УДК 517.98

A CHARACTERIZATION OF ORDER BOUNDED DISJOINTNESS PRESERVING BILINEAR OPERATORS

A. G. Kusraev, S. S. Kutateladze

The paper is aimed to characterize order bounded disjointness preserving bilinear operators in terms of their null-spaces. To this end the Boolean valued analysis approach is employed.

Mathematics Subject Classification (2000): 46A40, 47A65.

Key words: Boolean valued representation, vector lattice, disjointness preserving operator.

It was observed and employed in [1, 2, 3] that a linear operator T from a vector lattice X to a Dedekind complete vector lattice Y is, in a sense, determined up to an orthomorphism from the family of the kernels of the strata πT of T with π ranging over all band projections on Y. Similar reasoning was involved in [4] to characterize order bounded disjointness preserving bilinear operators. Unfortunately, Theorem 3.4 in [4] is erroneous and this note aims to give correct statement and proof of this result. Unexplained terms can be found on the theory of vector lattices and order bounded operators, in [5, 6], on Boolean valued analysis machinery, in [7, 8].

In what follows X, Y, and Z are Archimedean vector lattices, Z^{u} is a universal completion of Z, and $B: X \times Y \to Z$ is a bilinear operator. We denote the Boolean algebra of band projections in X by $\mathbb{P}(X)$. Recall that a linear operator $T: X \to Y$ is said to be disjointness preserving if $x \perp y$ implies $Tx \perp Ty$ for all $x, y \in X$. A bilinear operator $B: X \times Y \to Z$ is called disjointness preserving (a lattice bimorphism) if the linear operators $B(x,\cdot): y \mapsto B(x,y)$ ($y \in Y$) and $B(\cdot,y): x \mapsto B(x,y)$ ($x \in X$) are disjointness preserving for all $x \in X$ and $y \in Y$ (lattice homomorphisms for all $x \in X_+$ and $y \in Y_+$). Denote $X_\pi := \bigcap \{\ker(\pi B(\cdot,y)): y \in Y\}$ and $Y_\pi := \bigcap \{\ker(\pi B(x,\cdot)): x \in X\}$. Clearly, X_π and Y_π are vector subspaces of X and Y, respectively. Now we state the main result of the note.

Theorem. Assume that X, Y, and Z are vector lattices with Z having the projection property. For an order bounded bilinear operator $B: X \times Y \to Z$ the following assertions are equivalent:

- (1) B is disjointness preserving.
- (2) There are a band projection $\varrho \in \mathbb{P}(Z)$ and lattice homomorphisms $S: X \to Z^{\mathrm{u}}$ and $T: Y \to Z^{\mathrm{u}}$ such that $B(x,y) = \varrho S(x)T(y) \varrho^{\perp}S(x)T(y)$ for all $(x,y) \in X \times Y$.
- (3) For every $\pi \in \mathbb{P}(Z)$ the subspaces X_{π} and Y_{π} are order ideals respectively in X and Y, and the kernel of every stratum πB of B with $\pi \in \mathbb{P}(Z)$ is representable as

$$\ker(\pi B) = \bigcup \{ X_{\sigma} \times Y_{\tau} : \ \sigma, \tau \in \mathbb{P}(Z); \ \sigma \vee \tau = \pi \}.$$

^{© 2015} Kusraev A. G., Kutateladze S. S.

The proof presented below follows along general lines of [1–4]: Using the canonical embedding and ascent to the Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$, we reduce the matter to characterizing disjointness preserving bilinear functional on the product of two vector lattices over dense subfield of the reals \mathbb{R} . The resulting scalar problem is solved by the following simple fact.

Lemma 1. Let X and Y be vector lattices. For an order bounded bilinear functional $\beta: X \times Y \to \mathbb{R}$ the following assertions are equivalent:

- (i) β is disjointness preserving.
- (ii) $\ker(\beta) = (X_0 \times Y) \cup (X \times Y_0)$ for some order ideals $X_0 \subset X$ and $Y_0 \subset Y$.
- (iii) There exist lattice homomorphisms $g: X \to \mathbb{R}$ and $h: Y \to \mathbb{R}$ such that either $\beta(x,y) = g(x)h(y)$ or $\beta(x,y) = -g(x)h(y)$ for all $x \in X$ and $y \in Y$.

 \lhd Assume that $\ker(\beta) = (X_0 \times Y) \cup (X \times Y_0)$ and take $y \in Y$. If $y \in Y_0$ then $\beta(\cdot, y) \equiv 0$, otherwise $\ker(\beta(\cdot, y)) = X_0$ and $\beta(\cdot, y)$ is disjointness preserving, since an order bounded linear functional is disjointness preserving if and only if its null-space is an order ideal. Similarly, $\beta(x, \cdot)$ is disjointness preserving for all $x \in X$ and thus $(ii) \Longrightarrow (i)$. The implication $(i) \Longrightarrow (iii)$ was established in [9, Theorem 3.2] and $(iii) \Longrightarrow (i)$ is trivial with $X_0 = \ker(g)$ and $Y_0 = \ker(h)$. \triangleright

Let \mathbb{B} be a complete Boolean algebra and $\mathbb{V}^{(\mathbb{B})}$ the corresponding Boolean valued model with Boolean truth values $\llbracket \varphi \rrbracket$ for set-theoretic formulas φ . There exists an element $\mathscr{R} \in \mathbb{V}^{(\mathbb{B})}$ which plays the role of a field of reals within $\mathbb{V}^{(\mathbb{B})}$. The descending functor sends every internal algebraic structure \mathfrak{A} into its descent $\mathfrak{A}\downarrow$ which is an algebraic structure in conventional sense. Gordon's theorem (see [5, 8.1.2] and [10, Theoren 2.4.2]) tells us that the algebraic structure $\mathscr{R}\downarrow$ (with the descended operations and order relation) is an universally complete vector lattice. Moreover, there is a Boolean isomorphism χ of \mathbb{B} onto $\mathbb{P}(\mathscr{R}\downarrow)$ such that $b \leqslant \llbracket x = y \rrbracket$ if and only if $\chi(b)x = \chi(b)y$. We identify \mathbb{B} with $\mathbb{P}(\mathscr{R}\downarrow)$ and take χ to be $I_{\mathbb{B}}$.

Let $[X \times Y, \mathscr{R}\downarrow] \in \mathbb{V}$ and $[X^{\wedge} \times Y^{\wedge}, \mathscr{R}] \in \mathbb{V}^{(\mathbb{B})}$ stand for the sets respectively of all maps from $X \times Y$ to $\mathscr{R}\downarrow$ and from $X^{\wedge} \times X^{\wedge}$ to \mathscr{R} (within $\mathbb{V}^{(\mathbb{B})}$). The correspondences $f \mapsto f\uparrow$, the modified ascent, is a bijection between $[X \times Y, \mathscr{R}\downarrow]$ and $[X^{\wedge} \times Y^{\wedge}, \mathscr{R}]$. Given $f \in [X, \mathscr{R}\downarrow]$, the internal map $f\uparrow \in [X^{\wedge}, \mathscr{R}]$ is uniquely determined by the relation $[f\uparrow(x^{\wedge}) = f(x)] = \mathbb{I}$ $(x \in X)$. Observe also that $\pi \leq [f\uparrow(x^{\wedge}) = \pi f(x)]$ $(x \in X, \pi \in \mathbb{P}(\mathscr{R}\downarrow))$. This fact specifies for bilinear operators as follows.

Lemma 2. Let $B: X \times Y \to Y$ be a bilinear operator and $\beta := B \uparrow$ its modified ascent. Then $\beta: X^{\wedge} \times Y^{\wedge} \to \mathcal{R}$ is a \mathbb{R}^{\wedge} -bilinear functional within $\mathbb{V}^{(\mathbb{B})}$. Moreover, B is order bounded and disjointness preserving if and only $\llbracket \beta \rrbracket$ is order bounded and disjointness preserving $\rrbracket = \mathbb{1}$.

 \triangleleft The proof goes along similar lines to the proof of Theorem 3.3.3 in [10]. \triangleright

Lemma 3. Let B and β be as in Lemma 2. Then $[\ker(B)^{\wedge} = \ker(\beta)] = 1$.

 \triangleleft Using the above mentioned determining property of modified ascent and interpreting the formal definition $z \in \ker(\beta) \leftrightarrow (\exists x \in X^{\wedge})(\exists y \in Y^{\wedge})(z = (x, y) \land \beta(x, y) = 0)$, the proof is reduced to a straightforward calculation:

$$\begin{split} \llbracket z \in \ker(\beta) \rrbracket &= \bigvee_{x \in X, \, y \in Y} \llbracket z = (x^{\wedge}, y^{\wedge}) \wedge \beta(x^{\wedge}, y^{\wedge}) = 0 \rrbracket \\ &= \bigvee_{(x, y) \in X \times Y} \llbracket z = (x, y)^{\wedge} \wedge (x, y)^{\wedge} \in \ker(B)^{\wedge} \rrbracket \end{split}$$

$$\begin{split} \leqslant \llbracket z \in \ker(B)^{\wedge} \rrbracket &= \bigvee_{(x,y) \in X \times Y} \llbracket z = (x,y)^{\wedge} \wedge (x.y) \in \ker(B) \rrbracket \\ &= \bigvee_{x \in X, \, y \in Y} \llbracket (z = (x^{\wedge}, y^{\wedge}) \wedge \beta(x^{\wedge}, y^{\wedge}) = 0 \rrbracket \\ \leqslant \llbracket z \in \ker(\beta) \rrbracket. \; \rhd \end{split}$$

Lemma 4. Define \mathscr{X} and \mathscr{Y} within $\mathbb{V}^{(\mathbb{B})}$ by $\mathscr{X} := \bigcap \{ \ker(\beta(\cdot, Y)) : y \in Y^{\wedge} \}$ and $\mathscr{Y} := \bigcap \{ \ker(\beta(x, \cdot)) : x \in X^{\wedge} \}$. Given arbitrary $\pi \in \mathbb{P}(Z)$, $x \in X$, and $y \in Y$, the equivalences hold:

$$\pi \leqslant \llbracket x^{\scriptscriptstyle \wedge} \in \mathscr{X} \rrbracket \Longleftrightarrow x \in X_{\pi}, \quad \pi \leqslant \llbracket y^{\scriptscriptstyle \wedge} \in \mathscr{Y} \rrbracket \Longleftrightarrow y \in Y_{\pi}.$$

 \lhd For $\pi \in \mathbb{P}(Z)$ and $x \in X$ we need only to calculate Boolean truth values taking into account that $[\![B(x,y)=\beta(x^\wedge,v^\wedge)]\!]=\mathbb{1}$ for all $x \in X$ and $y \in Y$:

$$\llbracket x^{\wedge} \in \mathscr{X} \rrbracket = \llbracket (\forall \, v \in Y^{\wedge}) \beta(x^{\wedge}, v) = 0 \rrbracket = \bigwedge_{v \in Y} \llbracket \beta(x^{\wedge}, v^{\wedge}) = 0 \rrbracket = \bigwedge_{v \in Y} \llbracket B(x, v) = 0 \rrbracket.$$

It follows that $\pi \leqslant [x^{\wedge} \in \mathcal{X}]$ if and only if $\pi \leqslant [B(x, v) = 0]$ for all $v \in Y$. By Gorgon's theorem the latter means that $\pi B(x, v) = 0$ for all $v \in Y$, that is $x \in X_{\pi}$. \triangleright

Lemma 5. Let B and β be as in Lemma 2. For arbitrary $\pi \in \mathbb{P}(Z)$, $x \in X$, and $y \in Y$, we have $\pi \leqslant \llbracket (x^{\wedge}, y^{\wedge}) \in (\mathscr{X} \times Y) \cup (X \times \mathscr{Y}) \rrbracket$ if and only if there exist $\sigma, \tau \in \mathbb{P}(Z)$ such that $\sigma \vee \tau = \pi$, $x \in X_{\sigma}$, and $y \in Y_{\tau}$.

$$\lhd \text{ Denote } \rho \!:= \llbracket (x^{\scriptscriptstyle \wedge}, y^{\scriptscriptstyle \wedge}) \in (\mathscr{X} \times Y) \cup (X \times \mathscr{Y}) \rrbracket \text{ and observe that }$$

$$\rho = [\![(x^{\wedge} \in \mathscr{X}) \vee y^{\wedge} \in \mathscr{Y}]\!] = [\![x^{\wedge} \in \mathscr{X}]\!] \vee [\![y^{\wedge} \in \mathscr{Y}]\!].$$

Clearly, $\pi \leqslant \rho$ if and only if $\sigma \lor \tau = \pi$ for some $\sigma \leqslant \llbracket x^{\wedge} \in \mathscr{X} \rrbracket$ and $\tau \leqslant \llbracket y^{\wedge} \in \mathscr{Y} \rrbracket$, so that the required property follows from Lemma 4. \triangleright

PROOF OF THE MAIN RESULT. The implication $(1) \Longrightarrow (2)$ was proved in [9, Corollary 3.3], while $(2) \Longrightarrow (3)$ is straightforward. Indeed, observe first that if (2) is fulfilled then |B(x,y)| = |B|(|x|,|y|) = |S|(|x|)|T|(|y|), so that we can assume S and T to be lattice homomorphisms, as in this event $\ker(B) = \ker(|B|)$. Take $\pi \in \mathbb{P}(Z)$ and denote $\sigma := \pi - \pi[Sx]$ and $\tau := \pi - \pi[Ty]$, where [y] is a band projection onto $\{y\}^{\perp\perp}$. Observe next that $\pi B(x,y) = 0$ if and only if $\pi[Sx]$ and $\pi[Ty]$ are disjoint or, what is the same, if $\sigma \vee \tau = \pi$. Moreover, the map $\rho_y : x \mapsto \sigma S(x)T(y)$ is disjointness preserving for all $y \in Y$ and hence $X_{\sigma} = \bigcap_{y \in Y} \ker(\rho_y)$ is an order ideal in X. Similarly, Y_{τ} is an order ideal in Y. Thus, $(x,y) \in \ker(\pi B)$ if and only if $x \in X_{\sigma}$ and $y \in Y_{\tau}$ for some $\sigma, \tau \in \mathbb{P}(Z)$ with $\sigma \vee \tau = \pi$.

Prove the remaining implication $(3) \Longrightarrow (1)$. Suppose that for every $\pi \in \mathbb{P}(Y)$ the representation in (3) holds. Take $x, u \in X$ and put $\pi := [x^{\wedge} \in \mathcal{X}], \rho := [|u|^{\wedge} \leqslant |x|^{\wedge}]$. By Lemma 4 we have $x \in X_{\pi}$. Note also that either $\rho = 0$ or $\rho = 1$. If $\rho = 1$ then $|u| \leqslant |x|$ and by hypotheses $u \in X_{\pi}$. Again by Lemma 4 we get $\rho \leqslant [u^{\wedge} \in \mathcal{X}]$. This estimate is obvious whenever $\rho = 0$, so that $[x^{\wedge} \in \mathcal{X}] \wedge [|u|^{\wedge} \leqslant |x|^{\wedge}] \Rightarrow [u^{\wedge} \in \mathcal{X}] = 1$ for all $x, u \in X$. Now, a simple calculation shows that \mathcal{X} is an order ideal in X^{\wedge} :

$$\begin{split} \llbracket (\forall \, x, u \in X^{\wedge}) (|u| \leqslant |x| \, \wedge \, x \in \mathscr{X} \to u \in \mathscr{X}) \rrbracket \\ &= \bigwedge_{u, x \in Y} \left(\llbracket x \in \mathscr{X} \rrbracket \wedge \llbracket |u| \leqslant |x| \rrbracket \Rightarrow \llbracket u \in \mathscr{X} \rrbracket \right) = \mathbb{1}. \end{split}$$

Similarly, \mathscr{Y} is an order ideal in Y^{\wedge} .

It follows from the hypothesis (3) and Lemma 5 that $(x,y) \in \ker(\pi B)$ if and only if $\pi \leqslant \llbracket (x^{\wedge}, y^{\wedge}) \in (\mathscr{X} \times Y) \cup (X \times \mathscr{Y}) \rrbracket$. Taking into account Lemma 2 and the observation made before it we conclude that $\pi \leqslant \llbracket (x^{\wedge}, y^{\wedge}) \in \ker(\beta) \rrbracket$) if and only if $\pi \leqslant \llbracket (x^{\wedge}, y^{\wedge}) \in (\mathscr{X} \times Y) \cup (X \times \mathscr{Y}) \rrbracket$ and hence $\llbracket \ker(\beta) = (\mathscr{X} \times Y) \cup (X \times \mathscr{Y}) \rrbracket = \mathbb{1}$. It remains to apply within $\mathbb{V}^{(\mathbb{B})}$ the equivalence (i) \iff (iii) in Lemma 1. It follows that B is disjointness preserving according to Lemma 2. \triangleright

Corollary. Assume that Y has the projection property. An order bounded linear operator $T: X \to Y$ is disjointness preserving if and only if $\ker(bT)$ is an order ideal in X for every projection $b \in \mathbb{P}(Y)$.

 \lhd Apply the above theorem to the bilinear operator $B: X \times \mathbb{R} \to Y$ defined as $B(x, \lambda) = \lambda T(x)$ for all $x \in X$ and $\lambda \in \mathbb{R}$. \triangleright

References

- Kutateladze S. S. On differences of lattice homomorphisms // Sib. Math. J.—2005.—Vol. 46, № 2.— P. 393–396.
- 2. Kutateladze S. S. On Grothendieck subspaces // Sib. Math. J.—2005.—Vol. 46, No 3.—P. 620-624.
- 3. Kutateladze S. S. The Farkas lemma revisited // Sib. Math. J.—2010.—Vol. 51, No 1.—P. 78–87.
- Kusraev A. G., Kutateladze S. S. On order bounded disjointness preserving operators // Sib. Math. J.—2014.—Vol. 55, № 5.—P. 915–928.
- 5. Kusraev A. G. Dominated Operators.—Dordrecht: Kluwer, 2000.
- 6. Aliprantis C. D., Burkinshaw O. Positive Operators.—N. Y.: Academic Press, 1985.—xvi+367 p.
- 7. Bell J. L. Boolean Valued Models and Independence Proofs in Set Theory.—N. Y.: Clarendon Press, 1985.—xx+165 p.
- 8. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis.—Novosibirsk: Nauka, 1999; Dordrecht: Kluwer, 1999.
- 9. Kusraev A. G., Tabuev S. N. On multiplicative representation of disjointness preserving bilinear operators // Sib. Math. J.—2008.—Vol. 49, № 2.—P. 357–366.
- 10. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis: Selected Topics.—Vladikavkaz: SMI VSC RAS, 2014.—iv+400 p.—(Trends in Science: The South of Russia. A Mathematical Monograph. Issue 6).

Received February 16, 2015.

Kusraev Anatoly Georgievich Southern Mathematical Institute Vladikavkaz Science Center of the RAS, *Director* 22 Markus street, Vladikavkaz, 362027, Russia E-mail: kusraev@smath.ru

KUTATELADZE SEMEN SAMSONOVICH Sobolev Institute of Mathematics, senior staff scientist 4 Koptyug Avenue, Novosibirsk, 630090, Russia E-mail: sskut@member.ams.org

О ХАРАТЕРИЗАЦИИ ПОРЯДКОВО ОГРАНИЧЕННЫХ БИЛИНЕЙНЫХ ОПЕРАТОРОВ, СОХРАНЯЮЩИХ ДИЗЪЮНКТНОСТЬ

Кусраев А. Г., Кутателадзе С. С.

Цель заметки — дать характеризацию сохраняющих дизъюнктность порядково ограниченных билинейных операторов в векторных решетках в терминах ядер. В доказательстве основного результата используется булевозначный подход.

Ключевые слова: булевозначное представление, векторная решетка, сохраняющий дизъюнктность оператор.