof. Then it is a matter of constructing a principal G \{bundle γ : G! EG! BG, such that
(i) $E G$ and $B G$ are K an ss $\{$ sets
(ii) E G is contractible.

We will follow the procedureused by [Heller 1955] and [Rourke\{Sanderson 1971].
If X is an $\mathrm{ss}\{$ set, let

$$
X_{S}:=\bigcup_{0}^{1} X^{(k)}:
$$

In other words X_{s} is the graded set consisting of all the simplexes of X, without the face and degeneracy operators. We will denote with $\mathrm{EG}(\mathrm{X})$ the totality of the maps of sets f with domain X_{s} and range G_{s}, which have degree zero, ie $f\left(X^{(k)}\right) \quad G^{(k)}$.
Since $G^{(k)}$ is a group, then also $E(X)$ is a group.
Let $G(X)$ be the subgroup consisting of those maps of sets which commute with the semisimplicial operators, ie, those maps of sets which are restrictions of $\mathrm{SS}\{\mathrm{maps}$. For each $\mathrm{k} \quad 0$ we de ne

$$
E G^{(k)}:=E G\left({ }^{\mathrm{k}}\right) ;
$$

and we observe that $G\left({ }^{k}\right)$ is a group isomorphic to $G^{(k)}$, the isomorphism being the map which associates to each element of $G^{(k)}$ its characteristic map,
${ }^{k}$! G, thought of as a graded function ${ }_{s}^{k}!G_{s}$ (cf II 1.1).
Now it remains to de ne the semisimplicial operators in

$$
E G=\bigcup_{0}^{1} E G^{(k)}:
$$

Let : ' ! k be a morphism of and let s : ${ }_{5}^{1}$! ${ }_{s}^{k}$ be the corre sponding map of sets. For each $2 E G^{(k)}$ we de ne
\# $:=\quad \mathrm{s}: \mathrm{l}_{\mathrm{s}}!\mathrm{G}_{\mathrm{s}}$
where \# : $E G^{(k)}$! $E G^{(1)}$ is a homomorphism of groups.
This concludes the de nition of an ss\{set EG, which even turns out to be a group which has a copy of G as semisimplicial subgroup.
V
Furthermore, it follows from the de nition above, that there is a natural identi cation:
EG(X) fss\{maps X! E Gg

The reader is reminded that $E G(X)$ is the set of the degree\{zero maps of sets from X_{s} to G_{s}.
Δ

Proposition EG is Kan and contractible.
∇
Proof We claim that each SS\{map @ ${ }^{k}$! EG extends to ${ }^{k}$. This follows from (3.7.1) and from the fact that each map of sets of degree zero @ ${ }_{\mathrm{s}}^{\mathrm{k}}$! G_{s} obviously admits an extension to ${ }_{s}^{k}$. The result follows straight away from this claim.
-
At this point we de ne

$$
\text { B G }:=E \text { G }=\mathrm{G} ;
$$

the $\operatorname{ss}\left\{\right.$ set of the right cosets of G in $E G$, and set $p_{y}: E G!B G$ to be equal to the natural projection.

In this way we have constructed a principal G \{bundle $\gamma=B G$ with $E(\gamma)=E G$. It follows from Lemma 1.7 that BG is a K an ss\{set.

The following classi cation theorem for semisimplicial principal G-bundles has been established.

Theorem BG is a classifying space for the group G, ie, the natural transformation
T:[X;BG]! Princ(X);
de ned by $T[f]:=[f(\gamma)]$ is a natural equivalence of functors.

Corollary If H G is a semisimplicial subgroup, then there exists, up to homotopy, a bration

$$
G \neq H!B H!~ B G:
$$

Proof Factorise the universal bundle of G through H and use the fact that, by the Steenrod's recognition principle,

$$
E G \neq H \text { ' } B H:
$$

Observation If $\mathrm{H} \quad \mathrm{G}$ is a subgroup, then the quotient

$$
\mathrm{H}!\mathrm{G}!\mathrm{G}=\mathrm{H}
$$

is a principal H \{ bration and, by lemma $1.7, \mathrm{G}=\mathrm{H}$ is Kan.

Classi cation of m \{microbundles

3.8 So far we have established part (b) of 3.5 for principal G \{bundles. Now we assume that $\mathrm{G}=\mathrm{PL}_{\mathrm{m}}$ and we will examine part (a). Let K be a locally nite simplicial complex. Order the vertices of K. We consider the associated ss\{set K, which consists of all the monotone simplicial maps f: q ! K ($q=0 ; 1 ; 2 ;:::$), with \#: $\mathbf{K}^{q}!\mathbf{K}^{r}$ given by $\#(f)=f$ with 2 .
We will denoteby Micro(K) theset of the isomorphism classes of m \{microbundles on K and by Princ(\mathbf{K}) the set of the isomorphism classes of PL principal m \{bundles with base \mathbf{K}.

Theorem There is a natural one to one correspondence

$$
\text { Micro(K) } \quad \operatorname{Princ}(\mathbf{K}):
$$

Proof If $=\mathrm{K}$ is an m \{microbundle, the associated principal bundle Princ() is de ned as follows:

1) a q\{simplex of the total space E of Princ() is a microisomorphism

$$
\text { h: } \quad \mathrm{q} \quad \mathbb{R}^{\mathrm{m}}!\mathrm{f}()
$$

with $f 2 \mathbf{K}^{q}$. The semisimplicial operators \# : $E^{(q)}!E^{(r)}$ are de ned by the formula

$$
\text { \# }(f ; \mathbf{h}):=\left({ }^{\#}(f) ; \quad(h)\right)
$$

2) the projection $p: E^{(q)}$! \mathbf{K} is given by $p(\mathbf{h})=f$
3) theaction $E^{(q)} P L_{m}^{(q)}$! $E^{(q)}$ is the composition of micro-isomorphisms.

Since $P L_{m}^{(q)}$ acts freely on $E{ }^{(q)}$ with orbit space $\mathbf{K}^{(q)}$, then the projection $p: E!K$ is, by de nition, a PL principal $m\{b u n d l e$.
Conversely, given a PL principal m \{bundle $=\mathbf{K}$, we can construct an $\mathrm{m}\{$ microbundle on K as follows: Let : K ! E () be any map which associates with each ordered q\{simplex in K a q\{simplex () in E (), such that $\mathrm{p}\left(\mathrm{)}=\right.$. Then there exists ${ }^{\prime}(\mathrm{i} ;) 2 \mathrm{PL}_{\mathrm{m}}^{(\mathrm{q}-1)}$ such that

> @ () = (@)' (i;):

Furthermore' (i ;) is uniquely determined. Let us now consider the disjoint union of trivial bundles "m with in K: We glue together such bundles by identifying each "m with "m ${ }^{\mathrm{m}}$ @ through the micro-isomorphism de ned by ' (i;) and by the ordering of the vertices of . The reader can verify that such identi cations are compatible when restricted to any face of . Therefore an m \{microbundle is de ned $\left[\mathbb{R}^{m}\right]=\mathrm{K}$. It is not di cult to convince oneself that the two correspondences constructed

$$
\begin{array}{ccl}
-! & \text { Princ() } & \text { (associated principal bundle) } \\
-! & {\left[\mathbb{R}^{n}\right]} & \text { (change of bre) }
\end{array}
$$

are inverse of each others. This proves the theorem.
-
3.9 A certain amount of technical detail which is necessary for a rigorous treatment of the classi cation of microbundles has been omitted, particularly the part concerning the naturality of various constructions. However the main points have been explained and we move on to state the nal result. To do this we ned to de ne a microbundle with base an ss\{set X. For what follows it su ces for the reader to think of a microbundle with base X as a microbundle with base jX j . Readers who are concerned about the technical details here may read the following inset material.
v
It the topological case it is quite satisfactory to regard a microbundle $=x$ as a microbundle $\dot{j} \mathrm{Xj}$, however in the PL case it is not clear how to give $j \times j$ the necessary PL structure so that a PL microbundle over jXj makes sense. We avoid this problem by de ning a $P L$ microbundle \Rightarrow to comprise a collection of PL microbundles with bases the simplexes of X glued together by PL microbundle maps corresponding to the face maps of X.
More precisely, for each $2 X^{(k)}$ we havea PL microbundle $={ }^{k}$ and for each pair $2 X^{(k)} ; 2 X^{(1)}$ and monotone map : ${ }^{1}!{ }^{k}$ such that ${ }^{\#}()=$ an isomorphism
\# :
which is functorial ie, ($)^{\#}=\left({ }^{\#}\right)$ \#
where : j ! ' and ${ }^{\#}()=$. Another way of putting this is that we have a lifting of X (as a functor) to the category of PL microbundles and bundle maps. More precisely associate a category \widetilde{X} with X by $\operatorname{Ob}(\widetilde{X})=\sum_{n} X^{(n)}$ and $\operatorname{Map}(\widetilde{X})(;)=f(; ~):{ }^{\#}=g$ for ; $2 \mathrm{Ob}(\widetilde{X})$. Composition of maps in \widetilde{X} is given by (; ;) (; ;) $=($; ;). A PL microbundle $=x$ is then a functor from \tilde{X} to the category of PL microbundles and bundle maps such that for each $2 X^{(n)},=()$ is a microbundle with base ${ }^{n}$. The de nition implies that the microbundles can be glued to form a (topological) microbundle with base jX j.
Δ
Let $B P L_{m}$ be the classifying space of the group $G=P L_{m}$ constructed in 3.7. Theorem 3.7 now implies that we have a PL microbundle $\gamma_{P L}^{m}=B P L_{m}$ which we call the classifying bundle and we have the following classi cation theorem.

Theorem BPL_{m} is a dassifying space for PL m\{microbundles which have a polyhedron as base. Precisely, there exists a PL m\{microbundle $\gamma_{P L}^{m}=B P L_{m}$, such that the set of the isomorphism classes of PL $m\left\{\begin{array}{c}\text { microbundles on a }\end{array}\right.$ xed polyhedron X is in a natural one to one correspondence with $\left[\mathrm{X} ; \mathrm{BPL}_{m}\right.$] through the induced bundle.
3.10 Milnor (1961) also proved that the homotopy type of $B P L_{m}$ contains a locally nite simplicial complex.

His argument proceeds through the following steps:
(a) for each nite simplicial complex K the set Micro(K) is countable
(b) by taking K to be a triangulation of the sphere $\mathrm{S}^{\text {a }}$ deduce that each homotopy group ${ }_{q}\left(B P L_{m}\right)$ is countable
(c) the result then follows from [Whitehead 1949, p. 239].

The theorem of Whitehead, to which we referred, asserts that each countable cw \{complex is homotopically equivalent to a locally nite simplicial complex. Westill have to provethat each cw \{complex whosehomotopy groups are countable is homotopically equivalent to a countable cw \{complex, for more detail here, see subsection 3.13 below.

Note By virtue of 3.10 and of the Zeeman simplicial approximation theorem it follows that

$$
\left[\mathrm{X} ; \mathrm{BPL}_{\mathrm{m}}\right]_{\mathrm{PL}} \quad\left[\mathrm{X} ; \mathrm{BPL}_{\mathrm{m}}\right\}_{\mathrm{top}}:
$$

3.11 Let $B T o p_{m}$ be the classifying space of $G=T_{m}$. Then we have, as above:

Theorem BTop m dassi es topological m \{microbundles with base a polyhe dron.

Addendum $\mathrm{BTop}_{\mathrm{m}}$ even classi es the m \{microbundles with base X, where X is an ENR. In particular X could bea topological manifold.

Proof of the addendum $L \in \gamma_{T o p}^{m}=B T o p_{m}$ be a universal $m\{d i m e n s i o n a l$ microbundle, which certainly exists, and let $N(X)$ be an open neighbourhood of X in a Euclidean space having X as a retract. Let r : $N(X)!X$ be the retraction. Assume that $=X$ is a topological $m\{$ bundle and take $r() \neq N(X)$. By the classi cation theorem there exists a classifying function

$$
(F ; F): r()!V_{T o p}^{m}:
$$

Since $r() j X=$, then ($\mathbf{F} ; F) \mathrm{j}$ classi es .
From now on we will write G_{m} to indicate, without distinction, either $\mathrm{Top}_{\mathrm{m}}$ or PL_{m}.
3.12 There are also relative versions of the classifying theorems which assert that, if $C \quad X$ is closed and U is an open neighbourhood of C in X and if $\mathbf{f}_{U}: \quad j U!\gamma_{G}^{m}$ is a classifying map, then there exists a classifying map \mathbf{f} : ! γ_{G}^{m}, such that $\mathbf{f}=\mathbf{f}_{\mathrm{U}}$ on a neighbourhood of C. In the case where C is a subpolyhedron of X the relative version can be easily obtained using the semisimplicial techniques described above.
3.13 Either for historical reasons or in order to have at our disposal explicit models for BG_{m}, which should make the exposition and the intuition easier in the rest of the text, we used Milnor's heuristic semisimplicial approach. However the existence of $B G_{m}$ can be deduced from Brown's theorem [Brown 1962] on representable functors. This was observed for the rst time by Arnold Shapiro. The reader who is interested in this approach is referred to [Kirby\{ Siebenmann 1977; IV section 8]. Siebenmann observes [ibidem, footnote p. 184] that Brown's proof reduces the unproven statement at the end of 3.10 to an easy exercise. This is true Let T be a representable homotopy cofunctor de ned on the category of pointed cw \{complexes. An easy inspection of Brown's argument ensures that, provided $\mathrm{T}\left(\mathrm{S}^{\mathrm{n}}\right)$ is countable for every n 0 , T admits a classifying cw \{complex which is countable. Now let Y be a path connected cw \{complex whose homotopy groups are all countable, and consider $T(X):=[X ; Y]$. Then the above observation tells us that $T(X)$ admits a countable classifying Y^{0}. But Y is homotopically equivalent to Y^{0} by the homotopy uniqueness of classifying spaces, which proves what we wanted.

3.14 BG_{m} as a Grassmannian

We will start by constructing a particular model of $E G_{m}$. Let \mathbb{R}^{1} denote the union $\mathbb{R}^{1} \quad \mathbb{R}^{2} \quad \mathbb{R}^{3} \quad::$.
An m \{microbundle $=k$ is said to be a submicrobundle of $k \mathbb{R}^{1}$ if $E()$
$k \quad \mathbb{R}^{1}$ and the following diagram commutes:

where i is the zero-section of,p is the projection and $j(x)=(x ; 0)$. Having said that, let WG_{m} be the ss\{set whose typical k \{simplex is a monomorphism

$$
\mathbf{f :} \text { k } \quad \mathbb{R}^{m}!\quad k \quad \mathbb{R}^{1}
$$

ie, a G_{m} micro-isomorphism between $\quad k \quad \mathbb{R}^{m}$ and a submicrobundle of $\quad k$ \mathbb{R}^{1}. The semisimplicial operators are de ned as usual, passing to the induced micro-isomorphism.

Exercise WG_{m} is contractible.
In order to complete the exercise we need to show that each ss\{map _! WG ${ }_{m}$ extends to ! WG_{m}, where is any standard simplex. This means that each monomorphism h : _ \mathbb{R}^{m} ! $-\mathbb{R}^{1}$ has to extend to a monomorphism $\mathrm{H}: \quad \mathbb{R}^{\mathrm{m}}!\quad \mathbb{R}^{1}$ and this is not di cult to establish.

In the same way one can verify that WG_{m} satis es the K an condition. WG_{m} is called the G_{m} \{Stiefel manifold.

An action $W G_{m} \quad G_{m}!W_{m}$ de ned by composing the micro\{isomorphisms transforms $W G_{m}$ into the space of a principal bration

$$
\begin{equation*}
\gamma\left(G_{m}\right): G_{m}!W G_{m}!B G_{m}: \tag{3:14:1}
\end{equation*}
$$

By the Steenrod's recognition criterion, BG_{m} in (3.14.1) is a classifying space for G_{m} and a typical k \{simplex of BG_{m} is nothing but a G_{m} \{submicrobundle of $k \quad \mathbb{R}^{1}$. In this way $B G_{m}$ is presented as a semisimplicial grassmannian. Furthermore the tautological microbundle $\gamma_{G}^{m}=B G_{m}$ is obtained by putting on the simplex the microbundle which it represents which we will still denote with . Therefore

$$
\gamma_{G}^{m} j:=\quad:
$$

3.15 The ss \{set Top $_{m}=\mathrm{PL}_{\mathrm{m}}$

In the case of the natural map of grassmannians

$$
B P L_{m}{ }^{p_{p}} B T_{o p_{m}}
$$

induced by the inclusion $\mathrm{PL}_{\mathrm{m}} \quad \mathrm{Top}_{\mathrm{m}}$, it is very convenient to have a geometric description of its homotopic bre. This is very easy to obtain using the semisimplicial language. In fact there is an action also de ned by composition,

$$
\mathrm{WTop}_{\mathrm{m}} \quad \mathrm{PL}_{\mathrm{m}}!\mathrm{WTop}_{\mathrm{m}}
$$

whose orbit space has the same homotopy type as $B P L_{m}$ and gives the required bration

$$
B: T o p_{m}=P L_{m}-!B P L_{m} \xrightarrow{p}{ }^{m} \text { BTop }:
$$

This takes us back to the general construction of Corollary 3.7.

Obviously, $\operatorname{Top}_{m}=P L_{m}$ is the ss \{set obtained by factoring with respect to the natural action of PL_{m} on $\mathrm{Top}_{\mathrm{m}}$, so, by Observation 3.7, $\mathrm{Top}_{\mathrm{m}}=P \mathrm{~L}_{\mathrm{m}}$ satis es the K an condition and

$$
\mathrm{PL}_{\mathrm{m}} \quad \mathrm{Top}_{\mathrm{m}}!\quad \mathrm{Top}_{\mathrm{m}}=\mathrm{PL}_{\mathrm{m}}
$$

is a Kan bration.

4 PL structures on topological microbundles

In this section we will consider the problem of the reduction of a topological microbundleto a PL microbundle and we will classify reductions in terms of liftings on their classifying spaces. In this way we will put in place the foundations of the obstruction theory which will allow the use apparatus of homotopy theory for the problem of classifying the PL structures on a topological manifold.
4.1 A structure of PL microbundle on a topological m \{microbundle , with base an ss\{set X, is an equivalence class of topological micro\{isomorphisms \mathbf{f} : ! where $=x$ is a PL microbundle. The equivalence relation is $\mathbf{f} \quad \mathbf{f}^{0}$ if $\mathbf{f}^{0}=\mathbf{h} \mathbf{f}$, with \mathbf{h} a PL micro\{isomorphism.
A structure of PL microbundle will also be called a PL \{structure(indicates a microbundle). More generally, an ss\{set, PL (), is de ned so that a typical k \{simplex is an equivalence class of micro\{isomorphisms
f: k !
where is a PL m\{microbundle on $k \quad X$. The semisimplicial operators are de ned, as usual, passing to the induced micro\{isomorphism.

Equivalently, a structure of PL microbundle on

$$
: x-!E(1)-P x
$$

is a polyhedral structure , de ned on an open neighbourhood U of $i(X)$, such that

$$
x-1 \text { U }
$$

is a (locally trivial) PL m \{microbundle. If ${ }^{0}$ is another such polyhedral structure then we say that is equal to ${ }^{0}$ if the two structures de ne the same germ in a neighbourhood of the zero\{section, ie, if $=0$ in an open neighbourhood of $\mathrm{i}(\mathrm{X})$ in $\mathrm{E}(\mathrm{)}$. Then truely represents an equivalence class. Using this language PL () is the ss \{se whose typical k \{simplex is the germ around $\quad \mathrm{k} \quad \mathrm{X}$ of a PL structure on the product microbundle

Going back to the bration

$$
\mathrm{B}: \mathrm{Top}_{\mathrm{m}}=\mathrm{PL}_{\mathrm{m}}-\mathrm{BPL} \underline{m}_{\mathrm{m}}^{\mathrm{p}} \mathrm{BTop}_{\mathrm{m}}
$$

constructed in 3.15 we \mathbf{x}, onceand for all, a dassifying map \mathbf{f} : ! $\gamma_{\text {Top }}^{m}$, which restricts to a continuous map $\mathrm{f}: \mathrm{X}$! $\mathrm{BTop}_{\mathrm{m}}$. Let us also x a classifying map $\mathbf{p}_{\mathrm{m}}: \gamma_{\mathrm{PL}}^{\mathrm{m}}!\gamma_{\mathrm{T} o p}^{m}$, with restriction $\mathrm{p}_{\mathrm{m}}: B \mathrm{BL}_{\mathrm{m}}$! $\mathrm{BTop}_{\mathrm{m}}$. A $\mathrm{k}\{$ simplex of the kss\{set Lift(f) is a continuous map

$$
\text { : } k \quad X!B P L_{m}
$$

such that $p_{m}=f \quad 2$, where z is the projection on X. Therefore a 0 \{simplex of Lift(f) is nothing but a lifting of f to $B P L_{m}$, a 1 \{simplex is a vertical homotopy class of such liftings, etc. As usual the liftings are nothing but sections. In fact, passing to the induced bration $f(B)$ (which we will denote later either with f or $\left[\mathrm{Top}_{\mathrm{m}}=\mathrm{PL}_{\mathrm{m}}\right]$) we have, giving the symbols the obvious meanings,

$$
\begin{equation*}
\operatorname{Lift}(f) \quad \text { Sect }\left[T_{o p}=P L_{m}\right] \tag{4:1:1}
\end{equation*}
$$

where the right hand side is the ss $\left\{\right.$ set of sections of the bration $\left[T o p_{m}=P L_{m}\right]$ associated with .

Classi cation theorem for the PL \{structures Using the notation introduced above, there is a homotopy equivalence

$$
: P L()!L i f t(f)
$$

which is well de ned up to homotopy.
First we will give an indication of how can be constructed directly, following [Lashof 1971].

First proof Firstly we will observe that $\mathbf{f}: \quad V_{\text {Top }}^{m}$ induces an isomorphism h: ! f ($\gamma_{T o p}^{m}$).

Let $\hat{f} \hat{:} X$! $B P L_{m}$ be a lifting of f and $=\hat{f}\left(\gamma_{P L}\right)$. The map of $m\{$ microbundles \mathbf{p}_{m} induces an isomorphism

$$
\mathbf{q}:=f \wedge\left(\gamma_{P L}\right)!f\left(\gamma_{T o p}\right):
$$

In fact, $f\left(\gamma_{\text {Top }}\right)=\left(p_{m} f \hat{f}\left(\gamma_{\text {Top }}\right)=f^{\wedge} p_{m}\left(\gamma_{\text {Top }}\right)\right.$ and there is a canonical isomorphism' between $\gamma_{\text {PL }}$ and $p_{m}\left(\gamma_{\text {Top }}\right)$: Therefore it will su ceto put

$$
\mathbf{q}:=f^{\wedge}(\prime):
$$

Now we can de nea PL \{structure \mathbf{g} on by de ning

$$
\mathbf{g}:=\mathbf{q}^{-1} \mathbf{h}:
$$

In this way we have associated a 0\{simplex of PL () with a $0\{$ simplex of Lift(f) .

On the other hand, if $\hat{f_{t}}$ is a 1-simplex of Lift(f), ie, a vertical homotopy class of liftings of f, then the set of induced bundles $\hat{f_{t}}\left(\gamma_{\text {top }}\right)$ determines, in the way we described above, a 1 \{simplex \mathbf{g} of PL \{structures on.

Conversely, xaPL \{structure g: ! , and let a: ! ${ }_{\text {PL }}$ bea dassifying map which covers a: X! BPL ${ }_{m}$.

The maps X ! $B T o p_{m}$ given by p_{m} a and f are homotopic, sincethey classify topologically isomorphic microbundles. Therefore, since p_{m} is a bration and p_{m} a lifts to a trivially, then f also lifts to a $f: X!B P L_{m}$. This way is established a correspondence between a 0\{simplex of PL () and a $0\{$ simplex of Lift(f).
4.2 It would be possible to conclude the proof of the theorem in this heuristic way, however we would rather use a less direct argument, which is more elegant and, in some sense, more instructive and illuminating. This argument is due to [Kirby\{Siebenmann 1977, pp. 236\{239].

Preface If A and B are metrisable topological spaces, then the typical k \{ simplex of the SS of the functions B^{A} is a continuous map

$$
\text { k } A!B:
$$

The semisimplicial operators are de ned by composition of functions. Naturally the path components of B^{A} are nothing but the homotopy classes $[A ; B]$. An
ss \{map g of a simplicial complex Y in B^{A} is a continuous map $G: Y A!B$, de ned by

$$
G(y ; a)=g(y)(a)
$$

for y 2 Y ; furthermore g is homotopic to a constant if and only if G is homotopic to a map of the same type as

$$
Y \quad A-!^{2} A-!B:
$$

Incidentally we notice that if A has a countable system of neighbourhoods and if we give B^{A} the compact open topology, then g is continuous if and only if G is continuous.

Second proof of theorem 4.1 Let $M_{\text {Top }}(X)$ be the $s s\{$ set whose typical k \{simplex is a topological m \{microbundle with base ${ }^{k} \quad X$. In order to avoid set \{theoretical problems we can think of as being represented by a submicrobundle of ${ }^{k} \quad X \quad \mathbb{R}^{1}$. We agree that another such microbundle ${ }^{0}={ }^{k} \quad X$ represents the same simplex of $\mathbf{M}_{\text {Top }}(X)$ if coincides with ${ }^{0}$ in a neighbourhood of the zero\{section. In practice (cf 3.14) $\mathbf{M}_{\text {Top }}(X)$ can be considered as the grassmannian of the $m\{$ microbundles on X. Now, if Y is a simplicial complex, then an $\operatorname{ss}\left\{\operatorname{map} Y!M_{\text {Top }}(X)\right.$ is represented by an $\mathrm{m}\{$ microbundle Y on $\mathrm{Y} \quad \mathrm{X}$ and it is homotopic to a constant if there exists an m \{microbundle γ_{1} on I $Y \quad X$, such that $\gamma_{1} j 0 \quad Y \quad X=Y$ and $\gamma_{1} j 1 \quad Y \quad X=Y \quad \gamma_{1}$, where γ_{1} is some microbundle on X.
Further, let $\mathbf{M}_{\text {Top }}^{+}(X)$ be the $s s\{$ set whose typical k ssimplex is an equivalence class of pairs (;f), where is an m\{microbundle on ${ }^{k} \quad X$ and \mathbf{f} : ! $V_{T o p}^{m}$ is a classifying micro\{isomorphism and, also, (;f) ($\left.{ }^{0} ; \mathbf{f}^{0}\right)$ if the pairs are identical in a neighbourhood of the two respective zero\{sections. In this case an ss\{map g: Y ! $\mathbf{M}_{\text {Top }}^{+}(\mathrm{X})$ is represented by an $m\{$ microbundle on $\mathrm{Y} \quad \mathrm{X}$, together with a classifying map $\mathbf{f}: \quad V_{T o p}^{m}$: Furthermore g is homotopic to a constant if there exist an m \{microbundle । on I $\mathrm{Y} \quad \mathrm{X}$ and a classifying map $\mathbf{F : ~} \quad$! $Y_{T o p}^{m}$, such that $(1 ; F) j 0 \quad Y \quad X=(; f)$ and $(1 ; F) j 1 \quad Y \quad X$ is of type ($Y \quad{ }_{1} ; \mathbf{f}_{1} \quad 2$), where $\quad 2$ is the projection on ${ }_{1}=X$ and \mathbf{f}_{1} is a classifying map for ${ }_{1}$. Consider the two forgetful maps

$$
\mathbf{M}_{\mathrm{Top}}(\mathrm{X})^{\mathrm{T} o \mathrm{p}} \mathbf{M}_{\mathrm{Top}}^{+}(\mathrm{X}) \underline{I}^{\mathrm{T}!^{\mathrm{p}}} \mathrm{~B} \mathrm{Top}_{\mathrm{m}}^{\mathrm{X}} ;
$$

$\operatorname{Top}(; \mathbf{f})=$, and $\operatorname{Top}(; \mathbf{f})=\mathrm{f}$: We leave to the reader the proof that ; are homotopy equivalences, since they induce a bijection between the path components, as well as an isomorphism between the homotopy groups of the corresponding components. For this is a consequence of the classi cation theorem for topological $\mathrm{m}\{$ microbundles, in its relative version. In order to nd a homotopy inverse for , we instead use the construction of the induced bundle and of the homotopy theorem for microbundles. In the PL case we have analogous ss\{sets and homotopy equivalences, which are de ned in the same way as the corresponding topological objects:

$$
\mathbf{M}_{P L}(X)^{P L} \mathbf{M}_{P L}^{+}(X)-Q^{\mathrm{L}} B P L_{m}^{X} ;
$$

where k \{simplex of $\mathbf{M}_{P L}(X)$ is now a topological m \{microbundle on ${ }^{k} X$, together with a PL structure ; and (;) (\quad; 9) if such pairs coincide in a neighbourhood of the zero section.
We observe that the proof of the fact that PL is a homotopy equivalence requires the use of Zeeman's simplicial approximation theorem.
In this way we obtain a commutative diagram of forgetful ss\{maps

where p^{∞} is induced by the projection $p_{m}: B P L_{m}!B T o p_{m}$ of the bration B. It is easy to verify that both p^{0} and p^{∞} are K an brations. Furthermore we can assume that p also is a bration. In fact, if it is not, the Serre's trick makes pa bration, transforming the diagram above into a new diagram which is commutative up to homotopy and where the horizontal morphisms are still homotopy equivalences, while the lateral vertical morphisms $\mathrm{p}^{0} ; \mathrm{p}^{\infty}$ remain unchanged. At this point the Proposition 1.7 ensures that, if (;f) $2 \mathbf{M}_{\text {Top }}^{+}(X)$, then the bre $p^{0-1}()$ is homotopically equivalent to the bre $\left(p^{0}\right)^{-1}(f)$. However, by de nition:

$$
\begin{aligned}
& \left(p^{q}\right)^{-1}()=P L() \\
& \left(p^{\infty}\right)^{-1}(f)=\operatorname{Lift}(f):
\end{aligned}
$$

The theorem is proved.

