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1 Introduction

The basic question addressed in this paper is:

Let X be a simply connected symplectic 4–manifold and let x ∈
H2(X,Z). How unique is an embedded symplectic or Lagrangian
representative of x?

It is only in the last few years that an answer to this question has begun to
emerge. The answer is ‘not very’ for symplectic tori of self-intersection 0 and
remains elusive for higher genus surfaces. As we show below:

Theorem If X is a simply connected symplectic 4–manifold containing an
embedded symplectic torus T of self-intersection 0, then for each fixed integer
m ≥ 2, there are infinitely many embedded symplectic tori, each representing
the homology class m[T ], no two of which are equivalent under a smooth isotopy
of X .

The first such examples were produced by the present authors in [6], and the
technique therein was enhanced to produce further examples in [19, 3]. In
section 4 we give a proof of the above theorem. In section 3 we give a proof
of the theorem for even m ≥ 6 which is straightfoward, and which depends on
some nice theorems of Montesinos and Morton [12] and of Kanenobu [9] rather
than on explicit constructions.
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Some intriguing questions remain. Siebert and Tian have conjectured that for
symplectic 4–manifolds with b+ = 1 and c21 > 0 any embedded symplectic
surface must be symplectically isotopic to a holomorphic curve. (Of course,
no such manifold contains an embedded symplectic torus of square 0.) They
have shown that in CP 2 this is true for each curve of degree ≤ 17, and they
have also some results to this effect in S2 × S2 . However the general problem
is still wide open, as is the case in general for surfaces of higher genus or for
other self-intersections. However, in the case where π1(X) 6= 0 Ivan Smith
has constructed examples of nonisotopic but homologous surfaces of square 0
distinguished by π1 of their complements.

Much less is known in the case of Lagrangian tori. Until this year, it was
unknown if there existed Lagrangian tori which were homologous but inequiva-
lent (under either isotopy or orientation-preserving diffeomorphism). The first
examples are due to Stefano Vidussi:

Theorem [20] Let K denote the trefoil knot. Then in the symplectic mani-
fold E(2)K there is a primitive homology class α so that for each positive integer
m, there are infinitely many embedded Lagrangian tori representing mα, no
two of which are equivalent under orientation-preserving diffeomorphisms.

Utilizing an invariant coming from Seiberg–Witten theory and the geometry of
fibered knots, the current authors improved this theorem as follows:

Theorem [7] (a) Let X be any symplectic manifold with b+2 (X) > 1 which
contains an embedded symplectic torus with a vanishing cycle. Then for each
fibered knot K in S3 , the result of knot surgery XK contains infinitely many
nullhomologous Lagrangian tori, pairwise inequivalent under orientation-preserving
diffeomorphisms.

(b) Let Xi , i = 1, 2, be symplectic 4–manifolds containing embedded sym-
plectic tori Fi and assume that F1 contains a vanishing cycle. Let X be the
fiber sum, X = X1#F1=F2X2 . Then for each fibered knot K in S3 , the mani-
fold XK contains an infinite family of homologically primitive and homologous
Lagrangian tori which are pairwise inequivalent.

In sections 5–8 we show how this theorem works in a specific example con-
structed via double branched covers. The discussion here differs somewhat
from the more general arguments of [7], however we feel that it is helpful to
understand specific examples from different points of view.

The authors gratefully acknowledge support from the National Science Foun-
dation. The first author was partially supported NSF Grants DMS0072212 and
DMS0305818, and the second author by NSF Grant DMS0204041.
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2 Seiberg–Witten invariants

The Seiberg–Witten invariant of a smooth closed oriented 4–manifold X with
b+2 (X) > 1 is an integer-valued function which is defined on the set of Spinc

structures over X (cf [21]). In case H1(X;Z) has no 2–torsion, there is a natural
identification of the Spinc structures of X with the characteristic elements of
H2(X;Z) (ie those elements k whose Poincaré duals k̂ reduce mod 2 to w2(X)).
In this case we view the Seiberg–Witten invariant as

SWX : {k ∈ H2(X;Z)|k̂ ≡ w2(TX) (mod 2))} → Z.

The sign of SWX depends on an orientation of H0(X;R) ⊗ detH2
+(X;R) ⊗

detH1(X;R); however, when X has a symplectic structure, there is a preferred
sign for SWX (see [16]).

If SWX(β) 6= 0, then β is called a basic class of X . It is a fundamental fact
that the set of basic classes is finite. Furthermore, if β is a basic class, then
so is −β with SWX(−β) = (−1)(e+sign)(X)/4 SWX(β) where e(X) is the Euler
number and sign(X) is the signature of X .

It is convenient to view the Seiberg–Witten invariant as an element of the
integral group ring ZH2(X). For α ∈ H2(X) we let tα denote the corresponding
element in ZH2(X). More specifically, suppose that {±β1, . . . ,±βn} is the set
of nonzero basic classes for X . Then the Seiberg–Witten invariant of X is the
Laurent polynomial

SWX = SWX(0) +
n∑
j=1

SWX(βj) · (tβj + (−1)(e+sign)(X)/4 t−1
βj

) ∈ ZH2(X).

A key vanishing theorem for the Seiberg–Witten invariants is:

Theorem [21] Let X be a smooth closed 4–manifold which admits a de-
composition X = A ∪ B into 4–manifolds with ∂A = ∂B = Y . Suppose that
b+2 (A) > 0, b+2 (B) > 0, and that Y admits a metric of positive scalar curvature,
then SWX = 0.

Another important and extremely useful fact about Seiberg–Witten invariants
is the adjunction inequality: If X is a smooth closed 4–manifold with b+2 > 1
and Σ is an embedded surface of positive genus g in X representing a nontrivial
element of H2(X;R) then for any basic class β of X

2g − 2 ≥ Σ2 + β · Σ (1)
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We next recall the link surgery construction of [5]. This construction starts with
an oriented n–component link L = {K1, . . . ,Kn} in S3 and n pairs (Xi, Ti)
of smoothly embedded self-intersection 0 tori in simply connected 4–manifolds.
(In the original article [5], an extra condition (‘c-embedded’) was placed on
these tori; however, recent work of Cliff Taubes [17] has shown this condition
to be unnecessary.)

Let αL : π1(S3 \L)→ Z denote the homomorphism characterized by the prop-
erty that it sends the meridian mi of each component Ki to 1, and let `i
denote the longitude of Ki . The curves γi = `i − αL(`i)mi on ∂N(Ki) form
the boundary of a Seifert surface for the link, and in case L is a fibered link,
the γi are given by the boundary components of a fiber.

In S1 × (S3 \ N(L)) let Tmi = S1 ×mi , and define the link-surgery manifold
X(X1, . . . Xn;L) by

X(X1, . . . Xn;L) = (S1 × (S3 \N(L)) ∪
n⋃
i=1

(Xi \ (Ti ×D2))

where S1 × ∂N(Ki) is identified with ∂N(Ti) so that for each i

[Tmi ] = [Ti], and [γi] = [pt× ∂D2].

It is not clear whether or not this determines X(X1, . . . Xn;L) up to diffeomor-
phism, however any such manifold will have the same Seiberg–Witten invariant:

Theorem [5] If each π1(X\Ti) = 1, then X(X1, . . . Xn;L) is simply-connected
and its Seiberg–Witten invariant is

SWX(X1,...Xn;L) = ∆sym
L (t21, . . . , t

2
n) ·

n∏
j=1

SWXj · (tj − t−1
j )

where tj = t[Tj ] and ∆sym
L (t1, . . . , tn) is the symmetric multivariable Alexander

polynomial of the link L.

In case each (Xi, Ti) ∼= (X,T ), a fixed pair, we write

X(X1, . . . Xn;L) = XL

(We implicitly remember T , but it is removed from the notation.) As an
example, consider the case where each Xi = E(1), the rational elliptic sur-
face (E(1) ∼= CP 2#9CP 2 ) and each Ti = F is a smooth elliptic fiber. Since
SWE(1) = (t− t−1)−1 , we have that

SWE(1)L = ∆sym
L (t21, . . . , t

2
n).
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In case the link L is actually a knot K , we call the procedure ‘knot surgery’
and the resulting manifold XK . The formula for the Seiberg–Witten invariant
looks slightly different in this case due to the difference in the relationship of the
Seiberg–Witten invariant of a 3–manifold and its Alexander polynomial when
b1 > 1 and b1 = 1.

Theorem [5] If π1(X \T ) = 1, then XK is simply connected and its Seiberg–
Witten invariant is

SWXK = ∆sym
K (t2) · SWX

where t = t[T ] .

3 Tori and simple covers

Our first construction utilizes an extremely interesting theorem of José Mon-
tesinos and Hugh Morton which characterizes fibered links in the 3–sphere. To
begin, let X be a simply connected symplectic 4–manifold containing an em-
bedded symplectic torus T of self-intersection 0, and identify a tubular neigh-
borhood of T with S1× (S1×D2). A closed braid may be viewed as contained
in S1 ×D2 ⊂ S3 = (S1 ×D2) ∪ (D2 × S1) and then its axis is {0} × S1 . The
theorem of Montesinos and Morton is:

Theorem (Montesinos and Morton [12]) Every fibered link in S3 with k
components can be obtained as the preimage of the braid axis for a d–sheeted
simple branched cover of S3 branched along a suitable closed braid, where
d = max{k, 3}.

(Recall that a simple branched cover of degree d is one whose branch points
have exactly d− 1 points in their preimages.)

A second important ingredient in this construction is a theorem of Kanenobu
concerning the Hosokawa polynomial of fibered links. The Alexander polyno-
mial of a link L of k components is a polynomial ∆L(t1, . . . , tk) in k vari-
ables (corresponding to the meridians of the components of the link). The
polynomial ∆L(t, . . . , t) obtained by setting all the variables equal is always
divisible by (t − 1)k−2 , and the Hosokawa polynomial of L is defined to be
∇L(t) = ∆L(t, . . . , t)/(t − 1)k−2 .

Theorem (Kanenobu [9]) Let f(t) be any symmetric polynomial of even
degree with integral coefficients satisfying f(0) = ±1, then for any k ≥ 2 there
is a fibered link L of k components in S3 with ∇L(t) = f(t).
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We now use these two theorems to build symplectic tori homologous to multiples
of T . We have described a tubular neighborhood N of T as N = S1 × (S1 ×
D2). Fix a three-component fibered link L in S3 and let BL be the braid
corresponding to L by the Montesinos–Morton Theorem. As above, we view
BL as contained in S1×D2 ⊂ S3 = (S1×D2)∪(D2×S1) with axis A = {0}×S1 .
(See Figure 1 for an example.) Then TL = S1 ×BL ⊂ N is a symplectic torus
[6], and if BL has m strands, then TL is homologous to mT .
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Figure 1

Let π : (S3, L) → (S3, A) be the threefold branched cover with branch set BL
given by the Montesinos–Morton Theorem. Because L = π−1(A) is a three-
component link, the covering restricted to A is trivial. This means that the
restriction of π over ∂(S1×D2) is a trivial covering, and the induced branched
cover over N = S1×(S1×D2) extends trivially over X . We thus get a threefold
simple branched cover p = pL : X̃ → X with branch set TL . We have

X̃ = Ñ ∪
3⋃
i=1

(X \N)i

where Ñ = p−1(N) = S1 × (S3 \ L), and (X \N)i denotes a copy of X \N .

This means that X̃ is obtained via link surgery on the link L using (X,T ).
The Seiberg–Witten invariant of X̃ (viewed as an element of ZH2(X̃)) may be
calculated via the techniques of [17, 14, 5]:

SW
X̃

= ∆sym
L (t21, t

2
2, t

2
3) ·

3∏
i=1

SWXi · (ti − t−1
i )

The induced map p∗ : ZH2(X̃) → ZH2(X) satisfies p∗(SWXi) = SWX . Also,
since ti is the element of ZH2(X̃) corresponding to the homology class of S1×µi

Geometry & Topology Monographs, Volume 7 (2004)



Tori in symplectic 4–manifolds 317

where µi are the meridians of the components of L, p∗(ti) is the element of
ZH2(X) corresponding to S1 × µA , where µA is a meridian to A. Since µA is
the core circle S1 × {0} ⊂ S1 ×D2 , we have [S1 × µA] = [T ] in H2(X). Thus
p∗(ti) = t, and

p∗(SWX̃) = ∆sym
L (t2, t2, t2) · SW3

X · (t− t−1)3 (2)

Now suppose that we are given another three-component link L′ which is a
threefold simple cover of S3 with branch set BL′ and symplectic torus TL′ =
S1×BL′ . The covering projections pL , pL′ are determined by homomorphisms
ϕL (or ϕL′) from π1(X \TL) (or π1(X \TL′)) to the symmetric group S3 such
that each meridian of TL (or TL′ ) is sent to a transposition.

Any isotopy of X taking TL to TL′ and which carries the covering data for pL
to that of pL′ gives rise to

X̃L
f̃ ∼=−−−−→ X̃L′

pL

y ypL′
X −−−−→

f ∼=
X

(3)

where f(TL) = TL′ and f∗ is the identity on homology.

Since f̃∗(SWX̃L
) = SW

X̃L′
it follows from (2) and (3) that

∆sym
L (t2, t2, t2) = ∆sym

L′ (t2, t2, t2)

In other words, ∇sym
L (t2) = ∇sym

L′ (t2). Using Kanenobu’s theorem, one sees that
there are infinite families of fibered links {Li} whose ∇sym

Li
(t) are distinct and

have arbitrary fixed even degree (> 0). The genus gL of the fibered link L is half
the degree of its Hosokawa polynomial. (See, for instance, [2].) Furthermore, the
fiber of L is the thrice-punctured surface which is a simple threefold branched
cover of D2 (a normal fiber to S1 × {0}) with m branch points. Thus the
number of strands m of BL is determined by m = 2gL + 4.

This means that for any even m ≥ 6 we get an infinite family {Ti} of sym-
plectic tori homologous to mT with distinct threefold simple branched covers.
Note that each braided torus TL admits at most finitely many simple three-
fold branched covers of X with TL as branch set, since there are finitely many
distinct homomorphisms π1(X \ TL)→ S3 . Thus we have:

Theorem 3.1 Let X be a simply connected symplectic 4–manifold containing
an embedded symplectic torus T of self-intersection 0. Then for each even m ≥
6 there are infinitely many pairwise nonsmoothly isotopic embedded symplectic
tori homologous to mT .
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4 Fiber sums

We begin this section with the same hypotheses as the last: We are given a
simply connected symplectic 4–manifold X containing an embedded symplectic
torus T of self-intersection 0. The construction of new symplectic tori is similar
to that of the last section (and of [6]). For each m ≥ 2 consider closed braids
B with m strands. Then the braided torus TB = S1 × B is embedded in the
tubular neighborhood S1 × (S1 ×D2) of T = S1 × S1 ×{0}. Furthermore, TB
is symplectic and homologous to mT .

Suppose that B and B′ are m–strand closed braids and that TB′ is smoothly
isotopic to TB in X . Then there is a diffeomorphism f : X → X satisfying:
f(TB) = TB′ , f(µB) = µB′ , and f∗ = id on H∗(X). (Here µB and µB′ are
meridians to the braids; so they also may be viewed as meridians to the tori
TB and TB′ .)

Our goal is to use relative Seiberg–Witten invariants SW(X,TB) to distinguish
the tori TB up to isotopy. Let E(1) denote the rational elliptic surface. Because
of the gluing theorems of [17, 14] and the fact that the relative Seiberg–Witten
invariant of E(1) minus a a smooth elliptic fiber is SWE(1)\F = 1 (see eg
[10]), the relative Seiberg–Witten invariant of (X,TB) may be expressed as the
absolute Seiberg–Witten invariant of the fiber sum of X and E(1) along TB
and F :

SW(X,TB) = SWX#TB=FE(1)

Now write N(TB) for a tubular neighborhood of TB in X and also writeN(T ) =
S1 × (S1 ×D2), the original tubular neighborhood of T . We have

X \N(TB) =
(
X \N(T )

)
∪
(
S1 ×

(
(S1 ×D2) \N(B)

))
(4)

Let LB be the link in S3 consisting of the closed braid B together with its
axis A. If µA denotes a meridian to A, then T is homologous to S1×µA . Let
t = tT denote the corresponding element in ZH2(X).

We may now rewrite (4) as

X \N(TB) = (X \N(T )) ∪
(
S1 × (S3 \N(LB))

)
The manifold X#TB=FE(1) is obtained from the same components as link
surgery using the link LB and the manifolds (E(1), F ) and (X,T ); however
the gluings are not necessarily those specified in section 2. Since E(1) has
big diffeomorphism group with respect to F (see eg [8]), each diffeomorphism
∂N(F ) → ∂N(F ) extends to a self-diffeomorphism of E(1) \ N(F ); so the
diffeomorphism used to glue in E(1) \N(F ) is inconsequential. However, it is
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useful to demand that the fiber F of E(1) should be identified with S1 × λB
where λB is the longitude of B in S3 .

According to [17, 14], SWX · (t− t−1) is the relative Seiberg–Witten invariant
of (X,T ), and by [5], as described in section 2, the relative invariant of the
manifold S1 × (S3 \N(LB)) is ∆sym

LB
(t2, τ2). Applying [5] and [17] we obtain:

SW(X,TB) = SWX#TB=FE(1) = ∆sym
LB

(t2, τ2) · SWX · (t− t−1)

where τ is the element of ZH2(X) corresponding to [S1 × µB ]. Since [F ] =
[S1 × λB] = m[S1 × µA] = m[T ]. When applying this formula, we need to
remember that tT = t and tF = tm .

Theorem 4.1 Let X be a simply connected symplectic 4–manifold with b+2 >
1 containing an embedded symplectic torus T of self-intersection 0. For a fixed
integer m ≥ 2, let B and B′ be closed m-strand braids in S3 . Then TB and
TB′ are embedded symplectic tori in X which are homologous to mT . If there
is an isotopy of X taking TB to TB′ , then ∆sym

LB′
(t2, τ ′2) = ∆sym

LB
(t2, τ±2).

Proof We first describe H2(X#TB=FE(1)). Let RB denote the group of rim
tori of the torus TB ; ; ie RB = ker(H2(X \TB)→ H2(X)) ∼= Z⊕Z. A basis for
RB is given by τ = [S1 × µB] and v = [λB × µB] where λB is the longitude of
the knot B in S3 . The classes τ and v are primitive (because of the definition
of RB ), thus there is a group DB

∼= Z ⊕ Z generated by the dual classes to τ
and v in H2(X#TB=FE(1)).

Let A = T⊥B = T⊥ ⊂ H2(X). Note that the adjunction inequality (1) implies
that no basic class of X has nontrivial intersection with [T ]. Thus SWX ∈ ZA.
We have H2(X \TB) = A⊕RB . Finally, suppose that [T ] is n times a primitive
homology class, and let S denote the class in H2(X#TB=FE(1)) which has a
representative built from mn punctured sections in E(1) \ F and a surface in
X \ TB which has boundary mn copies of the meridian µB to TB .

A Mayer–Vietoris argument shows that the homology of X#TB=FE(1) splits
as

H2(X#TB=FE(1)) = A⊕ (RB ⊕DB)⊕ Z(S)⊕ E8

where the E8 comes from H2(E(1) \ F ). There is a similar splitting of the
homology of H2(X#TB′=FE(1)).

If there is an isotopy of TB to TB′ , there is a diffeomorphism

f̄ : X#TB=FE(1)→ X#TB′=FE(1)

Geometry & Topology Monographs, Volume 7 (2004)



320 Ronald Fintushel and Ronald J Stern

satisfying f̄∗|A = id and f̄∗(RB) = RB′ (since f(µB) = µB′ ). Thus the induced
homomorphism of group rings satisfies f̄∗(SWX) = SWX and f̄∗(tF ) = tF ; ie
f̄∗(t)m = tm , and so f̄∗(t) = t because H2(X#TB=FE(1)) is torsion-free. It
follows that the fact that f̄∗(SW(X,TB)) = SW(X,TB′ )

implies that

∆sym
LB

(t2, f̄∗(τ)2) = ∆sym
LB′

(t2, τ ′2) (5)

Write f̄∗(τ) = aτ ′ + bv′ (where τ ′ = [S1 × µB′ ] and v′ = [λB′ × µB′ ]). Each
term nt2r

′
τ ′2s

′
of ∆sym

LB′
(t2, τ ′2) corresponds to basic classes of X#TB′=FE(1)

of the form α + (2r′ ± 1)[T ] + 2s′τ ′ where α ∈ H2(X) is a basic class, and so
α · τ ′ = 0, and α · [T ] = 0. Furthermore each class in RB′ is orthogonal to T .

Terms of the form nt2rf̄∗(τ)2s of ∆sym
LB′

(t2, f̄∗(τ)2) correspond to basic classes
of X#TB′=FE(1) of the form β + (2r ± 1)[T ] + 2s(aτ ′ + bv′), and each basic
class can be written like this. Since τ ′ and v′ are independent, it is clear that
b = 0. This means that f̄∗(τ) = aτ ′ , and a = ±1 since τ is primitive. Thus
∆sym
LB′

(t2, τ ′2) = ∆sym
LB

(t2, τ±2).

We have as a corollary:

Theorem 4.2 Let X be a simply-connected symplectic 4–manifold satisfying
b+2 (X) > 1 and containing an embedded symplectic torus T of self-intersection
0. For each m ≥ 2 there are infinitely many pairwise nonisotopic embedded
symplectic tori in X which are homologous to mT .

Proof This follows from the above theorem provided for each m ≥ 2 there are
infinitely many closed m-strand braids B whose 2-component links LB = A∪B
have distinct 2-variable Alexander polynomials. Such examples are given, for
example, in the work of Etgu and Park [3].

5 Lagrangian tori

In this section we use branched covers as a means for constructing examples of
Lagrangian tori in symplectic 4–manifolds whose homology classes are equal but
which are not equivalent under symplectic diffeomorphisms. There are already
two papers [20, 7] dealing with this phenomenon, and the invariants of [7] can
be used to distinguish the examples given in this section. However we believe
that the constructions below are interesting in their own right and are certainly
different from those cited.
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To begin, let K be the trefoil knot, and MK the 3–manifold obtained from
0–framed surgery on S3 along K . Since K is a genus–1 fibered knot, MK

fibers over the circle with fiber a torus, MK = T 2 ×ϕ S1 . Let E(1)K be the
result of knot surgery on E(1), E(1)K = E(1)#F=S1×m0

S1 ×MK , where m0

is a meridian to K . This manifold has a symplectic structure induced from
that on E(1) and the structure on S1 ×MK in which the fiber and section are
symplectic submanifolds. (See [5].) $
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Figure 2

Let m1 and m2 be meridians of K as in Figure 2, and let X denote the double
branched cover of E(1)K with branch set S1 × (m1 ∪m2). Since S1 ×mi is
a section to the fibration S1 ×MK → S1 × S1 , the branch set of this cover is
symplectic, hence X inherits a symplectic structure. We have

X = E(1)′#F ′=S1×m′0 S
1 × M̃K#S1×m′′0 =F ′′ E(1)′′

where E(1)′ and E(1)′′ are copies of E(1) and M̃K is the double cover of MK

branched over m1 ∪ m2 . It follows that M̃K also fibers over the circle, and
its fiber is the double branched cover of the fiber of MK , branched over two
points. Thus the fiber of M̃K → S1 has genus 2. We can say more:

Lemma 5.1 Let K be any knot in S3 and MK the result of 0–surgery along
K . The double cover of MK branched over two meridians to K is MK#K , the
result of 0–surgery on S3 along the connected sum K#K .

Proof This proof is an exercise in Kirby calculus. The double branched cover
of S3 branched over the two-component unlink is S2 × S1 . This means that
the double branched cover of MK branched along two meridians to K is the
result of surgery on the lift of K in S2×S1 . (See Figure 3.) Note that K lifts
to two components. Referring to Figure 3, slide one copy of K over the other
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copy of K to obtain Figure 4. In this figure, 0–surgery on K together with
0–surgery on a meridian form a cancelling pair. We are left with 0–surgery on
K#K .
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Since X = E(1)′#F ′=S1×m′0 S
1×MK#K#S1×m′′0 =F ′′ E(1)′′ , and the complement

of a fiber in E(1) is simply-connected, we have

π1(X) = π1(S1 ×m′0 × µ′)\π1(S1 × (MK#K \ (m′0 ∪m′′0))/π1(S1 ×m′′0 × µ′′)

where µ′ and µ′′ are the meridians to m′0 and m′′0 . The group in the middle,
π1(S1 ×MK#K \ (m′0 ∪m′′0)), is normally generated by the classes of S1 × pt,
any meridian to K#K , and by µ′ and µ′′ . These loops all lie on S1 ×m′0 × µ′
or S1 ×m′′0 × µ′′ ; so we see that X is simply-connected.

Consider the paths P and P ′ shown in Figure 5, each running from a point
y1 ∈ m1 to y2 ∈ m2 . These paths lie in a fiber of the fibration of S1×MK over
S1 × S1 ; thus the construction of the symplectic structure (essentially ‘area
form on base’ plus ‘area form on fiber’) implies that the surfaces S1 × P and
S1 × P ′ are Lagrangian.
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Since the endpoints of P and P ′ lie in the branch set of the cover, their lifts γ
and γ′ in M̃K = MK#K are circles in the fibers (which are genus–2 surfaces).
We thus obtain Lagrangian tori T = Tγ = S1 × γ and T ′ = T ′γ = S1 × γ′ in
S1 ×MK#K . These tori are disjoint from the lifts of m0 , where the gluing in
the construction of X takes place, so T and T ′ are Lagrangian tori in X .
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The meridian m0 in MK lifts to a pair of meridians, m′0 , m′′0 in MK#K as
in Figure 6. H1(MK#K \ (m′0 ∪ m′′0)) ∼= Z ⊕ Z is generated by [m′0] = [m′′0 ]
and by the classes of the meridians [µ′] = [µ′′] to m′0 and m′′0 . (Note that
MK#K \ (m′0 ∪m′′0) is fibered over the circle and its fibers are genus 2 surfaces
with two boundary components. The meridians µ′ and µ′′ form the boundary
of one fiber.)
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Referring to Figure 6, in H1(MK#K \ (m′0∪m′′0)) we have [γ′]− [γ] = [δ′]+ [δ′′].
Because δ′ and δ′′ link neither m′0 (or m′′0 ) nor µ′ (or µ′′ ), the loops δ′ and δ′′

are nullhomologous in MK#K \ (m′0 ∪m′′0). This means that the corresponding
Lagrangian tori, Σ′ = S1 × δ′ and Σ′′ = S1 × δ′′ are nullhomologous in X .
Since T ′ − T is homologous to Σ′ + Σ′′ , we see that T and T ′ are homologous
in X .

The loop γ is a separating curve in the fiber of MK#K → S1 . See Figure 7. We
see that γ is homologous to µ′ in the fiber of MK#K \ (m′0 ∪m′′0)→ S1 . Thus
in S1×MK#K \ (m′0 ∪m′′0), the Lagrangian torus T = S1× γ is homologous to
Rµ′ = S1 × µ′ . But Rµ′ is a rim torus to S1 ×m′0 , one of the tori along which
the fiber sum

X = E(1)′#F ′=S1×m′0 S
1 ×MK#K#S1×m′0=F ′′ E(1)′′

is made. In such a fiber sum, the rim tori give essential homology classes – thus
we see that the Lagrangian tori T and T ′ are essential in X .
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We claim that there is no diffeomorphism of X which takes T to T ′ . To see this
we shall use an invariant obtained from Seiberg–Witten theory. To do this we
need the notion of ‘surgery on T ’. As usual, this means the result of removing
a tubular neighborhood N(T ) ∼= T 2 ×D2 and regluing it.

X(T,ψ) = (X \N(T )) ∪ψ (T 2 ×D2)

The key quantity in this operation is the class ω ∈ H1(∂N(T )) which is killed
by the composition of ψ : ∂N(T )→ T 2 × ∂D2 with the inclusion T 2 × ∂D2 →
T 2 × D2 . This class determines X(T,ψ) up to diffeomorphism; so we write
XT (ω) instead of X(T,ψ).
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Note that if there is a diffeomorphism f of X taking T to T ′ , then each
manifold XT (ω) corresponds to a unique XT ′(f∗(ω)). Thus the collection of
all manifolds

{XT (ω)|ω ∈ H2(∂N(T ))}

is a diffeomorphism invariant of (X,T ). Our invariant I(X,T ), defined and
computed below, will be the set of Seiberg–Witten invariants of these manifolds.

6 Product formulas for the Seiberg–Witten invari-
ant

Before formally defining I(X,T ) we need to discuss techniques for calculating
the Seiberg–Witten invariants of the manifolds XT (ω). Fix simple loops α, β ,
δ on ∂N(T ) whose homology classes generate H1(∂N(T )). If ω = pα+ qβ+rδ
write XT (p, q, r) instead of XT (ω). An important formula for calculating the
Seiberg–Witten invariants of surgeries on tori is due to Morgan, Mrowka, and
Szabo [13] (see also [11], [17]). Given a class k ∈ H2(X):∑

i

SWXT (p,q,r)(k(p,q,r) + 2i[T ]) = p
∑
i

SWXT (1,0,0)(k(1,0,0) + 2i[T ])

+ q
∑
i

SWXT (0,1,0)(k(0,1,0) + 2i[T ]) + r
∑
i

SWXT (0,0,1)(k(0,0,1) + 2i[T ]) (6)

In this formula, T denotes the torus which is the core T 2 × 0 ⊂ T 2 × D2 in
each specific manifold X(a, b, c) in the formula, and k(a,b,c) ∈ H2(XT (a, b, c))
is any class which agrees with the restriction of k in H2(X \ T ×D2, ∂) in the
diagram:

H2(XT (a, b, c)) −→ H2(XT (a, b, c), T ×D2)y ∼=
H2(X \ T ×D2, ∂)x ∼=

H2(X) −→ H2(X,T ×D2)

Let π(a, b, c) : H2(XT (a, b, c)) → H2(X \T ×D2, ∂) be the composition of maps
in the above diagram, and π(a, b, c)∗ the induced map of integral group rings.
Since we are interested in invariants of the pair (X,T ), we shall work with

SW(XT (a,b,c),T ) = π(a, b, c)∗(SWXT (a,b,c)) ∈ ZH2(X \ T ×D2, ∂).

Geometry & Topology Monographs, Volume 7 (2004)



326 Ronald Fintushel and Ronald J Stern

The indeterminacy due to the sum in (6) is caused by multiples of [T ]; so
passing to SW removes this indeterminacy, and the Morgan–Mrowka–Szabo
formula becomes

SW(XT (p,q,r),T ) = pSW(XT (1,0,0),T ) + qSW(XT (0,1,0),T ) + rSW(XT (0,0,1),T ). (7)

Proposition 6.1 The collection of Seiberg–Witten invariants

I(X,T ) = {SWXT (a,b,c)| a, b, c ∈ Z}
is an orientation-preserving diffeomorphism invariant of the pair (X,T ).

7 Calculation of I(X, T ): X(0, 1, 0)

We first specify a basis for H1(∂N(T )) as follows: Recall that T = S1 × γ
where γ lies in a fiber of the fibration MK#K \ (m′0 ∪ m′′0) → S1 (Figure 7).
Then N(T ) may be identified with S1 × γ × D2 , and we take the basis α =
[S1 × pt × pt], β = [pt × γL], where γL is a pushoff of γ in the fiber of the
fibration MK#K \ (m′0 ∪m′′0) → S1 (this is called the ‘Lagrangian framing’ in
[7]), and δ = [mT ], where mT = pt× pt× ∂D2 , the meridian to T . It is then
clear from (7) that in order to calculate I(X,T ), one needs to calculate SWY

for Y = XT (1, 0, 0), XT (0, 1, 0), and XT (0, 0, 1); however, from our choice of
basis, we have XT (0, 0, 1) ∼= X . This leaves us with two invariants to calculate
below. For a different approach to these calculations see [7].

The calculation of SWXT (0,1,0) depends on some basic facts about double covers
of 3–manifolds branched over closed braids. Suppose that B is a braid in a
solid torus with 2m strands, ie B ⊂ S1 × D2 ⊂ M3 is a link such that each
disk pt×D2 intersects B in exactly 2m points. There is then a double cover
YB →M3 branched over B for which each meridian to B is covered nontrivially,
and this cover is trivial outside the solid torus.

The pertinent question is: ‘What is the effect on YB of putting half-twists into
the braid B?’ In other words, suppose that ζ is an arc in (pt×D2) ⊂ S1×D2

whose endpoints lie on B , but so that no other point of ζ is on B . Then we
can put half-twists in B by twisting in a small neighborhood of ζ . Figure 8
shows a local picture.

ζ
@
@
@��

��−→

Figure 8
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In the double cover, YB , the solid torus S1 ×D2 lifts to a bundle V over the
circle with fiber the double cover of D2 branched over 2m points, a twice-
punctured surface S of genus m− 1. The path ζ lifts to a simple closed loop
ζ̃ ⊂ S ⊂ YB , and changing B by a half-twist of along ζ as described corresponds
to changing the monodromy of the lifted bundle by a single Dehn twist along
ζ̃ . (This is true essentially because each half-twist along ζ lifts to a full twist
in the double cover.)

Thus if B′ is the braid with the new positive half-twist, then its correspond-
ing double branched cover, YB′ , is obtained from YB by cutting out V and
replacing it with the bundle over S1 with fiber S but whose monodromy is the
monodromy of V composed with a Dehn twist about ζ̃ . This means that YB′
is obtained by (+1)-Dehn surgery on ζ̃ with respect to the 0–framing given by
the pushoff of ζ̃ in the fiber S of V . (For example, see [1].)

Proposition 7.1 The result of 0–surgery on ζ̃ in YB is the double cover of
M3 branched along the link obtained from B by the operation of Figure 9.

ζ −→

Figure 9

Proof If we restrict the deck transformation τ : YB → YB of the branched
cover to an annular neighborhood of ζ̃ in a fiber S of V , then we see an annulus
double covering a disk with two branch points. Identify a neighborhood of ζ̃ in
YB with ζ̃× I× I where I = [−1, 1]. The restriction of τ to this neighborhood
is equivalent to τ(z, s, t) = (z̄,−s, t), and its fixed point set consists of two arcs
{(±1, 0)} × I (identifying ζ̃ with S1 ). If we now change coordinates so that
I × I becomes D2 ⊂ C, then we get τ(z,w) = (z̄, ρw), where ρ is reflection in
the imaginary axis, and the fixed set is {±1} × {the imaginary axis ∩ D2}.

According to our framing convention, 0–surgery on ζ̃ is the one that kills the
homology class of a pushoff of ζ̃ in S , ie the class of ζ̃ × pt in ζ̃ ×D2 . Thus
the result of 0–surgery is Z = YB \ (ζ̃×D2)∪ϕ (S1×D2) where ϕ∗[pt×∂D2] =
[ζ̃ × pt]. Such a map ϕ is given by ϕ(z,w) = (w, z). Define the involution σ
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on S1 ×D2 by σ(z,w) = (ρ(z), w̄). Then we see that the diagram

S1 × ∂D2 σ−−−−→ S1 × ∂D2

ϕ

y yϕ
ζ̃ × ∂D2 −−−−→

τ
ζ̃ × ∂D2

(8)

commutes. Thus, the restriction of τ to YB \ (ζ̃ ×D2) extends to an involution
τ ′ over all of Z via σ .

On the solid torus S1×D2 the fixed set of τ ′ = σ is {±i} ×{the real axis ∩D2}.
Thus the picture in the quotient is exactly that of Figure 9.

We now apply this proposition to the case at hand, where the 3–manifold is
MK , the braid is the trivial braid with components m1 and m2 , and the arc
ζ is the path P of Figure 5. It follows that XT (0, 1, 0) is the double branched
cover of E(1)K with branch set S1×C where C is the loop shown in Figure 10.
Notice that C is an unknotted circle which is unlinked from K .
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Figure 10

The double cover of a 3–ball, branched over an unknot, is S2 × I so it follows
that the double cover of MK branched over C is MK#MK . Thus

XT (0, 1, 0) = E(1)#F

(
S1 × (MK#MK)

)
#FE(1)

This means that XT (0, 1, 0) is split by S1 × S2 with b+2 positive on each side.
It follows that SWXT (0,1,0) = 0.

Next we need to make a similar calculation for XT ′(0, 1, 0). This time the arc
ζ is the path P ′ of Figure 5, and XT ′(0, 1, 0) is the double branched cover of
E(1)K with branch set S1 × C ′ where C ′ is the loop shown in Figure 11.
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An isotopy of Figure 11 gives Figure 12, and the corresponding double branched
cover is shown in Figure 13. (For techniques for determining this double cover,
see [15].) Using Fox calculus, one calculates the torsion of the link m′0 ∪m′′0 in
the double cover (MK)C′ (the 3–manifold shown in Figure 13). This torsion
is 1. According to [11] this means that the Seiberg–Witten invariant of S1 ×
((MK)C′ \ (m′0 ∪m′′0)) is 1. Since the Seiberg–Witten invariant of E(1) \ F is
also equal to 1, the gluing theorem of Taubes [17] tells us that the Seiberg–
Witten invariant of E(1)#F=S1×m′0(S1 × (MK)C′)#S1×m′0=FE(1) is equal to
1. However, we have just shown that this manifold is XT ′(0, 1, 0).

Proposition 7.2 For the nullhomologous Lagrangian tori T , T ′ in X , we
have

SWXT (0,1,0) = 0, SWXT ′ (0,1,0) = 1
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8 Calculation of I(X, T ): X(1, 0, 0)

The key calculation of this section will show that the Seiberg–Witten invariants
of the manifolds XT (1, 0, 0) and XT ′(1, 0, 0) vanish. Our approach here is to
describe the surgered manifolds in terms of a branched covering. (It would be
useful to compare with [7], where a more general approach is utilized.)

Proposition 8.1 Let γ̄ denote either γ or γ′ , and let Z be the result of the
surgery on T = S1 × γ̄ ⊂ X which kills S1 × pt × pt ⊂ S1 × γ̄ × ∂D2 ⊂ S1 ×
(MK#K \ (m′0 ∪m′′0)) . Then Z is the double branched cover of the manifold
W obtained from E(1)K by a surgery on a circle S1×{point on γ̄} (trading a
neighborhood S1×D3 for D2×S2 ). The branch set in W of this cover consists
of a pair of disjoint 2–spheres of self-intersection 0.

Proof As we have seen in the proof of Proposition 7.1, the deck transformation
of X → E(1)K in a neighborhood S1 × γ̄ × D2 of T is given by τ(t, z, w) =
(t, z̄, ρ(w)) where ρ is reflection through the imaginary axis. The manifold Z
is:

Z =
(
X \ (S1 × γ̄ ×D2)

)
∪ϑ (S1 × S1 ×D2)

where ϑ(t, z, w) = (w, z, t). Then the diagram

S1 × S1 × ∂D2 υ−−−−→ S1 × S1 × ∂D2

ϑ

y yϑ
S1 × γ̄ × ∂D2 −−−−→

τ
S1 × γ̄ × ∂D2

(9)

commutes, where υ(t, z, w) = (ρ(t), z̄, w). Thus υ extends the deck transfor-
mation τ over the surgered manifold Z .

The quotient (S1×S1×D2)/τ ∼= S1×(D2×I) ∼= S1×D3 , but (S1×S1×D2)/υ ∼=
S2 × D2 , since the action of υ restricted to S1 × S1 × {pt} is equivalent to
the action of the deck transformation of the double covering T 2 → S2 with
four branch points. Thus the effect of the surgery on the base is to perform
surgery on the circle S1 × {pt} ⊂ S1 ×D3 . Before performing the surgery, the
branch set consists of two tori. Since the fixed point set of υ on S1×S1×D2 is
{±i}×{±1}×D2 , the surgery trades a pair of annuli for four disks. Removing
the annuli leaves us with a pair of complementary annuli in the branch set, and
the addition of the four disks caps them off, giving a pair of 2–spheres.

To see that the components of the branch set of W have self-intersection 0, first
consider the branch torus S1×m1 of X . Write m1 = J1∪J2 , the union of two
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intervals meeting only at their endpoints. We do this so that the intersection of
S1×m1 with (S1×S1×D2)/τ ∼= S1×D3 is S1×J2 where J2∩∂D3 = ∂J2 . Then
the corresponding component of the branch set in W is (S1×J1)∪ (D2×∂J2).
In X we can isotop S1 ×m1 slightly by moving m1 to m̄1 = I1 ∪ I2 in MK ;
so that m̄1 ∩ m1 = ∅, m̄1 ∩ D3 = I2 , and I2 ∩ ∂D3 = ∂I2 . Then in W ,
(S1 × I1) ∪ (D2 × ∂I2) is disjoint from (S1 × J1) ∪ (D2 × ∂J2).

Let Γi denote the components of the branch set in Z . The Γi are also 2–spheres
of self-intersection 0.

In X there is a ‘section class’ C which arises from the sections of the elliptic
fibrations on the copies of E(1). To build a representative for C , start with a
fixed Seifert surface B0 of K#K whch is a fiber of the fibration of S3\K#K →
S1 . The boundary of B0 is capped off by the 2–disk introduced when we do
0–surgery on K#K to form MK#K . The tori S1 × m′0 and S1 × m′′0 which
are identified with fibers of E(1)′ and E(1)′′ each intersect {pt} × B0 in a
single point. Remove disks in {pt} × B0 about each of these points. The
boundaries then bound disks of self-intersection −1, sections of E(1) minus the
neighborhood of a fiber. The union of these surfaces gives a genus–2 surface of
self-intersection −2 representing C .

The loop γ̄ ⊂ X is contained in a Seifert surface for K#K , and we may assume
that it is disjoint from B0 . Thus the surgery torus, S1 × γ̄ is disjoint from C .
Since C · (S1 ×m1) = C · F ′ = 1, after surgery in Z, we still have C · Γ1 = 1;
so Γ1 is an essential 2–sphere in Z (and similarly for Γ2). Thus Z contains an
essential 2–sphere of self-intersection 0, and that means that SWZ = 0 [4].

Theorem 8.2 T and T ′ are essential and homologous Lagrangian tori of
X ; however, there is no orientation-preserving diffeomorphism f of X with
f(T ) = T ′ .

Proof We have SWXT (1,0,0) = 0, SWXT (0,1,0) = 0, and, since XT (0, 0, 1) =
X , SWXT (0,0,1) = (t2F − 1 + t−2

F )2 . Hence I(X,T ) = {r(t2F − 1 + t−2
F )2| r ∈ Z}.

On the other hand, SWXT ′ (1,0,0) = 0, SWXT ′ (0,1,0) = 1, and XT ′(0, 0, 1) = X ;
so I(X,T ′) = {q + r(t2F − 1 + t−2

F )2| q, r ∈ Z}. This concludes the proof since
I(X,T ) is an orientation-preserving diffeomorphism invariant of (X,T ).

Auroux, Donaldson, and Katzarkov have shown in [1] that the surgery manifolds
XT (0, k, 1) and XT ′(0, k, 1) are symplectic for all k ∈ Z. The corresponding
Seiberg–Witten invariants are SWXT (0,k,1) = (t2F−1+t−2

F )2 and SWXT ′ (0,k,1) =
k + (t2F − 1 + t−2

F )2 . Note that the leading coefficient of these polynomials is
±1, as required by Taubes’ theorem.
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