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SOLUTIONS OF THE DIFFERENTIAL INEQUALITY
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AND REMOVABILITY OF SINGULARITIES. II
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The aim of this paper is to establish a result on removability of singularities for solutions of the differential
inequality with a null Lagrangian. Also, we obtain integral estimates for wedge products of closed
differential forms and for minors of a Jacobian matrix.
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Introduction

In this paper we continue to study the properties of solutions v: V. — R™, V C R", of
the following inequality

F('(z)) < KG(W'(z)) + H(z) ae. V (1)

constructed by means of a continuous function F': R™*" — R, a null Lagrangian G: R™*" —
R, a measurable function H: V — R, and a constant K > 1. Here v'(x) denotes the
differential of v at € V. Using the higher integrability theorem of the previous paper [8],
we establish a result on removability of singularities for solutions to (1).

Many investigations have dealt with the problem of removable singularities for quasicon-
farmal mappings and mappings with bounded distortion (for example, see [1, 2, 4], [9]-[29]
and the bibliography therein). Painlevé’s theorem, a classical result in complex function the-
ory, states that sets of zero length are removable for bounded holomorphic functions. More
precisely, if E is a closed subset of linear measure zero in a planar domain V and v is a
bounded function holomorphic in V' \ E, then v extends to a bounded holomorphic func-
tion of V. Observe that the class of planar mappings with 1-bounded distortion coincides
with the class of holomrphic functions. The strongest removability conjecture, stated in [14]
as the counterpart of Painlevé’s theorem for mappings with bounded distortion, suggests
that sets of Hausdorff a-measure zero, o < n/(K + 1) < n/2, are removable for bounded
mappings with K-bounded distortion in R™. In the case n = 2 this conjecture was verified
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by K. Astala [1] for « < 2/(K + 1) and K. Astala, A. Clop, J. Mateu, J. Orobitg, I. Uriarte-
Tuero [2] for @« = 2/(K + 1) (also see [3]). The higher integrability results for mappings
with bounded distortion are closely related to the removability problems. Caccioppoli-type
estimates (one of the key ingredients in proofs of higher integrability results) can be used as
the basic tool for proving removability theorems. More precisely, if there exists p(n, K) < n
such that Caccioppoli-type estimates hold for p > p(n, K), then a close set E with the Haus-
dorff dimension dimp (E) < n— p(n, K) is removable for bounded mappings with K-bounded
distortion in R™ (for example, see [13, 14, 15, 16]). In such way removability results have
been established for the classes of mappings that are close to solutions of linear elliptic partial
differential equations and for the classes of quasiregular mappings of several n-dimensional
variables (for example, see [5, 6]). Mappings of these classes, as mappings with bounded
distortion, can be considered as solutions to (1) with specific functions F', G, and H. Our
removability result (Theorem 1.1) contain partially the known results on removability of
singularities for mappings of these classes.

In this paper, using the Hodge decomposition theory developed by T. Iwaniec and G. Mar-
tin [13, 14, 15], we also obtain integral estimates for wedge products of closed differential forms
(Theorem 2.3) and for minors of a Jacobian matrix (Theorem 2.1). These estimates are ex-
tensions of integral estimates derived in [15]. They have been used in the proof of the higher
integrability theorem in [8].

Some results of this paper have been announced in [7].

This paper is organized as follows. In § 1 we establish a result on removability of singular-
ities for solutions to (1). We derive integral estimates for wedge products of closed differential
forms and for minors of a Jacobian matrix in §2.

We use the notation and terms from [8].

1. Removability of Singularities

Using the higher integrability theorem from [8], we establish the following result on re-
movability of singularities for solutions to (1).

Theorem 1.1 (Removability of singularities). Let n,m,k € N and t > k such that
2 < k < min{n,m}, and let V be a domain in R™. Suppose that a continuous function
F: R™*"™ — R satisfies

F(¢) = cpl¢lF, (¢ eR™™, (2)

with some constant cp > 0, a null Lagrangian G: R™*"™ — R is homogeneous of degree k,
and a measurable function H: V — R has Hy € L} (V). Fix K > 1. Let p = p(F,G,K) be
the exponent from [8, Theorem 2.1]. For a closed subset E of V with the Hausdorff dimension
dimg(E) < n — p every bounded solution v € Wli’ck(V \ E5;R™) to (1) extends to a mapping

of the class Wl’k(V; R™) which is defined over the whole domain V' and also satisfies (1).

loc
We follow the approach, developed in [14] (also see [15]), to prove Theorem 1.1. There
are two key components in the proof. Firstly, the assumption on the size of the set F
implies that ' has zero s-capacity for an appropriate value of s. Secondly, the Cacciappoli-
type estimate holds for this particular value of s. The definiton of s-capacity can be find
in [9, 10, 15, 22, 23].

<t PROOF OF THEOREM 1.1. We have p < n —dimpy(E). Let s € (p,n — dimg(E)).

From [9, Ch. 3, Theorem 5.11] (also see [10, 15]), we obtain that the set E has zero s-capacity.
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It is clear that |E| = 0. Further, the higher integrability theorem [8, Theorem 2.1] gives the
Caccioppoli-type estimate

0" || s (vimmxny < C||lv @ ¢ + [l (e + ' H )|

for e > 0 and ¢ € C§°(V \ E), where the constant C' = C(F,G, K, s) does not depend on
the test function ¢ or the mapping v. Let x € C§°(V) and E' := E Nsupp x. Then E’ has
zero s-capacity. Therefore there exists a sequence of functions (n; € C§°(V));jen such that
0 < nj <1, n; =1 on some neighbourhood of E’, lim; ,o,n; = 0 almost everywhere in V,
and lim; o0 [, [7}]° = 0. Put @; := (1 —n;)x € C5°(V \ E) and v; := pjv € Wy (V; R™).
Then the mappings v; are bounded in L>(V;R™) and converge to xv almost everywhere.
We have v} = ;v + v ® ¢ and ¢ = —xn; + (1 —1;)x’. Using (3), we obtain

103 | Ls (v semxny < 110" | s (vimmny + [0 @ )]l Lo (vimmoxny
< (1+C)(Ilv @ Gllpevmmeny + ps(e + e Hi)lloqr) )
<(1+0) (HUHLOO(V\E;WL)HSOQHLS(V;RH) + [lej(e + 51_kH+)HLs(V)>
< (14 0) (Ilell o g mm X e 17 o v
+1vll oo v\ ERm) 11 = 12)X | L2 (vimmy + 11— 15) X1 (e + 51_kH+)”Ls(V))-

Passing to the limit over j, we get

lim sup [|v} || s (v rmoxn)
j—00

<(1+0) (HUHL“’(V\E;R’")HX/HLS(V;R") + Ix(e + 51_kH+)||L5(V)>- (4)

Therefore the sequence (v;)jen is bounded in W1#(V; R™). Hence there exists its subsequence
converged weakly in W1#(V;R™) to a mapping in this Sobolev space. Clearly, this limit
coincides with yv almost everywhere in V.

Therefore v € VVO1 *(V;R™) for all test functions x € C§°(V). This yields v €

WS (V;R™). Since v is a solution to (1) almost everywhere in V, the higher integrabil-

loc

ity theorem [8, Theorem 2.1] implies v € Wll’k(V; R™). >

ocC

REMARK 1.2. The assumption that v is bounded is of course rather more than we
really need in the proof of Theorem 1.1. All that is required is that the sequence
(Ilv ® @l Ls (v mmx=n) ) jen Temains bounded as j — oo. Thus, for instance, Theorem 1.1 can be
extended to the case v € LP(V \ E;R™), p > ns/(n—s), if in addition we require the stronger
restriction that the set E has zero r-capacity for r = sp/(p — s). That this requirement is
sufficient follows from Hélder’s inequality applied to [|v @ ¢%||ps(y;gmxn) instead of using the
trivial bound ||v|| oo v\ m;mm) 9] | L5 (v;rn) used above.

2. Integral Estimates

In the proof of the higher integrability of solutions to (1) ([8, Theorem 2.1]) we have used
the following theorem on integral estimates for minors of a Jacobian matrix. This theorem

is an extension of T. Iwaniec and G. Martin’s result on integral estimates for Jacobians (cf.
[15, Theorems 7.8.1 and 13.7.1]).
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Theorem 2.1. Let n,m,k € N with 2 < k < min(m,n). Then for every distribution
v = (v1,...,0p) € Z'(R";R™) with v € LP(R";R™™), 1 <p< oo, and for every I =
(i1,...,ix) €TE . J = (j1,...,jx) € X we have the inequality

[wrge <cli-2| [ )

with some constant C = C(k) depended only on k.

REMARK 2.2. In the case k = n = m Theorem 2.1 coincides with T. Iwaniec and G. Mar-
tin’s result on integral estimates for Jacobians (see [15, Theorems 7.8.1 and 13.7.1]).

In the proof of Theorem 2.1 we need the following modification of T. Iwaniec and G. Mar-
tin’s result on integral estimates for wedge products of closed differential forms (cf. [15,
Theorem 13.6.1]).

Let A' = AYR™), I € NU {0}, be the space of all l-exterior forms on R". For I =
(i1,...,101) € Fln we denote the [-exterior form dx;, A---Adx; by der. We use the convention
that dey = 1if 1 = 0. For w € Al we have w = ZIGFZ ~vrdz; with some coefficients v; € C.

1/2
We put |w| = <Zlerll ]71!2> . For p > 1 we denote by LP(R"™; A!) the space of differential

l-forms on R™ with coefficients in LP(R").

Theorem 2.3. Let n,k € N with 2 < k < n. Consider p1,...,pk,€1,...,6 € R
and ly,...,lx € N such that 1 < p,, < > + . +p%€ =1, -1 < 2¢, < p’};;l, and

¢ 101
li=n—1l1—...—1; >0. Let [ = (%1,...,%) € Ffl Suppose that (1, ...,¢r) be a k-tuple of
closed differential forms with ,, € L{1=5=)P=(R™; A=), Then

p1 N\ N Ndxj 1-¢
/ ‘801‘81 o ’@k‘ak g CEHSO:L”LU sl)pl(Rn Al1 HSOICHL(lfek)pk(Rn;Alky (6)
where ¢ := max(|e1],...,|ex|) and the constant C = C(p1,...,pr) depends only on py,.. ., pg.

REMARK 2.4. In the case [ = 0, i.e. drj = 1, Theorem 2.3 coincides with [15, Theo-
rem 13.6.1]. For proving Theorem 2.3 we use the Hodge decomposition technique developed
in [13, 14, 15] and follow the proof of Theorem 13.6.1 in [15].

< PROOF OF THEOREM 2.3. Observe that (1 —¢e,,)p,, > p";l > 1 and |e,| < 1/2,
»=1,...,k. We have B |5 € LP=(R™; A*). Denote by WhP(R™ AN, 0 <1< n, p > 1,
the space of differential I-forms on R™ with coefficients in W1P(R™). We can consider the
following Hodge decomposition in LP=(R™; A’*) ([14, Theorem 6.1], also see [15, §10.6]):

P%_ — do, +d*B, (7)
| P3|
with some a,, € WHP=(R™; Ab=~1) and 3, € W1P=(R"; Ab>+1). Here d is the exterior deriva-
tive, and d* is its formal adjoint, the coexterior derivative. The forms da, and d*f,,,
» = 1,...,k, are uniquely determined and can be expressed by means of the Hodge pro-
jection operators

E: LP(R™AD — dWP(R™ AT and  E*: LP(R™ A — d*WHP(R™; ALY

defined by [15, §10.6, formulas (10.71) and (10.72)] for 1 < p < co and 1 <! < n—1. Namely

we have
P (%
do,, = FE and d*B, = FE* < > ) 8
() P ®)
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Applying [14, Theorem 6.1], we get the following bound for exact term:
et e nie) < 1Dl e i )
By [15, § 10.6, formulas (10.73) and (10.74)] we have
KerE = {p € LP(R"; A : d*p =0}
and
Ker E* = {p € LP(R™; AY) : dp = 0}
forl <p<oocand 1 <1< n-—1 Then E*(p,) = 0. Therefore we can write d*(,, as a

commutator
* * 90% E* (90%)
d5=E< >_ |
” “P%‘ah ’E*(‘P%)’E”

Applying [15, Theorem 13.2.1] (also see [13, Theorems 8.1 and 8.2]), we obtain

1 Brell e (m:atoey < Co(pi) el |05 7% o gt (10)

Using (7), we have

/(pl/\-‘-/\gok/\dwf

= [ (day +d*Br) A -+ A (doy, + d*Br) A dx;
’901‘61 ’@k‘ek /( 1 51) ( k ﬁk) I

:/dal/\~~/\dak/\dl‘f+/%. (11)

Since pq, ..., pr represents a Holder conjugate tuple, by Stokes’ formula via an approximation
argument we obtain

/dal/\~~/\dak/\da:f:0. (12)
The integrand % is a sum of wedge products of the type 1 A--- Ay Adz;, where 1), is either

da,, or d*B,, and at least one d*f3,, is always present, with at most 2 — 1 terms. Combining
Holder’s inequality with (9) and (10), we get

/MAmAmAmf C(R) ¥l o zmentsy - - 1958l o gt

1
S C4(p17 s 7pk) H‘PluLu El)pl(Rn All ngk”L(lefsk)pk(Rn;Alk)'
This with (11) and (12) yields (6). >
<1 PROOF OF THEOREM 2.1. Let p,, ==k, e,,:=c:=1—-2, and [,,:=1for > =1,... k.
Then 1 < p,, < o0, 10_1+ —i—é =1L li=n—k=n—l— =1, 20, (1 —e,)ps = p,
and max(le1],...,|ex]) = le] = [1—E|. Let ¢, = du;, € LO=&0Px (R Ab<), Let I =

(%1,...,%5) € FZ be the ordered I-tuple such that {%1,...,%5} ={1,....n}\ {i1,...,ix}. We
chose the sign sgn I such that sgn I'dz; Adzx; = dxy A~ A dxy,.
When p lies outside the interval (’“Jrl %) the estimate is clear as (5) always holds with 1

in place C(k |1 — | In this case > k 1 and inequality (5) holds with C'(k) = %
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Suppose that £ +1 < 2p < 3k. Then —1 < 2¢,, < p;—;l
Theorem 2.3, we obtain

/ gg‘; /sgnldvjl/\'--/\dvjk/\dq:f
|dvj, |° ... |dvj, | |dvj, 1. . |dvj, [5F

< Ci(B)lel dvs, 1o ganiary - - - Vsl o anary < 01(k‘)€/|7/|p- (13)
Using the elementary inequalities ‘gixi < |dvjy|. .. |dvj, | and |a —a'F| < || for 0 < a < 1

and —1 < e < 1, we have

vy vy
8:v1 8m1

and |e| < 1/2. Applying

VR Jdug, £ Jdvy, |?

Oy '\p 1—

‘8321 |U | ’dvj1"“|dvjk‘ _ ]dvjll... ]dvjk\ € < p
= ’dv ’ ’dv ‘ "Z)/‘k "U/‘k X ’EHU ’ .

Jile Jk

Combining this with (13), we obtain

ot

vy vy vy

oz ox ox
< / I I _|_/ I
h |U/|€k |de1|€"' |dvjk|6 |de1|€"' |dvjk|€

< (C1 (k) + DJe] / P
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PEHIEHNA JUOPEPEHIINAJIBHOI'O HEPABEHCTBA
C HVYJIb-JTATPAH?KVNAHOM: ITOBBIITAOITAACA MHTEI'PUPYEMOCTD
1 YCTPAHUMOCTb OCOBEHHOCTEI. 11

Eropos A. A.

Ilespio cTaThby ABJISIETCS YyCTAHOBJIEHHE PE3y/bTaTa O 3aTHPAHMM OCOOEHHOCTEH y pemtenwmil auddepen-
IHAJIFHOTO HEPABEHCTBA C HY/Ib-JIATPAHKUAHOM. TakzKe IOJIy9YeHbl NMHTETPAJIHHBIE OIEHKH JIjIs BHEITHUX
upownssefeHnii 3aMKHYTHIX Juddepennmnanbapix GopM u 1jig MEUHOPOB MaTpuibl xobu.

KuroueBsbie ciioBa: HyJIb-JIarPaHKAAH, YCTPAHUMOCTH 0COOEHHOCTEN, MHTErpAJIbHbBIE OTIEHKH, BHEITHEe
upownsBeeHne 3aMKHYThIX Auddepennmaababix GopM, MUHOPHI MaTpuibl Zkobu.



