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Abstract We continue to develop an obstruction theory for embedding
2–spheres into 4–manifolds in terms of Whitney towers. The proposed
intersection invariants take values in certain graded abelian groups gener-
ated by labelled trivalent trees, and with relations well known from the
3–dimensional theory of finite type invariants. Surprisingly, the same exact
relations arise in 4 dimensions, for example the Jacobi (or IHX) relation
comes in our context from the freedom of choosing Whitney arcs. We use
the finite type theory to show that our invariants agree with the (leading
term of the tree part of the) Kontsevich integral in the case where the 4–
manifold is obtained from the 4–ball by attaching handles along a link in
the 3–sphere.
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1 Introduction

Two of Andrew Casson’s wonderful contributions to topology were his work on
flexible handles (now called Casson towers) in 4–manifolds, and his invariant
for homology 3–spheres, counting representations into SU(2). In this paper
we will describe an obstruction theory for disjointly embedding collections of
2–spheres (or 2–disks with fixed boundary) into a 4–manifold that provides a
connection between these two aspects of Casson’s work. This connection is
somewhat indirect, otherwise our paper would be called Casson towers and
the Casson invariant. In other words, we shall switch from Casson towers to
Whitney towers, and from the Casson invariant to the Kontsevich integral. It
would be very satisfying to find a more straightforward relationship between
Casson’s two contributions.
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To explain the connection, recall that the Casson invariant is the lowest or-
der (nontrivial) finite type invariant of homology 3–spheres. These finite type
invariants take values in certain graded abelian groups generated by trivalent
graphs. Being invariants, they measure the uniqueness of 3–manifolds or links
in 3–manifolds. We shall explain how similar graphs, better, unitrivalent trees,
arise in existence questions for 4–manifolds or surfaces in 4–manifolds. It is
not totally surprising that raising the dimension by one takes uniqueness to
existence questions, after all an isotopy of, say, a knot in a 3–manifold M3 is
nothing but a certain annulus in the 4–manifold M × I . However, the details
of such a translation from one dimension to the next are not at all obvious.

In the easiest setting one would like to find obstructions for making the images
of maps Ai : (D2, S1) → (X4, ∂X) disjoint, without changing the homotopy
classes (and without trying to embed the Ai ). In fact, Casson’s main Embed-
ding Theorem in [2, Lecture 1] is an example of a special case of this problem:
Casson showed that if X is simply connected, all intersection numbers between
the Ai vanish, and Ai have algebraic dual spheres, then the problem has a pos-
itive solution. He used inverses of the Whitney move, now known as Casson or
finger moves, to introduce many self-intersections, while trivializing the funda-
mental group of the complement of one disk at a time (and hence enabling the
other disks to be mapped disjointly). He then went on to construct Casson tow-
ers (with prescribed boundary circles) by iterating the procedure indefinitely,
using the fact that the complement of a finite height Casson tower can be made
simply connected. These ideas inspired Mike Freedman who proved in [10] that
a neighborhood of a Casson tower actually contains an embedded flat disk.

The presence of algebraic dual spheres in Casson’s theorem comes from the
fact that the proposed application was to the s-cobordism theorem and to the
exactness of the surgery sequence in dimension 4. Indeed, Freedman’s theorem
implies these results in the topological category (for good fundamental groups).

There is a more general context in which disjoint maps of disks or spheres
can be constructed, namely in the presence of a non-repeated Whitney tower
(of sufficiently high order), see Theorem 3 below and [31]. The first order
stage of this Whitney tower is guaranteed by the vanishing of the intersection
numbers whereas the existence of the higher order stages are obstructed by our
new proposed invariants. They take values in certain graded abelian groups
generated by trivalent trees, which are basically the spines of the Whitney
towers. The difference between a Casson tower and a Whitney tower is that
in the latter, fewer disks are attached at each stage: In a Casson tower, every
intersection point p leads to a new disk (with boundary an arc leaving on one
sheet at p and arriving at the other sheet), whereas a Whitney tower only has
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a new disk for certain pairs of intersection points. In particular, it is usually
only possibly to find Casson towers in simply connected 4–manifolds, whereas
Whitney towers are not restricted by the fundamental group. In fact, in our
theory the fundamental group leads to a decoration of the trivalent trees in
question, thus giving a much bigger variety of possible obstructions. In addition,
Freedman’s reimbedding theorem shows that a Casson tower of height 3 already
contains an embedded flat disk. However, there are Whitney towers of arbitrary
order not containing disks, which explains the use of these “weaker” towers in
an obstruction theory.

Our Theorem 3 implies Casson’s result because algebraic dual spheres can be
used to construct non-repeating Whitney towers of arbitrary order. This is
already implicit in [11], so our main contribution is a theory in the absence of
algebraic dual spheres. For example, this applies to concordance questions for
links in 3–space. In this context we prove in Theorem 4 below that our invari-
ants agree rationally with (the leading term of) the tree part of the Kontsevich
integral, which is the universal finite type concordance invariant [17]. This re-
lates our obstruction theory to the finite type theory and, in particular, to the
Casson invariant. It should be mentioned here that Habegger and Masbaum
show in [17] that (the leading term of) the tree part of the Kontsevich integral
carries exactly the same information as Milnor’s µ–invariants which were first
observed to be concordance invariants by Casson in [3]. Reversing the logic, we
have found a 4–dimensional geometric interpretation of this part of the Kontse-
vich integral, in terms of higher order intersections among Whitney disks. See
[8] for an interpretation in terms of gropes in 3–dimensions which is stronger in
the sense that it works for (the leading term of) the Kontsevich integral, not
just of the tree part.

At the time of writing, the setting of Theorem 4 is actually the only case where
we have a proof that our intersection invariant is independent of the choice of
a Whitney tower, but see Conjecture 1. What we do prove in Theorem 2 is
that the vanishing of our intersection invariant for a Whitney tower of order n
enables one to build a Whitney tower of the next order (n + 1). In that sense,
we are producing an obstruction theory since disjointly embedded sheets Ai

allow Whitney towers of arbitrary order.

We close this introduction by pointing out that the Whitney towers used in
this paper are generalizations of the ones in [5] in that disks of higher order are
here allowed to intersect previous stages, as long as these intersection points
are paired up by Whitney disks (up to the desired order). In our language, the
distinction is made in terms of saying that these Whitney towers have an order
whereas the Whitney towers of [5] (where different order Whitney disks don’t
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intersect) have a height. This is the precise analogue of class versus height in the
theory of gropes, see eg [33], ultimately coming from the distinction between
the lower central series and the derived series of a group. The latter explains
why Whitney towers with a height carry more subtle information. In fact, they
are not related to the usual finite type theory and hence it is much more difficult
to define an obstruction theory. At present, such a theory only exists for knot
concordance [5], [6] (using von Neumann signatures to prove nontriviality) and
it would be extremely interesting to develop it more generally, ie in the context
of 2–spheres in 4–manifolds.

2 Statement of results

We continue to develop the obstruction theory for embedding 2–spheres into
4–manifolds started in [30]. To fix notation, let X be a 4–manifold and
A1, . . . , Am be generic immersions of 2–spheres (or 2–disks with fixed bound-
ary) into X . We shall work in the smooth setting, even though the techniques
of [11] allow a generalization of our work to locally flat surfaces in a topological
manifold. The goal is to construct obstructions for changing the Ai , in their
regular homotopy class, to embeddings with disjoint images. This is already a
very interesting problem for m = 1 but we shall not restrict to this case.

The first, well known, invariants are the Wall intersection “numbers” [34]

λ(Ai, Aj) =
∑

p∈Ai∩Aj

ǫp · gp ∈ Zπ, π := π1X.

These count how often Ai and Aj intersect algebraically, including a group
element gp ∈ π and a sign ǫp for each intersection point. Similarly, there
are self-intersection numbers µ(Ai) which are well defined only in a certain
quotient of the group ring, see below. Recall that in higher dimensions (where
Ai are k–spheres, k > 2 and X is 2k–dimensional) the vanishing of these
invariants implies that after a finite sequence of Whitney moves [35] the Ai can
be represented by disjoint embeddings. In dimension 4, there are well known
problems to this procedure (since 2+k = 2k for k = 2), the most important one
being that, generically, the Whitney disks intersect the 2–spheres Ai . The first
precise statement concerning the failure of the Whitney trick in dimension 4
was given by Kervaire and Milnor in [18].

In [30] we assumed that these primary intersection numbers vanish which means
geometrically that all intersections and self-intersections can be paired by Whit-
ney disks: For each pair of intersection points between Ai and Aj (if i = j these
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are self-intersections), choose one Whitney arc on Ai and one on Aj connecting
these two points. Since the fundamental group is controlled in Wall’s invari-
ant, the two Whitney arcs together form a null homotopic circle in the ambient
4–manifold, which hence bounds a disk, the Whitney disk. Using a choice for
such disks, one for each pair of intersection points, we constructed a secondary
invariant

τ(Ai, Aj , Ak) ∈ Zπ × Zπ/ . . .

which measures how the Whitney disks intersect the spheres Ai . Here the
indices i, j, k may be repeated, obtaining several slightly distinct geometrical
cases just like for Wall’s invariants. We recall that by standard procedures the
Whitney disks can always be assumed to be disjointly embedded (and framed),
and that the only thing which hinders a successful Whitney move is the fact
that they are in general not disjoint from the original spheres Ai .

We will first explain a way to unify the above invariants, then suggest a vast gen-
eralization and finally discuss a relation to Milnor invariants and the Kontsevich
integral (for classical links). For this purpose, assume that the Ai intersect and
self-intersect generically, and call the collection A1, . . . , Am a Whitney tower
of order 0. Similarly, if Wall’s invariants vanish, and one has chosen generic
Whitney disks WI which pair all intersections and self-intersections of the Ai

then one obtains a Whitney tower of order 1. If the τ –invariants vanish, then
one can chose Whitney disks for all the intersections of the Ai with the WI

to obtain a Whitney tower of order 2. This procedure can be continued and
we give a precise definition of a Whitney tower of order n in Section 3. This
definition includes orientations of all the surfaces Ai,WI , . . . in the tower, as
well as base points on these surfaces together with whiskers connecting these
base points to the base point of X .

p

Figure 1: Part of a Whitney tower (left), and part of the unitrivalent tree tp associated
to an unpaired intersection point p in a Whitney tower (right).
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2.1 The intersection tree τn(W)

Our first observation is that one can canonically associate to each unpaired
intersection point p of a Whitney tower W a decorated unitrivalent tree tp of
order n. The order is the number of trivalent vertices and the decoration is as
follows: the univalent vertices of tp are labelled by the Ai or more abstractly, by
i ∈ {1, . . . ,m}, the edges are labelled by elements from the fundamental group
π , and the edges and trivalent vertices are oriented. The tree tp sits naturally
as a subset of W (Figure 1, details in Section 3) with each trivalent vertex
lying in a Whitney disk and each univalent vertex lying in some Ai . Each edge
of tp is a sheet-changing path between vertices in adjacent surfaces, with the
group element labelling the edge determined by the loop formed from the path
together with the whiskers on the adjacent surfaces. For example, in a Whitney
tower of order 0, any intersection point p between Ai and Aj has order 0 and
gives a tree tp consisting of a single edge whose univalent vertices (labelled by
i and j ) correspond to basepoints in Ai and Aj . This edge is labelled by the
group element gp determined by a loop formed from the whiskers on Ai and
Aj together with a path that changes sheets at p where the orientation of the
edge corresponds to the direction of the path. For intersection points of order 1
in an order–1 Whitney tower, one gets decorated Y–trees with one trivalent
vertex and three univalent vertices labelled by i, j, k (which can repeat).

The central point of this paper is that in an order–n Whitney tower W the trees
that correspond to the (unpaired) order–n intersection points of W represent
a “higher order” obstruction to homotoping (rel boundary) the Ai to disjoint
embeddings. Just like the intersection number λ(Ai, Aj) is a sum over all
intersection points between Ai and Aj , we define the intersection tree τn(W)
of an order–n Whitney tower W to be

τn(W) :=
∑

p

ǫp · tp ∈ Tn(π,m).

The sum is taken over all order–n intersection points p in W and we consider
this sum as taking values in the free abelian group generated by (isomorphism
classes of) decorated trees as above, modulo several relations that are motivated
geometrically (explained briefly below and in detail in Section 3, particularly
Section 3.8). We denote this quotient by

T (π,m) =

∞⊕

n=0

Tn(π,m),

where the order n is the number of trivalent vertices and the univalent labels
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come from {1, . . . ,m}, possibly repeated. If this index set is undetermined (or
unimportant) we shall just write Tn(π).

The order–0 trees are just single edges and it turns out that

T0(π, 1) ∼= Zπ/〈ḡ − g〉, ḡ := w1(g) · g−1,

where w1 : π → Z/2 is the first Stiefel–Whitney class of the ambient 4–manifold.
The quotient comes from the fact that an edge with two identical labels has an
additional symmetry which changes the orientation of the edge. Moreover, our
invariant τ0 gives exactly Wall’s self-intersection invariant µ. To get Wall’s in-
tersection number λ(A1, A2) we just need to evaluate τ0 in order 0 with exactly
two labels 1, 2. The invariants τ from [30] are exactly τ1(W) in the various
versions of T1(π), depending on the allowed labels.

A short discussion of the relations in T (π) is in order. They reflect the various
choices made in the construction of the Whitney tower, as will be discussed in
Section 3 (see also Figure 7 in Section 3). As a consequence, working modulo
these relations makes our intersection tree τn independent of the choices below.

• Changing orientations on Whitney disks gives AS, antisymmetry rela-
tions; they introduce a sign when the cyclic ordering of a trivalent vertex
is switched.

• Changing the orientation of an edge changes the label g to ḡ , the OR
orientation relation.

• Changing the whiskers gives HOL, holonomy relations; they multiply the
labels of 3 edges coming into a trivalent vertex by a group element.

• Changing the choice of Whitney arcs, ie of the boundaries of Whitney
disks, gives the IHX relations.

The last type of relations, well known in dimension 3, is maybe the most sur-
prising aspect of our 4–dimensional theory. We feel that our explanation in
terms of the indeterminacy of Whitney arcs is very satisfying [9]. It should be
pointed out that graded abelian groups like T (π) arose independently in the
3–dimensional work of Garoufalidis, Kricker and Levine [14], [15]. They study
trivalent graphs (instead of unitrivalent trees) and π is usually a 3–manifold
group. In some form, the Kontsevich integral gives invariants of links (or 3–
manifolds) with values in such graded abelian groups. So these are invariants
for the uniqueness of 3–dimensional objects, whereas our invariants measure
existence of 4–dimensional things. In that sense, it might not come as a sur-
prise that there is an overlap between these theories. Note that the restriction
to trees is a well known feature if one wants concordance invariants in the
3–dimensional context, see [8] or [17].
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To make it possible that the intersection tree τn(W) only depends on the Ai , it
is in fact necessary to introduce two more types of relations which correspond
to changing the choices of Whitney disks (for fixed choices of boundaries:

• The INT interior or intersection relations come from the choice of the
interiors of Whitney disks (which can be changed by summing into any
2–spheres). More generally, they measure indeterminacies coming from
certain lower order intersection trees for Whitney towers on subsets of
the Ai together with other 2–spheres. A special case of these relations
will be examined in detail in [31].

• The FR framing relations are generated by certain 2–torsion elements
which correspond to manipulations of the interiors of Whitney disks that
affect their normal framings. This will be described in [32] but see Fig-
ure 2.

= =
1 1

1 12 2

2

3 32 2

2

3 31 1

3

2 21 1

0++

Figure 2: FR relations in order one and three (in a simply-connected 4–manifold).

The INT relations are more subtle in that they actually depend on the ambient
4–manifold X , rather than just on its fundamental group. Both, INT and FR
relations will not play a role in this paper, however we will provide evidence
supporting the following conjecture by proving a closely related special case.

Conjecture 1 The intersection tree τn(W) ∈ Tn(π,m)/INT,FR is indepen-
dent of the choice of the Whitney tower W . In fact, it only depends on the
regular homotopy classes of the original maps Ai , and should be written as
τn(A1, . . . , Am).

This result is well known in the Wall case, ie for n = 0, and it was proven in
general for n = 1 in [30] (and previously in the simply connected case for n = 1
in [26] and [11]).

The following result reflects the obstruction theoretic nature of the intersection
tree τ .
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Theorem 2 Let Ai be properly immersed simply-connected surfaces in a 4–
manifold, or connected surfaces in a simply-connected 4–manifold. If W is an
order–n Whitney tower on the Ai with vanishing intersection tree τn(W) ∈
Tn(π,m), then there is an order–(n + 1) Whitney tower on maps A′

i which are
regularly homotopic (rel boundary) to Ai .

Theorem 2 will be proved in Section 4.

2.2 Immersions with disjoint images

A special case of our invariant only counts those trees tp whose univalent labels
are non-repeating, which means that the number m of spheres Ai is two more
than the order n of the intersection point p, m = n + 2. Geometrically, one
wants to totally ignore self-intersections of the spheres Ai and in fact none
of the (higher order analogues of) self-intersections in the Whitney tower are
paired up. This leads to the notion of a non-repeated Whitney tower W which
has also a non-repeated intersection tree λ(W) that generalizes the λ–invariant
of Wall’s intersection form. We shall explain these notions in a different paper
[31] where we also prove the following beautiful application of the theory.

Theorem 3 If the 2–spheres A1, . . . , An+2 admit a non-repeated Whitney
tower W of order n, such that λ(W) vanishes in Tn(π, n+2), then the homotopy
classes (rel boundary) of the Ai can be represented by immersions with disjoint
images.

Again, this result was well known for n = 0 (see eg [20]), and was proven for
n = 1 in [30] (and for trivial fundamental group in [36]). In the special case
discussed in the next section, this result says that a link L in S3 has vanishing
non-repeating Milnor invariants if and only if it bounds disjoint immersions of
disks in D4 . In fact, this singular concordance can then be improved to a link
homotopy from L to the unlink ([13], [12]). This is Milnor’s original theorem
[24].

2.3 Relation to Milnor invariants and the Kontsevich integral

For a link L ⊂ S3 , there are unique homotopy classes (rel boundary) Ai : D2 →
D4 of immersions extending L. Therefore, the previous discussion should ap-
ply to give link invariants via Whitney towers. The reduced Kontsevich integral
Zt(L) is the tree part of the Kontsevich integral of L and in [17] Habegger
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and Masbaum have shown that the first non-vanishing term of Zt(L) − 1 car-
ries exactly the same information as the first non-vanishing Milnor invariants
µ(L). These are the Milnor invariants with repeating indices, also denoted
µ̄–invariants [25]. We shall not make this distinction and we consider only the
“first non-vanishing” invariants. In the general case one needs to consider string
links [17].

Denote by Kn(L) the order–n term of Zt(L) − 1. Now observe that Kn(L)
takes values exactly in Tn(m) ⊗ Q, where m is the number of components of
L and the order n is the number of trivalent vertices. Here the relations in
T (m) simplify dramatically because π1(D

4) = 0 = π2(D
4) and in fact they

reduce to exactly the AS and IHX relations used in the usual definition of the
Kontsevich integral. We note that the most commonly used degree in papers on
the Kontsevich integral is one half the total number of vertices. For unitrivalent
trees, this degree is one more than the number of trivalent vertices, ie one more
than the order that we are using here.

For an oriented link L ⊂ S3 , consider the following four statements.

(i) L bounds a Whitney tower of order n in D4 .

(ii) L bounds disjointly embedded framed gropes of class (n + 1) in D4 .

(iii) L has vanishing µ–invariants of length ≤ (n + 1).

(iv) All terms in Zt(L) − 1 having order ≤ (n − 1) vanish.

Then (i) is equivalent to (ii) by [28], (iii) is equivalent to (iv) by [17], and (ii)
implies (iii) by [23].

The following theorem gives the relation between the Kontsevich integral and
our intersection tree τ in the context of the above results.

Theorem 4 If L bounds a Whitney tower W of order n in D4 , then

Kn(L) = τn(W) ∈ Tn(m) ⊗ Q

which shows that rationally, τn(L) := τn(W) only depends on (the concordance
class of) L and can be used to calculate the first non-vanishing terms of the
reduced Kontsevich integral as well as the Milnor invariants.

Remark 5 In [32] we shall explain a direct geometric relation between our
intersection trees and Milnor’s invariants, completely avoiding the Kontsevich
integral.
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Remark 6 In the nonrepeating case, the groups Tn(n + 2) are torsionfree,
and hence tensoring with Q does not lose any information. This implies our
above Conjecture 1 for this very special case (since the FR and INT relations
are trivial). By results in [20], Theorem 4 also implies the conjecture for the
2–spheres in the simply connected 4–manifold formed by attaching 0–framed
2–handles to the 4–ball along L in the nonrepeating case (or rationally in the
repeating case). It is not unreasonable to believe that the groups T2n(m) are
also torsionfree (with repeated labels allowed). Note that T1(1) ∼= Z/2 which
corresponds exactly to the Arf invariant of a knot (see [26], [29], [30]) and hence
shows that statement (iv) does not imply (i) in the above theorem. In general,
the FR relations are non-trivial for odd orders as will be explained in [32]; see
Figure 2 for an example.

3 Whitney towers and intersection trees

The goal of this section is to define the nth-order intersection tree τn(W) of
an order–n Whitney tower W in an oriented 4–manifold X . After giving the
precise definition of a Whitney tower W , an indexing of the surfaces in W is
given in terms of bracketings and rooted trees which are labelled, oriented and
then decorated by elements of the fundamental group π := π1X . The unrooted
decorated tree tp associated to an intersection point p in W then corresponds
to a pairing of the rooted trees associated to the intersecting surfaces. Finally,
τn(W) is defined as a signed sum of the tp in the group Tn(π,m), see Section 3.8.

3.1 Whitney towers

We assume our 4–manifolds are oriented and equipped with a basepoint. The
reader is referred to [11] for details on immersed surfaces in 4–manifolds, includ-
ing Whitney moves and (Casson) finger moves. For more on Whitney towers
see [9], [28], [29].

Definition 7

• A surface of order 0 in a 4–manifold X is a properly immersed surface
(boundary embedded in the boundary of X and interior immersed in the
interior of X ). A Whitney tower of order 0 in X is a collection of order–0
surfaces.

• The order of a (transverse) intersection point between a surface of order
n1 and a surface of order n2 is n1 + n2 .
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• The order of a Whitney disk is n+1 if it pairs intersection points of order
n.

• For n ≥ 0, a Whitney tower W of order n+1 is a Whitney tower of order
n together with Whitney disks pairing all order–n intersection points of
W . These top order disks are allowed to intersect each other as well as
lower order surfaces.

The Whitney disks in a Whitney tower are required to be framed ([11]) and have
disjointly embedded boundaries. Intersections in surface interiors are assumed
to be transverse. A Whitney tower is oriented if all its surfaces (order–0 surfaces
and Whitney disks) are oriented. A based Whitney tower includes a chosen
basepoint on each surface (including Whitney disks) together with a whisker
(arc) for each surface connecting the chosen basepoints to the basepoint of the
ambient 4–manifold.

Some further terminology: If W is an order–n Whitney tower containing Ai as
its order–0 surfaces then the Ai are said to admit an order–n Whitney tower
and we say that W is a Whitney tower on the Ai .

3.2 Rooted trees and brackets

Non-associative ordered bracketings of elements from some index set correspond
to rooted labelled vertex-oriented unitrivalent trees as follows. Here rooted means
“having a preferred univalent vertex” (the root), labelled means that each non-
root univalent vertex is labelled by an element from the index set and vertex-
oriented means that each trivalent vertex is equipped with a cyclic ordering of
its incident edges. The order of a tree is the number of trivalent vertices.

A bracketing (i) of a singleton element i from the index set corresponds to the
rooted order–0 tree t(i) consisting of a single edge with one vertex labelled by
i and the other vertex designated as the root. A bracketing (I, J) of brackets I
and J corresponds to the rooted product t(I, J) := t(I) ∗ t(J) of the trees t(I)
and t(J) which identifies together the roots of t(I) and t(J) to a single vertex
and “sprouts” a new rooted edge at this vertex (Figure 3) with the cyclic order
at the new trivalent vertex given by taking the edges coming from I , J and
the root in that order.

Thus, the non-root univalent vertices of the tree t(I) associated to a bracket
I are labelled by elements from the index set and the trivalent vertices corre-
spond to sub-bracketings of I , with the trivalent vertex adjacent to the root
corresponding to I .
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i
i1 i2 j2j1 j3

i

j

j

( i1 , i2 )

i1 i2

( i1 , i2 )

( j2 , j3 )

( ( i1 , i2 ),( j1 ,( j2 , j3 )))

( j1 ,( j2 , j3 ))

j2j1 j3
( j2 , j3 )

( j1 ,( j2 , j3 ))( i , j )

Figure 3: Rooted trees t(i) and t(j) (upper left) and their rooted product t(i, j) =
t(i)∗ t(j) (lower left); t(i1, i2) and t(j1, (j2, j3)) (upper right) and their rooted product
t((i1, i2), (j1, (j2, j3))) = t(i1, i2) ∗ t(j1, (j2, j3)) (lower right). In this figure all trivalent
orientations are clockwise in the plane.

Remark 8 The rooted product ∗ can be “realized” geometrically by a finger-
move: Pushing a Whitney disk WI through another Whitney disk WJ creates
W(I,J) with t(W(I,J)) = t(WI) ∗ t(WJ).

This remark uses the upcoming assignment of a rooted tree t(W ) to a Whitney
disk W inside a Whitney tower W . In the easiest version, one starts with a
root for W and then introduces one branching (trivalent vertex) while reading
off which two sheets of W are paired by W . Then one continues with the same
procedure for the two sheets to inductively obtain t(W ). In the next section we
shall make this procedure precise, and in fact explain directly how orientations
on the Whitney disks lead to vertex-orientations of the corresponding trees.

3.3 Rooted trees for oriented Whitney towers

Let W be an oriented Whitney tower on order–0 surfaces Ai for i = 1, 2, . . . ,m.
The orientations on the surfaces in W set up an indexing of the surfaces in W by
bracketings I from {1, 2, . . . ,m} and their corresponding rooted vertex oriented
unitrivalent m–labelled trees t(I) (3.2) via the following conventions:

A bracketing (i) of a singleton element i from the index set and the correspond-
ing rooted order–0 tree t(Ai) := t(i) are associated to each order–0 surface Ai .
The bracket (I, J) and the corresponding tree t(W(I,J)) := t(I, J) are asso-
ciated to a Whitney disk W(I,J) , pairing intersections between WI and WJ ,

Geometry & Topology Monographs, Volume 7 (2004)



114 Rob Schneiderman and Peter Teichner

with the ordering of the components I and J in the associated bracket (I, J)
chosen so that the orientation of W(I,J) is the same as that given by orienting
its boundary ∂W(I,J) from the negative intersection point to the positive inter-
section point first along WI then back along WJ to the negative intersection
point, together with a second inward pointing tangent vector.

We use brackets as subscripts to index surfaces in W , writing Ai for an order–0
surface (dropping the brackets around the singleton i) and W(i,j) for a first-
order Whitney disk that pairs intersections between Ai and Aj , etc.. When
writing W(I,J) for a Whitney disk pairing intersections between WI and WJ ,
the understanding is that if a bracket I is just a singleton (i) then the surface
WI = W(i) is just the order–0 surface Ai . In general, the order of WI is equal
to the order of (ie the number of trivalent vertices of) t(WI).

It will be helpful to consider each tree t(WI) as a subset of W : Assuming that
W is based (Definition 7), map the vertices (other than the root) of t(WI) to
the basepoints of the surfaces whose indices are contained as sub-brackets of I
and map the edges (other than the edge adjacent to the root) of t(WI) to sheet-
changing paths between basepoints, as illustrated in Figure 4 (disregarding, for
the moment, the dotted loop which will be explained in 3.5). Then embed the
root and its edge anywhere in the negative corner of WI (see next paragraph).

It can be arranged that this mapping of t(WI) into W has the property that
the trivalent orientations of t(WI) are induced by the orientations of the corre-
sponding Whitney disks: Note that the pair of edges which pass from a trivalent
vertex down into the lower order surfaces paired by a Whitney disk determine
a “corner” of the Whitney disk which does not contain the other edge of the
trivalent vertex. If this corner contains the positive intersection point paired by
the Whitney disk, then the vertex orientation and the Whitney disk orientation
agree. Our figures are drawn to satisfy this convention.

3.4 Orientation choices on Whitney disks

Via our bracket-orientation convention, changing the orientation on a Whitney
disk W(I,J) changes its tree from t(W(I,J)) = t(I, J) to t(W(J,I)) = t(J, I), ie
changes the cyclic orientation of the associated trivalent vertex. In addition,
changing the orientation of a single lower order Whitney disk WK correspond-
ing to a trivalent vertex of t(W(I,J)) (so K is a sub-bracket of (I, J), with
K 6= (I, J)) changes the cyclic orientations at exactly two trivalent vertices
of t(W(I,J)): the one corresponding to WK and the adjacent one which corre-
sponds to a Whitney disk pairing intersections between WK and some other
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surface. This is because changing the orientation of WK reverses the signs of
the intersection points between WK and anything else.

W((I1,I2 ),I3 )

W(I1,I2 )

WI2

WI3

WI1

I3

I2I1

+

+

-

-

g
g

e
e

Figure 4: A Whitney disk W((I1,I2),I3) and its associated tree t(W((I1,I2),I3)) shown
(left) as a subset of the Whitney tower and (right) as an abstract rooted tree. The
boundaries of the Whitney disks are oriented according to our bracket-orientation con-
ventions using the indicated signs of the intersection points. The dashed path indicates
a sheet-changing loop (based at the basepoint of the ambient 4–manifold X ) which
determines the element ge ∈ π1X decorating the corresponding oriented edge as de-
scribed in 3.5.

3.5 Decorated trees for Whitney towers

Let t(WI) be the (oriented labelled rooted) tree associated to a Whitney disk
WI in an oriented based Whitney tower W in a 4–manifold X . Thinking of
t(WI) as a subset of W as described above, any edge e of t(WI), other than the
root-edge, corresponds to a sheet-changing path connecting the basepoints of
adjacent surfaces in W . For a chosen orientation of e, this path together with
the whiskers on the adjacent surfaces form an oriented loop which determines
an element ge of π := π1X (Figure 4). Fixing (arbitrarily) orientations for all
the (non-root) edges in t(WI) and labelling each oriented edge with an element
of π in this way yields the decorated rooted tree associated to WI (which will
still be denoted by t(WI)). Note that switching the orientation of e changes
ge to g−1

e which explains the OR orientation reversal relation mentioned in 2.1
and shown in Figure 7. (Since we are working in an orientable 4–manifold,
ω1(ge) is trivial.) Also, changing the choice of whisker on a Whitney disk has
the effect of left multiplication on the group elements associated to the three
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edges adjacent to and oriented away from the trivalent vertex corresponding to
the Whitney disk accounting for the HOL relation.

When decorations are understood, we will also denote a decorated tree by t(I)
where the underlying tree corresponds to the bracket I .

3.6 Decorated trees for intersection points

If p is a transverse intersection point between WI and WJ in W then the
decorated tree tp associated to p is defined as follows. Identify the roots of the
decorated trees t(WI) and t(WJ) to a single (non-vertex) point. The two edges
that were adjacent to the roots of t(WI) and t(WJ) now form a single edge ep .
Chose an orientation of ep and decorate ep by the element of π determined by
the whiskers on WI and WJ together with a path connecting the basepoints of
WI and WJ that changes sheets only at p with the orientation induced by ep .

WI2

WI3

WI1

W
I3

I2 I1

J1 J2
p

gp gp

J2J1 )( ,

Figure 5: The punctured tree t◦p associated to an intersection point p ∈ WI ∩ WJ (for
I = ((I1, I2), I3) and J = (J1, J2)) shown as a subset of the Whitney tower and as an
abstract labelled (punctured) tree. Decorations other than gp are suppressed and the
sheet-changing loop that determines gp is indicated by the dashed path.

Thus, the decorated tree tp is unrooted and every edge of tp is oriented and
decorated with an element of π . Note that the order of p is equal to the order
of tp (the number of trivalent vertices).

The mappings of t(WI) and t(WJ) into W give rise to a mapping of tp into W :
Just map the root vertices of WI and WJ to p and the adjacent edges become
a sheet-changing path between the basepoints of WI and WJ (Figure 5). This
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mapping is an embedding of tp into W if all the Whitney disks “beneath” WI

and WJ (corresponding to sub-brackets of I and J ) are distinct.

We will sometimes keep track of the edge of tp that corresponds to p by marking
that edge with a small linking circle as in Figure 5; such a punctured tree will
be denoted by t◦p .

It will be convenient to formalize the above description of the (unrooted) dec-
orated tree tp as a pairing (over the group π) of rooted decorated trees: Given
a pair t(I) and t(J) of rooted decorated trees and an element g ∈ π , define the
inner product t(I)·g t(J) to be the unrooted decorated tree gotten by identifying
together the root vertices of t(I) and t(J) to a single (non-vertex) point in an
edge labelled by g as illustrated in Figure 6. Thus, in this notation we have
tp := t(WI) ·gp t(WJ) for p ∈ WI ∩ WJ as just described above.

i1 i2

( i1 , i2 )

j1 j2

( j1 , j2 )
i1

j1
p

i2

j2

g

g g

g

gh

h

hh

1

11

12

2

2

2

Figure 6: A pair of decorated rooted trees t(I) and t(J) corresponding to order–1
Whitney disks WI and WJ with I = (i1, i2) and J = (j1, j2) (left), and the inner
product tp = t(WI) ·gp

t(WJ ) = t(I) ·gp
t(J) associated to an order–2 intersection point

p ∈ WI ∩ WJ (right).

3.7 The antisymmetry AS relation

If a Whitney tower W is oriented then there is one more piece of information
that we need to keep track of: the sign ǫp of an unpaired intersection point

p ∈ WI ∩ WJ ⊂ W.

ǫp is computed, in the usual way, by comparing the orientation determined by
WI and WJ at p with the orientation of the ambient 4–manifold X at p.

Changing the orientation on the Whitney disk WI changes the signed tree ǫp ·tp
by the AS antisymmetry relation mentioned in 2.1: The cyclic orientation of
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the vertex corresponding to WI in tp is switched and so is the sign ǫp of the
intersection with WJ . Moreover, changing the orientation of a single Whitney
disk, other than WI or WJ , preserves the sign ǫp and changes the cyclic ori-
entations at two trivalent vertices of tp , as pointed out above in Section 3.4.
Consequently, working modulo the AS relation makes the signed tree ǫp · tp
independent of the choices of orientations for the Whitney disks in W .

The dependence on orientations for the original sheets Ai remains: changing
the orientation of one Ai introduces an additional sign into ǫp · tp if tp has an
odd number of i–labelled vertices.

3.8 The intersection tree τn(W)

We would next like to add up the unpaired intersection points of a given Whit-
ney tower in some algebraic structure. For that purpose, let Tn(π,m) denote
the abelian group generated by (isomorphism classes of) decorated trees of or-
der n modulo the relations shown in Figure 7. That is, each generator is an
(unrooted) unitrivalent tree having

• n cyclically oriented trivalent vertices,

• n + 2 univalent vertices labelled by elements of {1, . . . ,m}, and

• 2n + 1 oriented edges decorated by elements of π .

Definition 9 Let W be an order–n Whitney tower on properly immersed
simply-connected oriented surfaces A1, . . . , Am in a 4–manifold X . (In fact,
the Ai only need to be π1–null, see [11].) Define the nth-order intersection tree
of W by

τn(W) :=
∑

p

ǫp · tp ∈ Tn(π,m)

where the sum is over all order–n intersection points p in W .

As explained above, the AS relations make sure that τn(W) actually does not
depend on the choice of orientations for the Whitney disks. Similarly, the
HOL and OR relations make sure that τn(W) does not depend on the choice
of whiskers, or edge orientations. In other words, τn(W) is defined by first
choosing whiskers and orientations (on edges and Whitney disks) and then
proving independence of these choices.
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Figure 7: The AS, OR, HOL and IHX relations in Tn(π, m) for a , b , c , d, 1 and g in
π with g = g−1 . All trivalent orientations are induced from a fixed orientation of the
plane.

Remark 10 Using the HOL relation or, more concretely, by choosing the
whiskers on the Whitney disks appropriately, one can normalize the trees tp
so that all interior edges and one univalent edge are decorated with the trivial
group element 1 ∈ π . Thus, one can interpret τn(W) as living in a quotient of
the integral group ring of the (n + 1)–fold product of π .

By slightly refining our notation, signs can be associated formally to all tree
edges and the edge decorations can be extended linearly to elements of the
group ring Z[π] (compare [14], [15]). Similarly, one can extend the labels on
the univalent vertices to the free abelian group on {1, . . . ,m}.

4 Proof of Theorem 2

Our proof of Theorem 2 will be constructive in the sense that we describe how to
build the next order Whitney tower by geometrically realizing all the relations
in Tn(π,m). However, it should be mentioned that since the groups Tn(π,m)
do not in general have a canonical basis we are sidestepping the “word prob-
lem” in Tn(π,m). The main construction (Lemma 15) of the proof shows how
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to exchange algebraic cancellation of pairs of intersection points for geometric
cancellation (by Whitney disks) in the case that the intersection points are
simple (have certain standard right- or left-normed trees, 4.5). This algebraic
cancellation occurs in the lift T̂ of T which forgets the IHX relation. The gen-
eral case is then reduced to this case using geometric IHX constructions from [9]
and [28] to show that an order–n Whitney tower W with τn(W) = 0 ∈ Tn(π,m)
can be modified so that all order–n intersections come in simple algebraically-
cancelling pairs.

To simplify the exposition and highlight the combinatorial structure of Whitney
towers, we will emphasize the simply-connected case, often dropping the group
π from notation. Refining the constructions to cover the general case for the
most part only requires checking that whiskers can be (re)-chosen appropriately.
At a first reading it doesn’t hurt to ignore group elements entirely and only
the simply-connected version of Theorem 2 will be used later in the proof of
Theorem 4.

We begin with some notation and lemmas. All Whitney towers are assumed
oriented, labelled and based.

4.1 Geometric intersection trees for Whitney towers

For an (oriented, labelled, based) Whitney tower W define tn(W), the (nth-
order, oriented) geometric intersection tree of W , to be the disjoint union of
signed (decorated) trees

tn(W) := ∐pǫp · tp

over all unpaired order–n intersection points p ∈ W . (An unsigned version
of tn(W) was defined for unoriented Whitney towers in [28].) The next two
pairs of definitions and lemmas will illustrate how tn(W) captures the essential
geometric structure of W .

4.2 Split subtowers

The Whitney disks in an arbitrary Whitney tower may have multiple self-
intersections and intersections with other surfaces. However, it is not difficult
to modify an arbitrary Whitney tower so that each Whitney disk is embed-
ded and contains either a single Whitney arc or unpaired intersection point
(Lemma 13 below). This is best expressed using the notion of split subtow-
ers and splitting a Whitney tower into split subtowers will serve to simplify
geometric constructions and combinatorial arguments.
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The purpose of constructing a Whitney tower is to provide information on
the homotopy classes (rel boundary) of its order–0 surfaces. However, when
describing and manipulating subsets of a Whitney tower it is natural to consider
subtowers on sheets of surfaces which are not properly immersed:

Definition 11 A subtower is a Whitney tower except that the boundaries of
the immersed order–0 surfaces in a subtower are allowed to lie in the interior of
the 4–manifold (instead of being required to lie in the boundary). The bound-
aries of the order–0 surfaces in a subtower are still required to be embedded.
The notions of order for intersection points and Whitney disks are the same as
in Definition 7.

In this paper we will only be concerned with subtowers whose order–0 surfaces
are sheets in the order–0 surfaces of an actual Whitney tower. In this case, the
surfaces of the subtower inherit the same orientations and indexing by brackets
as the Whitney tower. Thus, the association of decorated trees to surfaces and
intersection points is also the same.

Definition 12 A subtower Wp is split if it satisfies all of the following:

(i) Wp contains a single unpaired intersection point p,

(ii) the order–0 surfaces of Wp are all embedded 2–disks,

(iii) the Whitney disks of Wp are all embedded,

(iv) the interior of any surface in Wp either contains p or contains a single
Whitney arc of a Whitney disk in Wp ,

(v) Wp is connected (as a 2–complex in the 4–manifold).

Moreover, a Whitney tower W is called split if all the unpaired intersection
points of W are contained in disjoint split subtowers on sheets of the order–0
surfaces of W .

Note that a normal thickening of a split subtower Wp in the ambient 4–manifold
is just the 4–disk D4 which is a regular neighborhood of the embedded tree tp
associated to the unpaired intersection point p.

4.3 Split Whitney towers

The splitting of a Whitney tower into split subtowers described in the following
lemma is analogous to Krushkal’s splitting of a grope into genus one gropes
[22].
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Figure 8: Part of a Whitney tower before (top) and after (bottom) applying the splitting
procedure described in the proof of Lemma 13.

Lemma 13 Let W be a Whitney tower on order–0 surfaces Ai . Then there
exists a split Whitney tower Wsplit contained in any regular neighborhood of
W such that:

(i) The order–0 surfaces A′
i of Wsplit only differ from the Ai by finger moves.

(ii) The geometric intersection trees t(W) and t(Wsplit) are isomorphic.

The isomorphism in item (ii) includes decorations and signs.

Proof Starting with the highest-order Whitney disks of W , apply finger moves
as indicated in Figure 8. Working down through the lower-order Whitney disks
yields the desired Wsplit . Choosing whiskers and orientations appropriately for
the new Whitney disks preserves the decorations on the trees associated to the
unpaired intersection points.
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An advantage of splitting a Whitney tower is that the geometric intersection
tree sits as an embedded subset (3.6) and all the singularities of the split Whitney
tower are contained in disjointly embedded 4–balls, each of which is a regular
neighborhood of an intersection point tree. In this sense the decomposition of
a Whitney tower into split subtowers corresponds to the idea that the trees
associated to the unpaired intersection points capture the essential structure of
a Whitney tower. The next lemma can be interpreted as justifying that this
essential structure is indeed captured by the un-punctured trees rather than the
punctured trees in the sense that an unpaired intersection point (corresponding
to a punctured edge) can be “moved” to any other edge of its tree.

J2 J2

J1 J1

I I

Figure 9: A local picture of the tree associated to the split subtower W before (left) and
W ′ after (right) the Whitney move in the proof of Lemma 14 illustrated in Figure 10
and Figure 11.

Lemma 14 Let W ⊂ X be a split subtower on order–0 sheets si with un-
paired intersection point p = WI ∩ WJ ⊂ W . Denote by ν(W) a normal
thickening of W in X so that ∂si ⊂ ∂ν(W) ⊂ ν(W) ∼= D4 . If I ′ and J ′

are any brackets such that the decorated trees t(I ′) · t(J ′) = tp = t(I) · t(J),
then after a homotopy (rel ∂ ) of the si in ν(W) the si admit a split subtower
W ′ ⊂ ν(W) with single unpaired intersection point p′ = WI′ ∩ WJ ′ ⊂ W ′ such
that ǫp′ · tp′ = ǫp · tp .

Proof (of Lemma 14) It is enough to show that the puncture in t◦p can be
“moved” to either adjacent edge, since by iterating it can be moved to any
edge of tp . Specifically, it is enough to consider the case where J = (J1, J2),
I ′ = (I, J1) and J ′ = J2 so that I · (J1, J2) = (I, J1) · J2 as in Figure 9. (Here
we are assuming that WJ is not order–0 since if both WI and WJ are order–0
there is nothing to prove.) The proof is given by the maneuver illustrated in
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J2 J2

J1 J1

I Ip p'

-

-

+

+ ++

Figure 10: The unpaired intersection point p = WI ∩ WJ in the split subtower W of
Lemma 14 (left), and the unpaired intersection point p′ = WI′ ∩ WJ′ in W ′ after the
Whitney move (right). Signs and orientations are indicated for the case ǫp = +, with
brackets corresponding to the trivalent orientations in Figure 9.

J2 J2

J1 J1

I I

-

-

+

+

Figure 11: This figure shows that the oriented punctured trees associated to p and p′

in Figure 10 differ as indicated in Figure 9.

Figure 10: Use the Whitney disk WJ to guide a Whitney move on WJ1 . This
eliminates the intersections between WJ1 and WJ2 (as well as eliminating WJ

and p) at the cost of creating a new cancelling pair of intersections between
WJ1 and WI . This new cancelling pair can be paired by a Whitney disk W(I,J1)

having a single intersection point p′ with WJ2 . That this achieves the desired
effect on the punctured tree can be seen in Figure 11 by referring to the signs
and orientations in Figure 10. See also the discussion in pages 20–22 of [30]
which includes group elements.
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4.4 Algebraically- and geometrically-cancelling pairs

Let T̂n(π,m) denote the group of order–n decorated trees modulo all the re-
lations in Figure 7 except the IHX relation. We say that a pair of intersection
points p+ and p− in W cancel algebraically if ǫp+ · tp+ = −ǫp− · tp− ∈ T̂n(π,m).
There is a summation map that sends the disjoint union tn(W) = ∐pǫp · tp
to an element τ̂n(W) :=

∑
p ǫp · tp ∈ T̂n(π,m) and the vanishing of τ̂n(W) is

equivalent to being able to arrange all of the order–n intersection points of W
into algebraically-cancelling pairs.

Given an algebraically-cancelling pair p± in a split Whitney tower, one can
chose orientations and whiskers on the Whitney disks in the split subtowers
containing p± so that the trees tp± have identical orientations (and decorations)
with ǫp+ = −ǫp− . (This is because the OR, HOL and AS relations are realized
by these choices, as described in Sections 3.5 and 3.7.)

A pair of intersection points p+ and p− in W cancel geometrically if they can
be paired by a Whitney disk. Geometric cancellation implies algebraic cancella-
tion, but the converse is not true since two algebraically-cancelling intersection
points might not lie on the same Whitney disks.

The next lemma gives sufficient conditions for a sort of converse involving some
additional work.

4.5 Simple intersection points and the transfer lemma

n

Figure 12: From left to right, the non-simple tree of lowest-order (order–4) and the
simple trees of order 4, 5 and 6 + n .

Following the terminology of [19] for iterated commutators of group elements,
we say that an intersection point p ∈ W is simple if its tree tp is simple (right-
or left-normed) as illustrated in Figure 12. The proof of the next lemma shows
how to exchange simple algebraically-cancelling pairs of intersection points for
geometrically-cancelling pairs.
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Lemma 15 Let W be an order–n Whitney tower on order–0 surfaces Ai

such that all order–n intersection points of W come in simple algebraically-
cancelling pairs. Then the Ai are homotopic (rel boundary) to A′

i which admit
an order–(n + 1) Whitney tower.

W(i1,I2)

WI2

W(i1,I2)

WI2

Ai0

Ai1

-

-
-

-

+

+

+

p p
p'

Figure 13

Proof We will describe a modification of W which exchanges one algebraically-
cancelling simple pair of order n for another at the cost of only creating
geometrically-cancelling pairs. Iterating this modification will, at the nth itera-
tion, exchange an algebraically-cancelling pair for only geometrically-cancelling
pairs. This modification is described in [36] for the case n = 1 in a simply-
connected manifold. (See also [30] for the n = 1 non-simply-connected case.)
Applying this procedure to all algebraically-cancelling pairs will complete the
proof. We will discuss only the simply-connected case; the reader can easily
add group elements to the figures (as in [30]).

We may assume that W is split by Lemma 13. Let p+ and p− be a simple
algebraically-cancelling pair of order–n intersection points in W . By “pushing
the puncture out to an end of the simple tree” using Lemma 14, we may further
assume that p+ and p− are intersections between some order–0 surface Ai0 and
order–n Whitney disks W+

I1
and W−

I1
respectively where, for this proof only, Ik

will denote a simple bracket of the form Ik := (ik, (i(k+1), (. . . , (in, i(n+1)) . . . ))=
(ik, I(k+1)) for 1 ≤ k ≤ n + 1 and I(n+1) = i(n+1) .

The first step in the modification is illustrated in Figure 13 which shows how to
exchange p− ∈ Ai0 ∩W−

I1
for p′− ∈ Ai0 ∩W+

I1
, which cancels geometrically with
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W(i1,I2)

W(i2,I3) W(i2,I3)

W(i1,I2)

W(i0,(i1,I2))

W(i0,i1)

-

--

-

+

+

+ +

Ai1

Ai0

WI2 WI2

q q

= =

Figure 14

p+ , at the cost of creating a geometrically-cancelling pair of intersection points
between Ai0 and Ai1 . Note that this first step is possible because both Ai0 and
Ai1 are connected. The modification is completed by choosing Whitney disks for
the new geometrically-cancelling pairs as illustrated in Figure 14, which shows
that a new algebraically-cancelling pair q± ∈ W(i0,i1) ∩ W±

I2
has been created

(recall that boundaries of Whitney disks must be disjointly embedded). In the
case n = 1, q± would also cancel geometrically since then I(n+1) = i(n+1) means

that W+
I2

= W−

I2
= Ai2 which is connected. Note that W(i0,i1) is embedded (in

a neighborhood of a contractible 1–complex) and contains only the pair q± in
its interior. The Whitney disk W(i0,(i1,I2)) may intersect anything but we don’t
care because it is a Whitney disk of order n + 1 and hence can only contain
intersections of order strictly greater than n. Now, assuming n ≥ 2, apply this
modification to q± as illustrated in Figure 15. Note that this is only possible
because we have the connected surface Ai2 to “push along”, since we originally
started with the simple pair p± so that W±

I2
= W(i2,I3) . The kth iteration of

this modification is illustrated in Figure 16 where, for this proof only, we denote
the simple bracket Jk := (. . . ((i0, i1), i2), . . . , ik) for 1 ≤ k ≤ n. The procedure
terminates when k = n meaning that W±

I(k+1)
= WI(n+1)

= Ai(n+1)
which is

connected so only geometrically-cancelling pairs are created.

This procedure can be applied to all the (simple) algebraically-cancelling pairs:
One can always find disjoint arcs between Whitney arcs in the Aik to guide
the modification and all new Whitney disks of order ≤ n are contained in
neighborhoods of these arcs so that no unexpected intersections of order less
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Figure 16

than or equal to n are created.

4.6 Geometric IHX and the Proof of Theorem 2

Given W as in Theorem 2, we will reduce the proof to the case handled by
Lemma 15 by using geometric constructions and results from [9] and [28].
Achieving the hypotheses of Lemma 15 will involve two steps: First W will be
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modified to have only algebraically-cancelling pairs by using the “4–dimensional
IHX construction” in [9]. Then the algebraically-cancelling pairs will be ex-
changed for simple algebraically-cancelling pairs, using a related IHX construc-
tion of [28]. This second step is based on the effect of doing a Whitney move on
a Whitney disk in a split subtower and mimics the usual algebraic proof that
the group of unitrivalent trees modulo the IHX and AS relations is spanned by
simple trees ([1], [7]).

4.7 Creating algebraically-cancelling pairs

The vanishing of τn(W) ∈ T t
n(π,m) means that τn(W) lifts to τ̂n(W) ∈

span{I − H + X} < T̂n(π,m). To get only algebraically-cancelling pairs we
apply the following corollary of the 4–dimensional IHX Theorem in [9]:

Proposition 16 Let W be any order–n Whitney tower on order–0 surfaces
Ai . Then, given any decorated order–n unitrivalent trees I, H and X differing
only by the local IHX relation of Figure 7, there exists an order–n Whitney
tower W ′ on A′

i homotopic (rel boundary) to the Ai such that

tn(W ′) = tn(W) + I − H + X.

Note that the “sum” on the right hand side is really a disjoint union of signed
decorated trees; the summation map takes this equation to the corresponding
equation in T̂n(π,m).

Proof As observed in Remark 8, creating a “clean” Whitney disk by applying
a finger move to surfaces in a Whitney tower “realizes” the rooted product ∗ on
the corresponding rooted trees. Since finger moves are supported near arcs, one
can modify W to create any number of clean Whitney disks realizing arbitrary
rooted decorated trees without changing tn(W). Let W i , i = 1, 2, 3, 4 be four
such Whitney disks which correspond to the four fixed vertices of the trees I,
H and X in the statement. (Of course if any of the fixed vertices is univalent
then the corresponding “Whitney disk” is just an order–0 surface.)

Now the 4–dimensional IHX Theorem of [9] says that there exists an order–
2 Whitney tower WIHX on oriented 2–spheres Ai , i = 1, 2, 3, 4, in a 4–ball
having geometric intersection tree t2(WIHX) equal precisely to the order–2 IHX
relation. So by tubing Ai into W i , for each i, we can get W ′ as desired. No
unexpected intersections are created since the entire construction takes place
near a collection of arcs and the (arbitrarily small) 4–ball. (In the decorated
case the desired group elements are controlled by the tubes.)
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So by applying Proposition 16 as necessary we can assume that τ̂n(W) = 0 ∈
T̂n(π,m) which means that all order–n intersection points can be arranged in
algebraically-cancelling pairs.

4.8 Simplifying the cancelling pairs

In case there are algebraically-cancelling pairs which are not simple, we appeal
to results in [28]: Proposition 7.1 of [28] describes an algorithm for modifying
a Whitney tower to have only simple intersection points. This geometric algo-
rithm, which mimics the algebraic algorithm described in [1] and [7], depends
on a “Whitney move” version of the IHX relation (Lemma 7.2 of [28]) which
replaces a split subtower Wp by two split subtowers Wp′ and Wp′′ and has the
effect of replacing ǫp · tp = I by H − X = ǫp′ · tp′ + ǫp′′ · tp′′ in the geometric
intersection tree. The point of the algorithm is that the trees H and X are
“closer” to being simple and by iterating one is eventually left with only simple
trees. (The construction is supported in a neighborhood of Wp so no unwanted
intersections are created.) Although Proposition 7.1 and Lemma 7.2 of [28] are
only proved in the unoriented undecorated case it is not hard to add signs to
the intersection points in the diagrams in [28] and apply the conventions of this
paper, especially having seen the related proof of Lemma 15 above.

So in the present setting we have only algebraically-cancelling pairs of order–n
intersection points in an order–n Whitney tower W which we may assume is
split by Lemma 13. If any of these cancelling pairs are not simple, then we apply
the just-mentioned IHX algorithm of [28] pairwise (so as to preserve τ̂n(W) =
0 ∈ T̂n(π,m)) until we are left with only simple algebraically-cancelling pairs.
The proof of Theorem 2 is now complete by Lemma 15. �

5 Proof of Theorem 4

The proof of Theorem 4 uses results from [17], [23] and [28] as well Theorem 2
to compare an arbitrary link L to certain well-known standard links which
generate the first non-vanishing Milnor and Zt invariants.

5.1 Bing–Cochran–Habiro links

Given a collection σ of signed labelled vertex-oriented order–n trees, Cochran
[4] and Habiro [16] have described, using Bing doubling and clasper surgery
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Figure 17: From left to right: An order–2 (positively signed) vertex-oriented tree
I whose univalent vertices correspond to the components of an unlink; The Bing–
Cochran–Habiro link LI ; An order–2 Whitney tower W bounded by LI with τ2(W) =
I.

respectively, how to construct (from the unlink) a link Lσ such that Kn(Lσ)
is represented by σ (considered as a sum). Habiro’s construction applies more
generally to unitrivalent graphs, but for trees the two constructions coincide (by
applying Kirby calculus to a framed link surgery description).

Given such a Bing–Cochran–Habiro link Lσ , we will use the following two facts:

(i) Lσ bounds an order–n Whitney tower Wσ with τn(Wσ) = σ ∈ Tn(m).

(ii) Kn(Lσ) = σ ∈ Tn(m) ⊗ Q.

The Whitney tower W in statement (i) is easily constructed by “pulling apart”
a Bing double in Cochran’s construction (see Figure 17): This creates Whitney
disks whose boundaries are essentially the derived links in [4] and each tp ∈ σ
corresponds to a derived linking. Alternatively, starting with Habiro’s clasper
surgery description one can apply the translation to grope cobordism of [7] and
then the translation to Whitney towers of [28] and [9].

For statement (ii), see Section 8 of [17]. Although [17] works with string links,
the first non-vanishing term of Zt(L)−1 is equal to the first non-vanishing term
of Zt(SL)− 1 where SL is any string link whose closure is L (see Section 5 of
[27]).
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5.2 Whitney towers and the Kontsevich integral

Let L and W be as hypothesized in Theorem 4. Denote by σ any disjoint union
of signed (labelled vertex-oriented) trees which represents τn(W) ∈ Tn(m), eg
the geometric intersection tree t(W) of W (4.1). Let Lσ be a Bing–Cochran–
Habiro link formed from the unlink using σ . Then, by (i) of 5.1, Lσ bounds an
order–n Whitney tower Wσ in D4 with τn(Wσ) = τn(W) ∈ Tn(m). Now think
of W and Wσ as each sitting in a copy of S3 × I (D4 with a neighborhood of
a point removed). By gluing together the two copies of S3 × I (along the S3

boundary of the removed neighborhoods) and connecting each order–0 2–disk
of W with the corresponding order–0 2–disk of Wσ by a small tube we get
properly immersed annuli Ai in S3 × I cobounded by the link components.
Since the tubes may be chosen to avoid creating new intersection points, the
Ai admit an order–n Whitney tower W ′ with

τn(W ′) = τn(W) − τn(Wσ) = 0 ∈ Tn(m)

where the minus sign comes from reversing the orientation of one of the two
copies of S3 × I . By Theorem 2, the vanishing of τn(W ′) implies that (after a
homotopy rel boundary) the Ai admit a Whitney tower of order n, that is, L
and Lσ are order–n Whitney equivalent. By the main theorem in [28], order–
n Whitney equivalence implies (in fact is equivalent to) class (n + 1) grope
concordance, meaning that we can conclude that the components of L and Lσ

cobound disjoint properly embedded annulus-like gropes of class (n + 1). This
implies, by [23] Corollary 4.2, that L and Lσ have the same µ–invariants of
length less than or equal to (n + 1). It follows from [17] that Kn(L) = Kn(Lσ)
which is equal to σ ∈ Tn(m) ⊗ Q by (ii) of 5.1 above.

References

[1] D Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ram-
ifications 4 (1995) 13–32 MathReview

[2] A Casson, Three Lectures on new infinite constructions in 4–dimensional man-
ifolds, with an appendix by L Siebenmann, from: “À la recherche de la topolo-
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