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Abstract. Let (CE, ‖ · ‖CE
) be a Banach symmetric ideal of compact operators, acting in a complex

separable infinite-dimensional Hilbert space H. Let Ch
E = {x ∈ CE : x = x∗} be the real Banach subspace

of self-adjoint operators in (CE, ‖ · ‖CE
). We show that in the case when (CE, ‖ · ‖CE

) is a separable or
perfect Banach symmetric ideal (CE 6= C2) any skew-Hermitian operator H : Ch

E → Ch
E has the following

form H(x) = i(xa − ax) for same a∗ = a ∈ B(H) and for all x ∈ Ch
E. Using this description of skew-

Hermitian operators, we obtain the following general form of surjective linear isometries V : Ch
E → Ch

E. Let
(CE, ‖ ·‖CE

) be a separable or a perfect Banach symmetric ideal with not uniform norm, that is ‖p‖CE
> 1

for any finite dimensional projection p ∈ CE with dim p(H) > 1, let CE 6= C2, and let V : Ch
E → Ch

E

be a surjective linear isometry. Then there exists unitary or anti-unitary operator u on H such that
V (x) = uxu∗ or V (x) = −uxu∗ for all x ∈ Ch

E.
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1. Introduction

The study of linear isometries on classical Banach spaces was initiated by S. Banach.
In [1, Ch. XI], he described all isometries on the space Lp[0, 1] with p 6= 2. In [2], J. Lamperti
characterized all linear isometries on the Lp-space Lp(Ω,A, µ), where (Ω,A, µ) is a measure
space with a complete σ-finite measure µ. Both S. Banach and J. Lamberti used a method for
description of linear isometries on Lp-spaces that was independent of the choice of a scalar field.
For studying linear isometries on the broader class of function symmetric spaces E(Ω,A, µ),
different approaches are required that depend on a scalar field. If E(Ω,A, µ) is a complex
symmetric space then G. Lumer’s method [3] based on the theory of Hermitian operators
can be effectively applied. For example, M. G. Zaidenberg [4, 5] used this method for
description of all surjective linear isometries on the complex symmetric space E(Ω,A, µ),
where µ is a continuous measure. For the symmetric space E = E(0, 1) of real-valued
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measurable functions on the segment [0, 1] with a Lebesgue measure µ, where E is a separable
space or has the Fatou property, a description of surjective linear isometries on E was given
by N. J. Kalton and B. Randrianantoanina [6]. They used methods of the theory of positive
numerical operators. For real symmetric sequence spaces, a general form of surjective linear
isometries was described by M. Sh. Braverman and E. M. Semenov [7, 8]. They used methods
based on the theory of finite groups. For complex separable symmetric sequence spaces
(symmetric sequence spaces with the Fatou property), a general form of surjective linear
isometries was described in [9] (respectively, in [10]).

Naturally, the next step is to describe surjective linear isometries in the noncommutative
situation, when symmetric sequence spaces are replaced by symmetric ideals of compact
operators.

Assume (H, (·, ·)) is an infinite-dimensional complex separable Hilbert space. Let B(H)
(respectively, K(H)) be the C∗-algebra of all bounded (respectively, compact) linear operators
on H. For a compact operator x ∈ K(H), we denote by µ(x) :=

{

µ(n, x)
}∞

n=1
the singular

value sequence of x, that is, the decreasing rearrangement of the eigenvalue sequence of
|x| = (x∗x)

1

2 . We let Tr denote the standard trace on B(H). For p ∈ [1,∞) (p = ∞), we let

Cp :=
{

x ∈ K(H) : Tr
(

|x|p
)

< ∞
}

(respectively, C∞ = K(H))

denote the p-th Schatten ideal of B(H), with the norm

‖x‖p := Tr
(

|x|p
)

1

p (respectively, ‖x‖∞ := sup
n>1

|µ(n, x)|).

In 1975, J. Arazy [11], [12, Ch. 11, § 2, Theorem 11.2.5] gave the following description of all
the surjective isometries of Schatten ideals Cp.

Theorem 1. Let V : Cp → Cp, 1 6 p 6 ∞, p 6= 2, be an surjective isometry. Then there
exist unitary operators u1 and u2 or anti-unitary operators v1 and v2 on H such that either
V x = u1xu2 or V x = v1x

∗v2 for all x ∈ Cp.

Recall that a mapping v : H → H is an anti-unitary operator if

v(λh+ f) = λv(h) + v(f) and ‖v(h)‖H = ‖h‖H

for every complex number λ and h, f ∈ H. If v is an anti-unitary operator then there exists
an anti-unitary operator v∗ such that (h, v(f)) = (f, v∗(h)) for all h, f ∈ H (see, for example,
[12, Ch. 11, § 2]).

The Schatten ideals Cp are examples of Banach symmetric ideals (CE, ‖ · ‖CE ) of compact
operators associated with symmetric sequence spaces (E, ‖ · ‖E) (see Section 2.2 below).
In 1981 A. Sourour [13] proved a version of Theorem 1 for separable Banach symmetric
ideal (CE , ‖ · ‖CE ) such that CE 6= C2. Recently [14], a variant of Theorem 1 was obtained for
any perfect Banach symmetric ideals (CE , ‖·‖CE ), CE 6= C2 (recall that (CE, ‖·‖CE ) is a perfect
ideals, if CE = C××

E [15] (see Section 2.2 below)).
It is clear that for any unitary or anti-unitary operator u the linear operators V1(x) = uxu∗

and V2(x) = −uxu∗ acting in a real Banach space (Ch
E , ‖·‖CE ) are surjective isometries, where

Ch
E = {x ∈ CE : x = x∗}.

Our main result states that if (CE , ‖ · ‖CE ) is a separable or a perfect Banach symmetric
ideal of compact operators such that CE 6= C2, there are no other isometries in (Ch

E , ‖ · ‖CE ):

Theorem 2. Let (CE , ‖ · ‖CE ) be a separable or a perfect Banach symmetric ideal with
not uniform norm, CE 6= C2, and let V : Ch

E → Ch
E be a surjective isometry. Then there exists

unitary or anti-unitary operator u on H such that V can be written in the form V (x) = uxu∗

(x ∈ Ch
E) or in the form V (x) = −uxu∗ (x ∈ Ch

E).
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An analogous result for the space of self-adjoint traceless operators on a finite
dimensionalal Hilbert space was obtained by G. Nagy [16].

2. Preliminaries

2.1. Symmetric Sequence Spaces. Let ℓ∞ (respectively, c0) be the Banach lattice of all
bounded (respectively, converging to zero) sequences {ξn}

∞
n=1 of real numbers with respect

to the uniform norm ‖{ξn}
∞
n=1‖∞ = supn∈N |ξn|, where N is the set of natural numbers. If 2N

is the σ-algebra of all subsets of N and µ({n}) = 1 for each n ∈ N, then (N, 2N, µ) is a σ-finite
measure space, L∞(N, 2N, µ) = ℓ∞,

L1(N, 2
N, µ) = ℓ1 =

{

{ξn}
∞
n=1 ⊂ R : ‖{ξn}‖1 =

∞
∑

n=1

|ξn| < ∞

}

,

where R is the field of real numbers. If ξ = {ξn}
∞
n=1 ∈ ℓ∞, then the non-increasing

rearrangement ξ∗ : (0,∞) → (0,∞) of ξ is defined by

ξ∗(t) = inf{λ : µ({|ξ| > λ}) 6 t}, t > 0,

(see, for example, [17, Ch. 2, Definition 1.5]).
Therefore the non-increasing rearrangement ξ∗ is identified with the sequence ξ∗ = {ξ∗n},

where
ξ∗n = inf

F⊂N,
card(F )<n

sup
n/∈F

|ξn|.

A non-zero linear subspace E ⊆ ℓ∞ with a Banach norm ‖·‖E is called symmetric sequence
space if conditions η ∈ E, ξ ∈ ℓ∞, ξ∗ 6 η∗ imply that ξ ∈ E and ‖ξ‖E 6 ‖η‖E .

If (E, ‖ · ‖E) is a symmetric sequence space, then ℓ1 ⊂ E ⊂ ℓ∞, in addition, ‖ξ‖E 6 ‖ξ‖1
for all ξ ∈ ℓ1 and ‖ξ‖∞ 6 ‖ξ‖E for all ξ ∈ E [17, Ch. 2, § 6, Theorem 6.6]. If there exists
ξ ∈ (E \ c0) then ξ∗ > α1 for some α > 0, and therefore 1 ∈ E, where 1 = {1, 1, . . .}.
Consequently, for any symmetric sequence space E we have that E ⊆ c0 or E = ℓ∞.

2.2. Banach Symmetric Ideal of Compact Operators. Let (H, (·, ·)) be an infinite-
dimensional complex separable Hilbert space, let B(H) (respectively, K(H),F(H)) be the
∗-algebra of all bounded (respectively, compact, finite rank) linear operators in H, and let
P(H) = {p ∈ B(H) : p = p∗ = p2}. It is known that ∗-algebras B(H) and K(H) are
C∗-algebras with respect to the uniform operator norm, which we shall denote by ‖ · ‖∞.
For a subset A ⊆ B(H), we set Ah = {x ∈ A : x = x∗}.

It is well known that F(H) ⊂ I ⊂ K(H) for any proper two-sided ideal I in B(H) (see for
example, [18, Proposition 2.1]).

If (E, ‖ · ‖E) ⊂ c0 is a symmetric sequence space, then the set

CE := {x ∈ K(H) :
{

µ(n, x)
}∞

n=1
∈ E}

is a proper two-sided ideal in B(H) (see [18, Theorem 2.5]). In addition, (CE, ‖·‖CE ) is a Banach
space with respect to the norm ‖x‖CE = ‖

{

µ(n, x)
}

‖E [19] (see also [20, Ch. 3, § 3.5]), and
the norm ‖ · ‖CE has the following properties:

1) ‖xzy‖CE 6 ‖x‖∞‖y‖∞‖z‖CE for all x, y ∈ B(H) and z ∈ CE;
2) ‖x‖CE = ‖x‖∞ if x ∈ F(H) is of rank 1.
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In this case we say that (CE , ‖ · ‖CE ) is a Banach symmetric ideal (cf. [18, Ch. 1, §1.7], [21,
Ch. III]). It is known that C1 ⊂ CE ⊂ K(H) and ‖x‖CE 6 ‖x‖1, ‖y‖∞ 6 ‖y‖CE for all x ∈ C1,
y ∈ CE .

If (E, ‖·‖E) is a symmetric sequence space (respectively, (CE, ‖·‖CE ) is a Banach symmetric
ideal), then the Köthe dual E× (respectively, C×

E ) is defined as

E× =
{

ξ = {ξn}
∞
n=1 ∈ ℓ∞ : ξη = {ξnηn}

∞
n=1 ∈ ℓ1 for all η = {ηn}

∞
n=1 ∈ E

}

,

(

respectively, C×
E =

{

x ∈ B(H) : xy ∈ C1 for all y ∈ CE

})

,

and

‖ξ‖E× = sup

{ ∞
∑

n=1

|ξnηn| : η = {ηn}
∞
n=1 ∈ E, ‖η‖E 6 1

}

, ξ ∈ E×,

(

respectively, ‖x‖C×

E
= sup

{

Tr
(

|xy|
)

: y ∈ CE, ‖y‖CE 6 1
}

, x ∈ C×
E

)

.

It is known that (E×, ‖ · ‖E×) is a symmetric sequence space [22, Ch. II, § 4, Theo-
rems 4.3, 4.9] and ℓ×1 = ℓ∞. In addition, if E 6= ℓ1 then E× ⊂ c0. Therefore, if E 6= ℓ1,
the space (C×

E , ‖ · ‖C×

E
) is a symmetric ideal of compact operators.

A Banach symmetric ideal (CE, ‖ · ‖CE ) is said to be perfect if CE = C××
E (see, for examp-

le, [15]). It is clear that CE is perfect if and only if E = E××.
A symmetric sequence space (E, ‖ · ‖E) (a Banach symmetric ideal (CE , ‖ · ‖CE )) is said to

possess Fatou property if the conditions

0 6 ξk 6 ξk+1, ξk ∈ E (respectively, 0 6 xk 6 xk+1, xk ∈ CE) for all k ∈ N

and supk>1 ‖ξk‖E < ∞ (respectively, supk>1 ‖xk‖CE < ∞) imply that there exists an element
ξ ∈ E (respectively, x ∈ CE) such that ξk ↑ ξ and ‖ξ‖E = supk>1 ‖ξk‖E (respectively, xk ↑ x
and ‖x‖CE = supk>1 ‖xk‖CE ).

It is known that (E, ‖ · ‖E) (respectively, (CE , ‖ · ‖CE )) has the Fatou property if and
only if E = E×× [23, Vol. II, Ch. 1, Section a] (respectively, CE = C××

E [24, Theorem 5.14]).
Therefore (CE , ‖ · ‖CE ) is a perfect Banach symmetric ideal if and only if (CE , ‖ · ‖CE ) has the
Fatou property.

If y ∈ C×
E , then a linear functional fy(x) = Tr

(

x ·y
)

, x ∈ CE, is continuous on (CE , ‖·‖CE ),
in addition, ‖fy‖C∗

E
= ‖y‖C×

E
, where (C∗

E, ‖ · ‖C∗

E
) is the dual of the Banach space (CE, ‖ · ‖CE )

(see, for example, [15]). Identifying an element y ∈ C×
E and the linear functional fy, we may

assume that C×
E is a closed linear subspace in C∗

E. Since F(H) ⊂ C×
E , it follows that C×

E is a total
subspace in C∗

E, that is, the conditions x ∈ CE, f(x) = 0 for all f ∈ C×
E imply x = 0. Thus,

the weak topology σ(CE , C
×
E ) is a Hausdorff topology, in addition F(H) (respectively, F(H)h)

is σ(CE , C
×
E )-dense in CE (respectively, Ch

E).

3. Skew-Hermitian Operators in Banach Symmetric Ideals

Let X be a linear space over the field K of real or complex numbers. A semi-inner product

on a space X is a K-valued form [·, ·] : X ×X → K which satisfies

(i) [αx+ y, z] = α · [x, z] + [y, z] for all α ∈ K and x, y, z ∈ X;

(ii) [x, αy] = α · [x, y] for all α ∈ K and x, y ∈ X;

(iii) [x, x] > 0 for all x ∈ X and [x, x] = 0 implies that x = 0;
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(iv) |[x, y]|2 6 [x, x] · [y, y] for all x, y ∈ X

(see, for example, [25, Ch. 2, § 1]).
The function ‖x‖ =

√

[x, x] is the norm on a linear space X. Conversely, if (X, ‖ · ‖X)
is a normed linear space, then there exists semi-inner product [·, ·] on X compatible with

the norm ‖ · ‖X , that is, ‖x‖X =
√

[x, x] [25, Ch. 2, § 1]. In particular, the semi-inner product
(compatible with the norm ‖ · ‖X) can be defined using the equation [x, y] = ϕy(x), where
ϕy ∈ X∗, ‖ϕy‖X∗ = ‖y‖X and ϕy(y) = ‖y‖2X (such functional is called a support functional

at y ∈ X) [25, Ch. 2, §1, Theorem 10].
Let (X, ‖ · ‖X) be Banach space over field K, and let [·, ·] be a semi-inner product on X

which is compatible with the norm ‖ · ‖X . A linear bounded operator H : X → X is said
to be skew-Hermitian, if Re([H(x), x]) = 0 for all x ∈ X, where Re(α) is the real part
of number α ∈ K [12, Ch. 9, § 4]. In particular, if K = R then ϕx(H(x)) = [H(x), x] = 0
for every x ∈ X.

The following Proposition is well known [12, Ch. 9, § 4, Proposition 9.4.2].

Proposition 1. Let (X, ‖ · ‖X) be a real Banach space and let H be a skew-Hermitian
operator on X. If V : X → X is a surjective isometry then an operator V ·H · V −1 is a skew-
Hermitian.

It is clear that in the case (X, ‖ · ‖X) = (Ch
E , ‖ · ‖CE ) every linear operator H : Ch

E → Ch
E

defined by H(x) = i(xa − ax), x ∈ Ch
E , where a ∈ B(H)h, i2 = −1 is a skew-Hermitian

operator.
The following Theorem gives a description of skew-Hermitian operators acting on Ch

E

when CE is a separable or perfect Banach symmetric ideal other than C2.

Theorem 3. Let (CE, ‖ · ‖CE ) be a separable or perfect Banach symmetric ideal, and let
CE 6= C2. Then for any skew-Hermitian operator H : Ch

E → Ch
E there exists a ∈ B(H)h such

that H(x) = i(xa− ax) for all x ∈ Ch
E.

⊳ We slightly modify the original proof of Sourour [13]. For vectors ξ, η ∈ H, denote by
ξ⊗η the rank one operator on H given (ξ⊗η)(h) = (h, η)ξ, h ∈ H. It is easily seen 〈x, ξ⊗η〉 :=
Tr((η⊗ ξ) ·x) = (x(η), ξ) for any x ∈ B(H)h and ξ, η ∈ H. If y = ξ⊗ ξ, ‖ξ‖H = 1, then y is an
one dimensional projection on H and ‖y‖CE = ‖y‖∞ = 1. Thus for a linear functional fy(x) :=
〈x, y〉 = Tr(y∗x), x ∈ Ch

E, we have that fy(y) = Tr(y2) = Tr(y) = (ξ, ξ) = 1 = ‖y‖2CE . In ad-
dition, if x ∈ Ch

E and ‖x‖CE 6 1 then |fy(x)| = |Tr(yx)| = |(x(ξ), ξ)| 6 ‖x‖∞ 6 ‖x‖CE 6 1.
Consequently, ‖fy‖(Ch

E
)∗ = 1 = ‖y‖CE . This means that fy is a support functional at y ∈ Ch

E,

and [x, y] = fy(x) is a semi-inner product on Ch
E compatible with the norm ‖ · ‖Ch

E
[25, Ch. 2,

§ 1, Theorem 10].
Step 1. If ξ, η ∈ H, (η, ξ) = 0, then 〈H(η ⊗ η), ξ ⊗ ξ〉 = 0.
We can assume that ‖η‖H = ‖ξ‖H = 1. Since p = η ⊗ η is one dimensional projections

and H is a skew-Hermitian operator, it follows that

0 = [H(p), p] = fp(H(p)) = 〈H(p), p〉. (1)

By Lemma 9.2.7 ([12, Ch. 9, §9.2], see also the proof of Lemma 11.3.2 [12, Ch. 9, §11.3]), there
exists a vector ξ = {ξ1, ξ2} ∈ (R2, ‖ · ‖E), ξ1 > 0, ξ2 > 0, ‖ξ‖E = 1, such that the functional
f({η1, η2}) = η1ξ1 + η2ξ2, {η1, η2} ∈ R

2, is a support functional at ξ for space (R2, ‖ · ‖E).
Let us show that the linear functional

ϕ(y) = 〈y, x〉, y ∈ Ch
E , x = ξ1p+ ξ2q,

is a support functional at x for (Ch
E , ‖ · ‖CE ).
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Since f is support functional at ξ for (R2, ‖ · ‖E) and ‖ξ‖E = 1, it follows that
ξ21 + ξ22 = f({ξ1, ξ2}) = f(ξ) = ‖ξ‖2E = 1. Furthermore, by ‖f‖ = ‖ξ‖E = 1, we have that
|f({η1, η2})| = |ξ1η1 + ξ2η2| 6 1 for every {η1, η2} ∈ R

2 with ‖{η1, η2}‖E 6 1.
Further, by [21, Ch. II, § 4, Lemma 4.1], we have

|(y(η), η)| 6 µ(1, y), |(y(ξ), ξ)| 6 µ(1, y), |(y(η), η)| + |(y(ξ), ξ)| 6 µ(1, y) + µ(2, y),

that is, {(y(η), η), (y(ξ), ξ)} ≺≺ {µ(1, y), µ(2, y)}. Since (E, ‖ · ‖E) is a fully symmetric
sequence space, it follows that

‖{(y(η), η), (y(ξ), ξ)}‖E 6 ‖{µ(1, y), µ(2, y)}‖E 6 ‖y‖CE .

Consequently, if y ∈ Ch
E and ‖y‖CE 6 1, then

|ϕ(y)| = |〈y, x〉| = |ξ1Tr(py) + ξ2Tr(qy)| =
∣

∣f
({

(y(η), η), (y(ξ), ξ)
})
∣

∣ 6 1,

that is, ‖ϕ‖(Ch
E
,‖·‖E)∗ 6 1. Since ‖x‖CE = ‖ξ‖E = 1 and

ϕ(x) = 〈x, x〉 = 〈ξ1p+ ξ2q, ξ1p+ ξ2q〉 = Tr(ξ1p+ ξ2q)(ξ1p+ ξ2q) = ξ21 + ξ22 = 1,

it follows that ‖ϕ‖(Ch
E
,‖·‖E)∗ = 1 = ‖x‖CE and ϕ(x) = ‖x‖2CE . This means that ϕ is a support

functional at x for space (Ch
E , ‖ · ‖CE ).

Hence,

0 = [H(x), x] = ϕ(H(x)) =
〈

H(x), x
〉

=
〈

ξ1H(p) + ξ2H(q), ξ1p+ ξ2q
〉

.

Since 〈H(p), p〉 = 〈H(q), q〉 = 0 (see (1)), it follows that
〈

H(p), q
〉

= −
〈

H(q), p
〉

. (2)

We extend η1 = η, η2 = ξ up to an orthonormal basis {ηi}∞i=1, and let pi = ηi⊗ηi. Now we
replace our operator H with another skew-Hermitian operator H0. Let u be a unitary operator
such that u(η1) = η2, u(η2) = η1 and u(ηk) = ηk if k 6= 1, 2. It is clear that u∗ = u−1 = u,
up1u = p2, up2u = p1, upiu = pi, i 6= 1, 2, and V (x) = uxu∗ = uxu is an surjective isometry
on Ch

E, in addition, V −1 = V .
By Proposition 1, a linear operator H1 = V HV −1 is a skew-Hermitian operator,

in particular, 〈H1(pk), pk〉 = 0 for all k ∈ N (see (1)).
If i, j 6= 1, 2, then

〈

H1(pi), pj
〉

=
〈

uH(pi)u, pj
〉

= Tr(pjuH(pi)u) = (uH(pi)u(ηj), ηj)

= (H(pi)u(ηj), u
∗(ηj)) = (H(pi)(ηj), ηj) = Tr(pjH(pi)) =

〈

H(pi), pj
〉

.

If i = 1, j 6= 1, 2, then

〈H1(p1), pj〉 = 〈uH(p2)u, pj〉 = Tr(pjuH(p2)u) = (uH(p2)u(ηj), ηj)

= (H(p2)u(ηj), u
∗(ηj)) = (H(p2)(ηj), ηj) = Tr(pjH(p2)) = 〈H(p2), pj〉.

Similarly, we get the following equalities

(i) 〈H1(p2), pj〉 = 〈H(p1), pj〉 if i = 2, j 6= 1, 2;

(ii) 〈H1(pi), p1〉 = 〈H(pi), p2〉 if j = 1, i 6= 1, 2;
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(iii) 〈H1(p1), p2〉 = 〈H(p2), p1〉 if i = 1, j = 2;

(iv) 〈H1(p2), p1〉 = 〈H(p1), p2〉 if i = 2, j = 1.

It is clear that H0 = 1
2(H − H1) is a skew-Hermitian operator, and if i, j 6= 1, 2, then

〈H0(pi), pj〉 = 1
2(〈H(pi), pj〉 − 〈H1(pi), pj〉) = 0. Similarly, if i = 1, j 6= 1, 2 (respectively,

i = 2, j 6= 1, 2) we get

〈

H0(p1), pj
〉

=
1

2

(〈

H(p1), pj
〉

−
〈

H(p2), pj
〉)

(

respectively,
〈

H0(p2), pj
〉

=
1

2

(〈

H(p2), pj
〉

−
〈

H(p1), pj〉
))

,

that is, 〈H0(p1), pj〉+ 〈H0(p2), pj〉 = 0 in the case j 6= 1, 2.
Similarly, 〈H0(pj), p1〉+ 〈H0(pj), p2〉 = 0 if j 6= 1, 2. Since

〈

H0(p1), p2
〉

=
1

2

(〈

H(p1), p2
〉

−
〈

H(p2), p1
〉)

,
〈

H(p1), p2
〉

= −
〈

H(p2), p1
〉

(see (2)), it follows that 〈H0(p1), p2〉 = 〈H(p1), p2〉. Similarly, we get that 〈H0(p2), p1〉 =
−〈H(p1), p2〉. Finally, since H0 is a skew-Hermitian operator, we have 〈H0(pk), pk〉 = 0 for all
k ∈ N (see (1)).

Let n be the smallest natural number such that the norm ‖ · ‖E is not Euclidian on R
n.

Then there exist (see, [10, Lemma 5.4]) linear independent vectors ξ = (ξ1, ξ2, . . . , ξn), η =
(η1, η2, . . . , ηn) ∈ R

n, ‖ξ‖E = 1, such that

‖ξ‖E = ‖fη‖E∗ = fη(ξ) = 1, (3)

where fη(ζ) =
∑n

i=1 ζiηi, ζ = (ζ1, ζ2, . . . , ζn) ∈ R
n. By rearranging the coordinates we may

assume that ξ1η2 6= ξ2η1.
Let x =

∑n
j=1 ξjpj, y =

∑n
j=1 ηjpj , and let ϕy(z) = 〈z, y〉 =

∑n
j=1 ηj · Tr(pjz), z ∈ Ch

E .

Let us show that ϕy is a support functional at x for (Ch
E , ‖·‖E). Since ‖fη‖E∗ = 1 (see (3)),

it follows that |fη(ζ)| = |
∑n

i=1 ηiζi| 6 1 for every ζ = {ζi}
n
i=1 ∈ R

n with ‖ζ‖E 6 1. Note that
‖x‖CE = ‖ξ‖E = 1.

We should show that ‖ϕy‖ = ‖x‖CE = 1 and ϕy(x) = ‖x‖2CE = 1. Indeed,

ϕy(x) = 〈x, y〉 =

〈

n
∑

j=1

ξjpj,

n
∑

j=1

ηjpj

〉

=

n
∑

j=1

ξjηj = fη(ξ) = 1 = ‖x‖2CE .

If z ∈ Ch
E, ‖z‖CE 6 1 then |ϕy(z)| =

∣

∣

∑n
j=1 ηj(z(ηj), ηj)

∣

∣ 6 1. The last inequality follows
from

{

(z(η1), η1), (z(η2), η2), . . . , (z(ηn), ηn)
}

≺
{

µ(1, z), µ(2, z), . . . , µ(n, z)
}

(see [21, Ch. II, § 4, Lemma 4.1]). Therefore ‖ϕy‖ = ‖x‖CE = 1 and ϕy(x) = ‖x‖2CE = 1. This
means that ϕy is a support functional at x for (Ch

E, ‖ · ‖E).
Consequently,

0 =
〈

H0(x), y
〉

=
〈

ξ1H0(p1) + . . .+ ξnH0(pn), η1p1 + . . .+ ηnpn
〉

= (ξ1η2 − ξ2η1)
〈

H0(p1), p2
〉

+ (ξ1η3 − ξ2η3)
〈

H0(p1), p3
〉

+ . . . + (ξ1ηn − ξ2ηn)
〈

H0(p1), pn
〉

+ (ξ3η1 − ξ3η2)
〈

H0(p3), p1
〉

+ . . .+ (ξnη1 − ξnη2)
〈

H0(pn), p1
〉

.

(4)
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Let now x̃ = ξ1p1 + ξ2p2 − ξ3p3 − . . . − ξnpn and ỹ = η1p1 + η2p2 − η3p3 − . . . − ηnpn.
As above, we have that ϕỹ(·) = 〈·, ỹ〉 is a support functional at x̃. Consequently,

0 =
〈

H0(x̃), ỹ
〉

= (ξ1η2 − ξ2η1)
〈

H0(p1), p2
〉

+ (−ξ1η3 + ξ2η3)〈H0(p1), p3〉

+ . . .+ (−ξ1ηn + ξ2ηn)
〈

H0(p1), pn
〉

+ (−ξ3η1 + ξ3η2)
〈

H0(p3), p1
〉

+ . . .+ (−ξnη1 + ξnη2)
〈

H0(pn), p1
〉

.

(5)

Summing (4) and (5) we obtain 2(ξ1η2 − ξ2η1)〈H0(p1), p2〉 = 0, that is, 〈H(p1), p2〉 =
〈H0(p1), p2〉 = 0.

Step 2. Let η ∈ H, ‖η‖H = 1, p = η ⊗ η, x ∈ K(H)h, and let Tr(xq) = 0 for any one
dimensional projection q with qp = 0. Then there exists f ∈ H such that x = η⊗ f + f ⊗ η−
(η ⊗ η)(f ⊗ η), ‖f‖H 6 ‖x‖∞.

Indeed, if q is an one dimensional projection with qp = 0 then qxq = αq for some α ∈ R,
and 0 = Tr(xq) = Tr(qxq) = Tr(αq) = α, that is, α = 0 and qxq = 0. Let e ∈ P(H),
dim e(H) = 1, ep = 0, eq = 0, y = (q + e)x(q + e). If y 6= 0 then there exists r ∈ P(H),
dim r(H) = 1 such that r 6 q + e and rxr = ryr = βr for some 0 6= β ∈ R. Since rp = 0,
it follows that 0 = Tr(xr) = Tr(rxr) = β 6= 0. Thus y = 0. Continuing this process, we
construct a sequence of finite-dimensional projections gn ↑ (I − p) such that gnxgn = 0 for all
n ∈ N, where I(h) = h, h ∈ H. Consequently, (I − p)x(I − p) = 0.

If f = x(η) then xp = f ⊗ η and px = η ⊗ f . In addition,

(I − p)xp(h) = (I − p)x((h, η)η)) = (h, η)(I − p)f, h ∈ H,

that is, (I − p)xp = (I − p)f ⊗ η. Therefore,

x = px+ (I − p)xp = η ⊗ f + (I − p)f ⊗ η and ‖f‖H 6 ‖x‖∞.

Step 3. Let η ∈ H, ‖η‖H = 1, p = η ⊗ η. Then there exists f ∈ H such that

H(η ⊗ η) = η ⊗ f + f ⊗ η, ‖f‖H 6 ‖H‖.

Indeed, if x = H(η ⊗ η), ξ ∈ H, (η, ξ) = 0, q = ξ ⊗ ξ, then by Step 1 we obtain that
(x(ξ), ξ) = 〈x, ξ ⊗ ξ〉 = Tr(x · ξ ⊗ ξ) = 0. Using Step 2, we have that there exists f ∈ H such
that H(η ⊗ η) = x = η ⊗ f + f ⊗ η − (η ⊗ η)(f ⊗ η). Since H is a skew-Hermitian operator,
it follows that

0 =
〈

H(η ⊗ η), η ⊗ η
〉

=
〈

η ⊗ f + f ⊗ η − (η ⊗ η)(f ⊗ η), η ⊗ η
〉

= Tr
(

(η ⊗ η)
(

η ⊗ f + f ⊗ η − (η ⊗ η)(f ⊗ η)
))

= Tr
(

(η ⊗ η)(η ⊗ f)
)

=
(

(η ⊗ f)(η), η
)

= (η, f).

Thus (η, f) = 0 and x = η ⊗ f + f ⊗ η − (η ⊗ η)(f ⊗ η) = η ⊗ f + f ⊗ η. In addition,

‖f‖H 6 ‖x‖∞ 6 ‖x‖CE = ‖H(η ⊗ η)‖CE 6 ‖H‖ · ‖η ⊗ η‖CE = ‖H‖ · ‖η ⊗ η‖∞ = ‖H‖.

Step 4. There exists a ∈ B(H) such that H(x) = ax+ xa∗ for every x ∈ Ch
E.

Let {pi}
∞
i=1 = {ηi ⊗ ηi}

∞
i=1 be a basis in real linear space F(H)h, where {ηi}

∞
i=1

is an orthonormal basis of H. For every ηi ∈ H there exists fi ∈ H such that H(ηi ⊗ ηi) =
ηi⊗fi+fi⊗ηi, and ‖fi‖H 6 ‖H‖ for all i ∈ N (see Step 3). Define a linear operator a : H → H
setting a(ηi) = fi. Since ‖fi‖H 6 ‖H‖ for all i ∈ N, it follows that a ∈ B(H), in addition,
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H(pi) = ηi ⊗ a(ηi) + a(ηi) ⊗ ηi. Since ηi ⊗ a(ηi) = (ηi ⊗ ηi)a
∗ and a(ηi) ⊗ ηi = a(ηi ⊗ ηi), it

follows that H(x) = ax+ xa∗ for all x ∈ F(H)h.
If (CE , ‖ · ‖CE ) is a separable space then F(H)h is dense in (Ch

E , ‖ · ‖CE ). Consequently,
H(x) = ax+ xa∗ for all x ∈ Ch

E .
Let now (CE , ‖ · ‖CE ) be a perfect Banach symmetric ideal. Repeating the proof

of Theorem 4.4 [14] that establishes the σ(CE , C
×
E )-continuity of the Hermitian operators acting

in (CE , ‖ · ‖CE ), we obtain that the skew-Hermitian operator H also σ(Ch
E , (C

×
E )

h)-continuous.
Since the space F(H)h is σ(Ch

E , (C
×
E )

h)-dense in Ch
E, it follows that H(x) = ax + xa∗ for all

x ∈ Ch
E.

Step 5. a = ib for some b ∈ B(H)h.
Indeed, if a = a1 + ia2, a1, a2 ∈ B(H)h, then

H(x) = ax+ xa∗ = a1x+ xa1 + i(a2x− xa2) = S1(x1) + S2(x),

where S1(x) = a1x+xa1, S2(x) = i(a2x−xa2), x ∈ Ch
E . Since H and S2 are skew-Hermitian,

it follows that S1 = H − S2 is also skew-Hermitian.
If p ∈ P(H), dim p(H) = 1, then the lineal functional ϕ(y) = 〈y, p〉 = Tr(yp), y ∈ Ch

E,
is support functional at p. Thus Tr(pa1p + pa1) = Tr(S1(p)p) = 0, that is, −Tr(pa1) =
Tr(pa1p) = Tr(pa1). This means that Tr(pa1) = 0 for all p ∈ P(H) with dim p(H) = 1.
Consequently, Tr(xa1) = 0 for all x ∈ F(H), and by [26, Lemma 2.1] we have a1 = 0.
Therefore, a = ia2. ⊲

4. The Proof of Theorem 2

Let (CE , ‖ · ‖CE ) be a Banach symmetric ideal. We say that a bounded linear operator
T : Ch

E → Ch
E has the property (P) if for any a ∈ B(H)h there are operators b ∈ B(H)h and

c ∈ B(H)h such that T (i(bx−xb)) = i(aT (x)−T (x)a) and T (i(ax−xa)) = i(cT (x)−T (x)c)
for all x ∈ Ch

E.
It is clear that a bounded linear bijection T : Ch

E → Ch
E has the property (P) if and only

if T−1 has the property (P).

Lemma 1. Let (CE , ‖ · ‖CE ) be a separable or a perfect Banach symmetric ideal other
than C2, and let V : Ch

E → Ch
E be a surjective isometry. Then an isometry V has the

property (P).

⊳ If a ∈ B(H)h then the linear operator H : Ch
E → Ch

E defined by H(x) = i(xa − ax),
x ∈ Ch

E, is a skew-Hermitian operator. By the Proposition 1 the operator V −1 ·H · V is also
skew-Hermitian. Using the Theorem 3 we obtain that there exists b ∈ B(H)h such that
V −1 ·H · V (x) = i(bx− xb), that is, i(aV (x)− V (x)a) = V (i(bx− xb)) for all x ∈ Ch

E .

Similarly, V ·H · V −1 is a skew-Hermitian operator. Hence, there exists an operator c ∈
B(H)h such that V ·H ·V −1(y) = i(cy−yc) for all y ∈ Ch

E. If V −1(y) = x, then V (i(ax−xa)) =
i(cV (x)− V (x)c) for all x ∈ Ch

E . ⊲

Let (CE , ‖ ·‖CE ) be a Banach symmetric ideal, 0 6= x ∈ Ch
E , and let Z(x) = {x}′∩B(H)h =

{y ∈ B(H)h : xy = yx}. A non-zero operator x ∈ Ch
E is said to be a Ch

E-maximal if Z(x) = Z(y)
for any 0 6= y ∈ Ch

E with Z(x) ⊂ Z(y) (cf. [27, Definition 1.4]).

Lemma 2. The following conditions are equivalent:

(i) x ∈ Ch
E is a Ch

E-maximal operator;

(ii) x = αp, where 0 6= p ∈ P(H) ∩ F(H), 0 6= α ∈ R.
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⊳ (i) =⇒ (ii). Since x ∈ Ch
E, it follows that x =

∑t
i=1 λipi, t ∈ N or t = ∞ (the series

converges with respect to the norm ‖ · ‖∞), where 0 6= pi ∈ P(H) ∩ F(H), pipj = 0, i 6= j,
0 6= λi ∈ R, for all i, j = 1, . . . , t. If y ∈ Z(x) then ypi = piy [28, Ch. 1, § 4, p. 17], that
is, Z(x) ⊂ Z(pi) for all i = 1, . . . , t. Since, x is a Ch

E−maximal operator, it follows that
Z(x) = Z(pi), thus Z(pi) = Z(pk) for all i, k = 1, . . . , t.

Suppose that t>2. As Z(p1) = Z(p2), we have

{p1}
′′

={p2}
′′

=
{

α · p2 + β · (I − p2) : α, β ∈ C
}

,

that is, p1 = α0 · p2 + β0 · (I − p2) for some α0, β0 ∈ C. Consequently, 0 = p1p2 = α0 · p2, and
α0 = 0. Therefore p1 = β0 · (I − p2), which contradicts the inclusion p1 ∈ F(H). Thus t = 1
and x = λ1p1.

(ii) =⇒ (i). Let x = αp, where 0 6= p ∈ P(H) ∩ F(H), 0 6= α ∈ R. If 0 6= y ∈ Ch
E and

Z(x) ⊂ Z(y) then Z(p) = Z(x) ⊂ Z(y), and y ∈ {y}
′′

⊆ {p}
′′

= {α ·p+β · (I−p) : α, β ∈ C},
that is, y = α0 · p+ β0 · (I − p) for some α0, β0 ∈ C. Since y is a compact operator, it follows
that β0 = 0, that is, y = α0 · p and Z(x) = Z(y). ⊲

Lemma 3. Let T : Ch
E → Ch

E be a bounded linear bijective operator with the property (P).
Then T (x) is a Ch

E-maximal operator for any Ch
E-maximal operator x ∈ Ch

E.

⊳ Suppose that x ∈ Ch
E is a Ch

E-maximal operator, but T (x) is not Ch
E-maximal, that is,

there exists z ∈ Ch
E such that Z(T (x)) ⊂ Z(z) and Z(T (x)) 6= Z(z). Since T is a bijection,

z = T (y) for some y ∈ Ch
E. Hence, Z(T (x)) ⊂ Z(T (y)) and Z(T (x)) 6= Z(T (y)).

We show that Z(x) ⊂ Z(y). Since an operator T has property (P), it follows that for
a ∈ Z(x) there exists b ∈ B(H)h such that

T (i(ac− ca)) = i(bT (c) − T (c)b) (6)

for all c ∈ Ch
E. Using equations (6) and T (i(ax − xa)) = T (0) = 0, and the injectivity of the

mapping T , we obtain that bT (x) = T (x)b, that is, b ∈ Z(T (x)) ⊂ Z(T (y)). Consequently,
T (i(ay − ya)) = 0 and ay − ya = 0 (see (6)), i. e. a ∈ Z(y). Therefore Z(x) ⊂ Z(y), and
by the Ch

E-maximality of the operator x we obtain that Z(x) = Z(y).
Since Z(T (x)) 6= Z(T (y)), there exists an operator a ∈ Z(T (y)) such that a /∈ Z(T (x)).

By the property (P) we can choose b ∈ B(H)h such that

T (i(bc− cb)) = i(aT (c) − T (c)a) (7)

for all c ∈ Ch
E. Thus T (i(by − yb)) = 0, and by − yb = 0, that is, b ∈ Z(y). Besides, aT (x) −

T (x)a 6= 0 implies that bx−xb 6= 0 (see (7)), that is, b /∈ Z(x), which contradicts the equality
Z(x) = Z(y). ⊲

Lemma 4. Let V : Ch
E → Ch

E be a surjective linear isometry with the property (P).
Then for every p ∈ P(H) ∩ F(H)) there exists qp ∈ P(H) ∩ F(H) such that V (p) = qp or
V (p) = −qp.

⊳ Let 0 6= pi ∈ P(H) ∩ F(H), i = 1, 2, p1p2 = 0. Since pi is a Ch
E-maximal operator

(Lemma 2), it follows that V (pi) is a Ch
E-maximal operator too, i = 1, 2 (Lemma 3).

Consequently, there exist 0 6= qi ∈ P(H) ∩ F(H), and 0 6= αi ∈ R such that V (pi) =
αiqi, i = 1, 2 (Lemma 2). Since p1p2 = 0, it follows that (p1 + p2) ∈ P(H) ∩ F(H) and
V (p1+p2) = α3q3 for some non-zero projection q3 ∈ P(H)∩F(H) and 0 6= α3 ∈ R (Lemma 2).
Therefore α1

α3
q1 +

α2

α3
q2 = q3. By [29] there are four possibilities:

(i) α1

α3
= 1, α2

α3
= 1 if q1q2 = 0;
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(ii) α1

α3
= 1, α2

α3
= −1 if q1q2 = q2;

(iii) α1

α3
= −1, α2

α3
= 1 and q1q2 = q1;

(iv) α1

α3
+ α2

α3
= 1 and (q1 − q2)

2 = 0 if q1q2 6= q2q1.

The case (iv) is impossible because ‖(q1 − q2)‖
2
∞ = ‖(q1 − q2)

2‖∞ = 0, which contradicts
the bijectivity of V . In other cases we have V (p2) = αq2 or V (p2) = −αq2, where α = α1.
Consequently, V (p) = αqp or V (p) = −αqp for an arbitrary 0 6= p ∈ P(H) ∩ F(H), p1p = 0.

Let now 0 6= e ∈ P(H) ∩ F(H) and p1e 6= 0. Then there exists a non-zero finite
dimensional projection f , such that p1f = 0 and ef = 0. According to above, we have
α1q1 = V (p1) = αfqp1 or V (p1) = −αfqp1 and V (e) = αfqe or V (e) = −αfqe for some
non-zero finite dimensional projections qf , qe and for non-zero real number αf . Consequently,
q1 = qp1 and α1 = ±αf . In particular, V (e) = α1qe or V (f) = −α1qe.

If e ∈ P(H) and dim e(H) = 1, then 1=‖e‖CE =‖V (e)‖CE = |α|‖qe‖CE > |α|‖qe‖∞= |α|,
that is, |α| 6 1.

Replacing the isometry V with V −1, we get that V −1(p) = βrp or V −1(p) = −βrp for
arbitrary p ∈ P(H)∩F(H), where rp ∈ P(H)∩F(H) and β does not depend on the projection
p. In particular, if e ∈ P(H) ∩ F(H) and dim e(H) = 1, then 1 = ‖e‖CE = ‖V −1(e)‖CE =
|β|‖re‖CE > |β|‖re‖∞ = |β|, i. e. |β| 6 1.

Therefore, for p ∈ P(H) ∩ F(H) we obtain that V (p) = ±αqp, and p = V −1(±αq) =
±(αβ)rq. Hence |αβ| = 1 and |α| = 1. ⊲

We say that the norm ‖ · ‖CE is a not uniform if ‖p‖CE > 1 for any p ∈ P(H)∩F(H) with
dim p(H) > 1.

Lemma 5. Let (CE, ‖ · ‖CE ) be a Banach symmetric ideal with not uniform norm, and let
V : Ch

E → Ch
E be a surjective isometry with the property (P). Then V (p) or (−V )(p) is one

dimensional projection for any one dimensional projection p.

⊳ Let p ∈ P(H) ∩ F(H), dim p(H) = 1. By Lemma 4 we have that there exists qp ∈
P(H) ∩ F(H) such that V (p) = qp or V (p) = −qp. If dim qp(H) > 1 then 1 = ‖p‖CE =
‖V (p)‖CE = ‖qp‖CE > 1, what is wrong. ⊲

Lemma 6. Let (CE , ‖ · ‖CE ) and an isometry V be the same as in the conditions of the
Lemma 5. Then

V (P(H) ∩ F(H)) ⊆ P(H) ∩ F(H)

or

(−V )(P(H) ∩ F(H)) ⊆ P(H) ∩ F(H).

⊳ Let P1(H) = {p ∈ P(H) : dim p(H) = 1}, and let p, e ∈ P1(H). By Lemma 5, there
exists q, r ∈ P1(H) such that V (p) = q or V (p) = −q and V (e) = r or V (e) = −r. If
V (p) = q, V (e) = −r then q − r = V (p + q) = ±f for some 0 6= f ∈ P(H) (see Lemma 4),
which is not possible because q, r ∈ P1(H). Similarly, the case V (p) = −q, V (e) = r is
also impossible. Consequently, V (P1(H)) ⊆ P1(H) or (−V )(P1(H)) ⊆ P1(H). Since each
projector p ∈ P(H) ∩ F(H) is the final sum of one-dimensional projectors, it follows that
V (P(H) ∩ F(H)) ⊆ P(H) ∩ F(H) or (−V )(P(H) ∩ F(H)) ⊆ P(H) ∩ F(H). ⊲

Corollary 1. Let (CE , ‖ · ‖CE ) and V be the same as in the conditions of the Lemma 5.
Then

(i) V (p)V (e) = 0 for any p, e ∈ P(H) ∩ F(H) with pe = 0;

(ii) V is a bijection from P1(H) onto P1(H).
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⊳ (i). By Lemma 5, V (p) = qp ∈ P(H)∩F(H) for all p ∈ P(H) ∩F(H) or V (p) = −qp ∈
P(H) ∩ F(H) for all p ∈ P(H) ∩ F(H). In the first case for p, e ∈ P(H) ∩ F(H) with pe = 0,
we have that V (p) = qp, V (e) = qp, qr + qe = V (r + e) = qr+e, that is, V (r)V (e) = qrqe = 0.

The case V (p) = −qp ∈ P(H) ∩ F(H) for all p ∈ P(H) ∩ F(H) is proved similarly.
Item (ii) directly follows from Lemma 5. ⊲

⊳ Proof of Theorem 2. We suppose that V (P(H) ∩F(H)) ⊆ P(H) ∩F(H) (the case
(−V )(P(H) ∩ F(H)) ⊆ P(H) ∩ F(H) is proved by replacing V with (−V )). Let

x =
k
∑

n=1

λnpn ∈ F(H)h, pn ∈ P1(H), pnpm = 0,

n 6= m, 0 6= λn ∈ R, n,m = 1, . . . , k.

Since V (pn) · V (pm) = 0, n 6= m (Corollary 1 (i)), it follows that

V (x2) = V

(

k
∑

n=1

λ2
npn

)

=
k
∑

n=1

λ2
nV (pn) = V (x)2

and

Tr(V (x)) =

k
∑

n=1

λnTr(V (pn)) =

k
∑

n=1

λn = Tr(x).

If p, e, q, f ∈ P1(H), V (p) = q, V (e) = f , then

2Tr(pe) = Tr(pe) + Tr(ep) = Tr((p + e)2 − p− e)

= Tr(V ((p+ e)2))− 2 = Tr(V (p+ e))2 − 2 = Tr((q + f)2)− 2 = 2Tr(qf).

Consequently, Tr(pe) = Tr(V (p)V (e)) for all p, e ∈ P1(H). By [30, Ch. 3, § 3.2, Theorem 3.2.8]
we obtain that there exists an unitary or anti-unitary operator u such that V (p) = upu∗ for
all p ∈ P1(H) . Thus V (x) = u∗xu for all x ∈ F(H)h.

If (CE , ‖ · ‖CE ) is a separable space then F(H)h is dense in (Ch
E , ‖ · ‖CE ). Consequently,

V (x) = u∗xu (respectively, V (x) = −uxu∗) for all x ∈ Ch
E.

If (CE , ‖ · ‖CE ) is a perfect Banach symmetric ideal, then V is σ(CE , C
×
E )-continuous

(see proof of Step 4 in Theorem 4). Since F(H)h is σ(CE , C
×
E )-dense in (Ch

E , ‖ · ‖CE ), it follows
that V (x) = u∗xu (respectively, V (x) = −uxu∗) for all x ∈ Ch

E.
In the case (−V )(P(H) ∩ F(H)) ⊆ P(H) ∩ F(H) we get that V (x) = −uxu∗ for all

x ∈ Ch
E . ⊲
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Аннотация. Пусть (CE, ‖·‖CE
) банахов симметричный идеал компактных операторов, действующих

в комплексном сепарабельном бесконечномерном гильбертовом H. Пусть Ch
E = {x ∈ CE : x = x∗}

действительное банахово подпространство самосопряженных операторов в (CE, ‖ · ‖CE
). Доказывается,

что в случае, когда (CE , ‖ · ‖CE
) есть сепарабельный или совершенный банахов симметричный идеал

(CE 6= C2) каждый косоэрмитовый оператор H : Ch
E → Ch

E имеет следующий вид H(x) = i(xa − ax) для
некоторого a∗ = a ∈ B(H) и для всех x ∈ Ch

E . Используя это описание косоэрмитовых операторов мы
получаем следующий общий вид сюръективных линейных изометрий V : Ch

E → Ch
E: Пусть (CE, ‖ · ‖CE

)
сепарабельный или совершенный банахов симметричный идеал с неравномерной нормой, т. е. ‖p‖CE

> 1
для всех конечномерных проекторов p ∈ CE с dim p(H) > 1, пусть CE 6= C2, и пусть V : Ch

E → Ch
E

сюръективная линейная изометрия. Тогда существует такой унитарный или антиунитарный оператор u

на H, что V (x) = uxu∗ или V (x) = −uxu∗ для всех x ∈ Ch
E.

Ключевые слова: симметричный идеал компактных операторов, косоэрмитовый оператор, изо-
метрия.

Mathematical Subject Classification (2010): 46L52, 46B04.

Образец цитирования: Aminov B. R., Chilin V. I. Isometries of Real Subspaces of Self-Adjoint
Operators in Banach Symmetric Ideals // Владикавк. мат. журн.—2019.—Т. 21, № 4.—C. 11–24 (in English).
DOI: 10.23671/VNC.2019.21.44607.


