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1. Introduction

The study of linear isometries on classical Banach spaces was initiated by S. Banach.
In [1, Ch. XI|, he described all isometries on the space L,[0,1] with p # 2. In |2|, J. Lamperti
characterized all linear isometries on the Ly-space L,(Q, A, 1), where (Q, A, i) is a measure
space with a complete o-finite measure . Both S. Banach and J. Lamberti used a method for
description of linear isometries on L,-spaces that was independent of the choice of a scalar field.
For studying linear isometries on the broader class of function symmetric spaces E (2,4, u),
different approaches are required that depend on a scalar field. If E(€, A, u) is a complex
symmetric space then G. Lumer’s method [3] based on the theory of Hermitian operators
can be effectively applied. For example, M. G. Zaidenberg [4, 5] used this method for
description of all surjective linear isometries on the complex symmetric space E(,.A4, u),
where p is a continuous measure. For the symmetric space £ = FE(0,1) of real-valued
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measurable functions on the segment [0, 1] with a Lebesgue measure p, where E is a separable
space or has the Fatou property, a description of surjective linear isometries on E was given
by N. J. Kalton and B. Randrianantoanina [6]. They used methods of the theory of positive
numerical operators. For real symmetric sequence spaces, a general form of surjective linear
isometries was described by M. Sh. Braverman and E. M. Semenov |7, 8]. They used methods
based on the theory of finite groups. For complex separable symmetric sequence spaces
(symmetric sequence spaces with the Fatou property), a general form of surjective linear
isometries was described in [9] (respectively, in [10]).

Naturally, the next step is to describe surjective linear isometries in the noncommutative
situation, when symmetric sequence spaces are replaced by symmetric ideals of compact
operators.

Assume (M, (+,-)) is an infinite-dimensional complex separable Hilbert space. Let B(H)
(respectively, K(H)) be the C*-algebra of all bounded (respectively, compact) linear operators
on H. For a compact operator z € K(H), we denote by p(z) = {u(n,x)}zozl the singular
value sequence of x, that is, the decreasing rearrangement of the eigenvalue sequence of
|z| = (:c*x)% We let Tr denote the standard trace on B(H). For p € [1,00) (p = 00), we let

Cp = {x € K(H) : Tr(|z?) < oo} (respectively, Coo = K(H))

denote the p-th Schatten ideal of B(#), with the norm

=

|z, = Tr(]x\p) (respectively, |||l := sup |u(n,x)|).

n>1
In 1975, J. Arazy [11], [12, Ch. 11, § 2, Theorem 11.2.5] gave the following description of all
the surjective isometries of Schatten ideals Cp.
Theorem 1. Let V : C, — Cp, 1 < p < 00, p # 2, be an surjective isometry. Then there
exist unitary operators u, and ue or anti-unitary operators vy and vy on H such that either
Va =wujzug or Vo = viz*vg for all x € C,.

Recall that a mapping v : ‘H — H is an anti-unitary operator if
V(AR + f) = Xo(h) +o(f) and [Jo(h)lln = (Al

for every complex number A and h, f € H. If v is an anti-unitary operator then there exists
an anti-unitary operator v* such that (h,v(f)) = (f,v*(h)) for all h, f € H (see, for example,
[12, Ch. 11, §2)).

The Schatten ideals C, are examples of Banach symmetric ideals (Cg, || - [|c;) of compact
operators associated with symmetric sequence spaces (E,| - ||g) (see Section 2.2 below).
In 1981 A. Sourour [13] proved a version of Theorem 1 for separable Banach symmetric
ideal (Cg, || - |lcy) such that Cg # Ca. Recently [14], a variant of Theorem 1 was obtained for
any perfect Banach symmetric ideals (Cg, || - |lcg ), Ce # Ca (recall that (Cg, || ||c,) is a perfect
ideals, if Cp = C;™ [15] (see Section 2.2 below)).

It is clear that for any unitary or anti-unitary operator u the linear operators Vj (z) = uzu*
and Va(z) = —uru* acting in a real Banach space (C%, || -||cy ) are surjective isometries, where
Ch={reCp:x=a"}

Our main result states that if (Cg, || - ||c,) is a separable or a perfect Banach symmetric
ideal of compact operators such that Cp # Co, there are no other isometries in (C&, | - |lcp):

Theorem 2. Let (Cg, | - ||c,) be a separable or a perfect Banach symmetric ideal with
not uniform norm, Cg # Co, and let V: C% — Cg be a surjective isometry. Then there exists
unitary or anti-unitary operator u on H such that V can be written in the form V(x) = uxu*
(x € CI) or in the form V (z) = —uzu* (x € Ch).
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An analogous result for the space of self-adjoint traceless operators on a finite
dimensionalal Hilbert space was obtained by G. Nagy [16].

2. Preliminaries

2.1. Symmetric Sequence Spaces. Let (o, (respectively, ¢y) be the Banach lattice of all
bounded (respectively, converging to zero) sequences {,}5° ; of real numbers with respect
to the uniform norm [|{£,}5%;|loc = sup,en |€n|, where N is the set of natural numbers. If 28
is the o-algebra of all subsets of N and p({n}) = 1 for each n € N, then (N, 2N, ;1) is a o-finite
measure space, Loo(N, 2N, 1) = £,

Ly(N,2%, ) = by = {{én 1 CR: (&M =D 16l < 00}7
n=1

where R is the field of real numbers. If £ = {£,}°°, € [, then the non-increasing
rearrangement £* : (0,00) — (0,00) of £ is defined by

() =imf{A: p({lg] > A}) <t}, £>0,

(see, for example, [17, Ch. 2, Definition 1.5]).
Therefore the non-increasing rearrangement £* is identified with the sequence £* = {{}},
where

*= inf s .
&n=jnf n;l;|fn|
card(F)<n

A non-zero linear subspace E C (o, with a Banach norm ||| g is called symmetric sequence
space if conditions n € E, £ € ly, £* < n* imply that £ € E and ||¢||g < ||n]|E-

If (E,||-|lg)is a symmetric sequence space, then ¢; C E C {4, in addition, ||£||g < ||£]1
for all € € 41 and ||{]|oc < ||€]|E for all £ € E [17, Ch. 2, §6, Theorem 6.6]. If there exists
¢ € (E\ ¢) then & > al for some a > 0, and therefore 1 € E, where 1 = {1,1,...}.
Consequently, for any symmetric sequence space F we have that ¥ C ¢y or F = {.

2.2. Banach Symmetric Ideal of Compact Operators. Let (, (+,-)) be an infinite-
dimensional complex separable Hilbert space, let B(H) (respectively, K(H),F(H)) be the
x-algebra of all bounded (respectively, compact, finite rank) linear operators in H, and let
P(H) = {p € B(H) : p = p* = p?}. It is known that x-algebras B(H) and K(H) are
C*-algebras with respect to the uniform operator norm, which we shall denote by | - ||oc-
For a subset A C B(H), we set A" = {zx € A: 2 =x*}.

It is well known that F(H) C Z C K(H) for any proper two-sided ideal Z in B(H) (see for
example, [18, Proposition 2.1]).

If (E,] - |lg) C co is a symmetric sequence space, then the set

Cp:={zeK(H): {,u(n,x)}zo:l € E}

is a proper two-sided ideal in B(#) (see |18, Theorem 2.5]). In addition, (Cg, ||-||c,) is a Banach
space with respect to the norm |z|c,, = [[{p(n,z)}|£ [19] (see also [20, Ch. 3, §3.5]), and
the norm || - ||¢, has the following properties:

1) lzzylles < 17llooll¥llocll2]lcp for all z,y € B(H) and z € Cg;

2) ||zllcy = ||1z]loo if © € F(H) is of rank 1.
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In this case we say that (Cg, || - ||cy) is a Banach symmetric ideal (cf. [18, Ch. 1, §1.7], |21,
Ch. III]). It is known that C; C Cg C K(H) and ||z|lc, < ||z]1, |¥llo < ||yllc, for all x € Cq,
y € Cg.

If (E,||-||g) is a symmetric sequence space (respectively, (Cg, ||-|lc,) is a Banach symmetric
ideal), then the Kothe dual E* (respectively, Cj;) is defined as

E* = {5 = {&nutne1 € loo t EN = {&uMntnzy € 41 forall n={n.};2, € E}a

(respectively, Cp = {x €EB(H): azyeCy forall ye CE}>,

and
oo
el =sup{ 3~ euml: 0=t} € B, Inls <1}, €€ B,
n=1
(respectively, ||3:HC;J = sup{Tr(|:cy|) cy €Cr, lylle, < 1}, T € Cg)

It is known that (E*,| - ||gx) is a symmetric sequence space [22, Ch. II, §4, Theo-
rems 4.3, 4.9] and ¢ = {w. In addition, if E # ¢; then E* C ¢y. Therefore, if E # {1,
the space (Cj, || - HCE) is a symmetric ideal of compact operators.

A Banach symmetric ideal (Cg, || - ||c,,) is said to be perfect if Cp = Ci™ (see, for examp-
le, [15]). It is clear that Cg is perfect if and only if E = E**.

A symmetric sequence space (E, || - ||g) (a Banach symmetric ideal (Cg, || - [|c,;)) is said to

possess Fatou property if the conditions
0 <&k <&ki1, & € E (respectively, 0 < xp < Ty1, 2 € Cp) forall ke N

and supy>1 ||&k||r < oo (respectively, supy~q ||zk|lc, < 0o) imply that there exists an element
§ € E (respectively, x € Cg) such that & 1§ and [|{]|g = supy>q [|€k]|E (respectively, z T
and [[2]c; = supys, 2k llce).

It is known that (E,| - ||g) (respectively, (Cg,| - |lc;)) has the Fatou property if and
only if E = E** [23, Vol.II, Ch. 1, Section a| (respectively, Cg = C;* [24, Theorem 5.14]).
Therefore (Cg, | - ||c;) is a perfect Banach symmetric ideal if and only if (Cg, || - ||c,) has the
Fatou property.

If y € CJ;, then a linear functional fy(z) = Tr(z-y), « € Cg, is continuous on (Cg, |- |lc,),
in addition, || fyllc; = HyHcg, where (Cg, || - llcz,) is the dual of the Banach space (Cg, | - [lcy)

(see, for example, [15]). Identifying an element y € Cj; and the linear functional f,, we may
assume that C7; is a closed linear subspace in Cj,. Since F(H) C Cj, it follows that Cj; is a total
subspace in Cj;, that is, the conditions € Cg, f(z) = 0 for all f € C; imply = 0. Thus,
the weak topology o(Cg,C}) is a Hausdorff topology, in addition F(H) (respectively, F(H)")
is 0(Cg,C})-dense in Cg (respectively, Cp).

3. Skew-Hermitian Operators in Banach Symmetric Ideals

Let X be a linear space over the field K of real or complex numbers. A semi-inner product
on a space X is a K-valued form [-,-]: X x X — K which satisfies

(i) [ax +y,2z] =a-[zx,2] + [y, 2] for all « € K and z,y, 2z € X
(ii) [z,ay] =@ [z,y] for all @ € K and z,y € X
(iii) [z,x] > 0 for all z € X and [z, z] = 0 implies that x = 0;
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(iv) [z, y]]* < [z, 2] - [y, y] for all z,y € X

(see, for example, |25, Ch.2, §1]).

The function ||z|| = /[z, ] is the norm on a linear space X. Conversely, if (X, || - |x)
is a normed linear space, then there exists semi-inner product [-,-] on X compatible with
the norm || - || x, that is, ||z||x = \/[z, 2] [25, Ch. 2, § 1]. In particular, the semi-inner product
(compatible with the norm || - |[x) can be defined using the equation [z,y] = ¢, (x), where
oy € X*, lloyllxs = |lyllx and ¢, (y) = |ly|% (such functional is called a support functional
at y € X) [25, Ch. 2, §1, Theorem 10].

Let (X,]|| - |lx) be Banach space over field K, and let [-,:] be a semi-inner product on X
which is compatible with the norm || - ||x. A linear bounded operator H: X — X is said
to be skew-Hermitian, if Re([H(x),z]) = 0 for all x € X, where Re(a) is the real part
of number a € K [12, Ch.9, §4]. In particular, if K = R then ¢,(H(z)) = [H(z),z] = 0
for every z € X.

The following Proposition is well known [12, Ch.9, §4, Proposition 9.4.2].

Proposition 1. Let (X, | - ||x) be a real Banach space and let H be a skew-Hermitian

operator on X. If V: X — X is a surjective isometry then an operator V - H -V~ is a skew-
Hermitian.

It is clear that in the case (X, | - ||x) = (Ck,| - |lcy) every linear operator H : C% — Ch
defined by H(z) = i(za — ax),z € Ck, where a € B(H)", i = —1 is a skew-Hermitian
operator.

The following Theorem gives a description of skew-Hermitian operators acting on Cg
when Cp is a separable or perfect Banach symmetric ideal other than Cs.

Theorem 3. Let (Cg, | - ||c,) be a separable or perfect Banach symmetric ideal, and let
Cg # Ca. Then for any skew-Hermitian operator H : Ch — Ch there exists a € B(H)" such
that H(x) = i(ra — ax) for all x € C}.

<1 We slightly modify the original proof of Sourour [13]. For vectors £,n € H, denote by
£ ®mn the rank one operator on H given (£®n)(h) = (h,n)&, h € H. It is easily seen (z,£®@n) :=
Tr((n®@&)-z) = (2(n),&) for any x € B(H)" and £,n € H. If y = £RE, ||€|lx = 1, then y is an
one dimensional projection on H and ||y|/c, = [|y||cc = 1. Thus for a linear functional f,(z) :=
(z,y) = Tr(y*z),z € C%, we have that fy(y) = Tr(y?) = Tr(y) = (£,€) =1 = Hy||(23E In ad-
dition, if o & Cl and [lole, < 1 then |f,()] = [Tr(ya)| = [2(€), )] < loloe < Joles < 1
Consequently, nyH(cg)* =1 = ||yllc,. This means that f, is a support functional at y € Cl,
and [z,y] = f,(z) is a semi-inner product on C}, compatible with the norm || - HC% [25, Ch. 2,
§ 1, Theorem 10].

Step 1.1 &,n e H, (n,€) =0, then (H(n®n),E®&) =0.

We can assume that ||n|l% = ||£][x = 1. Since p = n ® n is one dimensional projections
and H is a skew-Hermitian operator, it follows that
0=[H(p),pl = fp(H(p)) = (H(p),p)- (1)

By Lemma 9.2.7 (|12, Ch. 9, §9.2], see also the proof of Lemma 11.3.2 [12, Ch. 9, §11.3]), there
exists a vector £ = {&1,&} € (R2, || - ||g), & > 0,& >0, |[¢]|g = 1, such that the functional

FUm,m}) = mér +m2&a, {n1,m2} € R2, is a support functional at ¢ for space (R2,| - ||g).
Let us show that the linear functional

So(y) = <?/,$>a Yy e C%a T = glp + SQQa

is a support functional at = for (C2, || - |lc,)-
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Since f is support functional at & for (R% | -||g) and |||z = 1, it follows that
& +& = f({&,&)) = f(€) = €% = 1. Furthermore, by || f]| = ||€|lz = 1, we have that

[f({m,me})| = [&m + &amp| < 1 for every {m,n2} € R* with ||{m,n2}]|p < 1.
Further, by [21, Ch.II, §4, Lemma 4.1|, we have

Iym),m] < py), (W) < uly), |y, +1(y(E),) < u(l,y) +pu2,y),

that s, {(y(m),n), W(€), O} <= {u(1,y),u(2y)}. Since (B,|| - ) is a fully symmetric
sequence space, it follows that

I{Gy(m),m), (w(€): OMHe < [{u(y), w2 9)H e < lylee-

Consequently, if y € Cf and |y|lc,, < 1, then

o) = [y, 2)| = 16 Tr(py) + &Tr(qy)| = | £ ({wm).n), (&), })] <1,

that is, H<PH(cg,||.||E)* < 1. Since ||z|c, = [|€]lg = 1 and

p(z) = (z,2) = (Gp+ &q.6p+ &q) = Tr(Gp + &9)(Gp+ &) =G + & =1,

it follows that H<PH(cg,||.||E)* =1=|z[lc, and @(x) = [[«[|3,. This means that ¢ is a support

functional at x for space (C&, | - |lcy)-
Hence,

0= [H(z),2] = p(H()) = (H(2),z) = (&1H (p) + &2H(q), &1 + &24)-

Since (H(p),p) = (H(q),q) = 0 (see (1)), it follows that

(H(p),q) = —(H(q),p)- (2)

We extend n; =1, n2 = £ up to an orthonormal basis {n; }°,, and let p; = n; ®n;. Now we

replace our operator H with another skew-Hermitian operator Hy. Let u be a unitary operator

such that u(ny) = n2, w(n2) = m and u(ng) = ny if & # 1,2. It is clear that v* = u~! = u,

upiu = pa, upau = p1, up;u = p;, i # 1,2, and V(z) = uaru* = uzru is an surjective isometry
on CP, in addition, V= = V.

By Proposition 1, a linear operator H; = VHV ™! is a skew-Hermitian operator,
in particular, (Hq(pg),pr) = 0 for all k € N (see (1)).

If i,5 # 1,2, then

(Hi(pi),pj) = (uH (pi)u,p;) = Tr(pjuH (p)u) = (uH (p;)u(n;), n;)
= (H(pi)u(ny), u"(n;)) = (H(pi)(nj),n;) = Te(p; H(p)) = (H(pi), ps)-

Ifi=1, j+#1,2, then

(Hi(p1),p;) = (uH (p2)u, pj) = Tr(pjuH (p2)u) = (uH (p2)u(n;), n;)
= (H(p2)u(ng), v (1)) = (H(p2)(n;),nj) = Tr(p;jH(p2)) = (H(p2), pj)-
Similarly, we get the following equalities
(i) (Hi(p2),pj) = (H(p1),p;) if i=2,7#1,2;
(ii) (Hi(pi),p1) = (H(pi),p2) if j=11#1,2
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(iil) (Hi(p1),p2) = (H(p2),p1) f i=1,7=2
(iv) (Hi(p2),p1) = <H(P1)7p2> ifi=2j=1
It is clear that Hy = (H H,) is a skew-Hermitian operator, and if 7,5 # 1,2, then

(Ho(pi),pj) = 2((H(pi),p > (H1(pi),pj)) = 0. Similarly, if ¢ = 1, j # 1,2 (respectively,
i=2,7 75 1,2) we get

((H(p1),pj) — (H(p2),p5))

DN |

(Ho(p1),pj) =

(respectively, <H0(p2),pj> = 1(<H(Z72),pj> - <H(P1)7pj>))7

that is, (Ho(p1),p;) + (Ho(p2),p;) = 0 in the case j # 1,2.
Simmilarly, {Ho(p;), p1) + (Ho(pj),pa) = 0 if j # 1,2. Since

1(<H(101) 2) — (H(p2),p1)), (H(p1),p2) = —(H(p2),p1)

<H0(p1),p2> = 9

(see (2)), it follows that (Hy(p1),p2) = (H(p1),p2). Similarly, we get that (Ho(p2),p1) =
—(H (p1),p2). Finally, since Hy is a skew-Hermitian operator, we have (Hy(p), pr) = 0 for all
k € N (see (1)).
Let n be the smallest natural number such that the norm || - || is not Euclidian on R”™.
Then there exist (see, [10, Lemma 5.4|) linear independent vectors £ = (§1,&2,...,&n), 1 =

(N1,M2, -+ ,1n) € R™, ||€]|p = 1, such that
1Elle = Izl = f2(§) =1, (3)

where f,(¢) = >y Gimi, ¢ = (¢1, €2, ..., (n) € R™. By rearranging the coordinates we may
assume that 119 # omy.
Let x = 30, &1y, y = 25—y 3wy, and let @y (2) = (2,y) = 27 ;- Tr(p;2), = € Ch.
Let us show that ¢, is a support functional at x for (Cg, |-l ). Since || f ||z« = 1 (see (3)),
it follows that | f,(C)| = | X1y 1| < 1 for every ¢ = {¢;}7, € R™ with ||{||g < 1. Note that

[zlles = [1€lle = 1.
We should show that ||p,|| = [|z[c; =1 and ¢, (x) = ||z[z, = 1. Indeed,

py(z) = (z,y) = <ijpjaz77jpj> = &mj = (&) = 1= ||z[lz,-
=1 j=1 j=1

If z € CL, ||zllc, < 1 then |p,(2)] = |Z§L:1 nj(z(nj),nj)| < 1. The last inequality follows
from
{(2(771)’771)’ (Z(UQ)ﬂh)’ SRR (Z(nn)a"?n)} = {H(l’ Z)’H(2’ Z)’ s ’:U’(n’ Z)}

(see |21, Ch.II, §4, Lemma 4.1]). Therefore |py|| = ||z|lc, =1 and ¢, (z) = HxH%E = 1. This

means that ¢, is a support functional at x for (CR.| - | k).
Consequently,
0= (Ho(x),y) = (&Ho(p1) + - - - + &aHo(pn), mp1 + - - - + NPn)

= (&1m2 — &am ) (Ho(p1), p2) + (&1m3 — Eam3) (Ho(p1), p3)
+ o4 (Cann — o) (Ho(p1), P ) + (&3m0 — E3m2)(Ho(ps), p1)
+ oA (& — &am2) (Ho(pn), p1)-
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Let now & = &ip1 + &op2 — §3p3 — - .. — &nppn and § = mp1 + nep2 — N3P3 — ... — NnPn-
As above, we have that ¢g(-) = (-,9) is a support functional at . Consequently,

0= (Ho(Z),5) = (&1m2 — Eam){Ho(p1), p2) + (=&ins + &ams) (Ho(p1), p3)
+ oo (=& + Eom) (Ho(p1), pr ) + (—E&3m + &3n2)(Ho(ps), 1) (5)
oo+ (=&am + &) (Ho(pn), p1)-

Summing (4) and (5) we obtain 2(&1m2 — &am)(Ho(p1),p2) = 0, that is, (H(p1),p2) =
(Ho(p1),p2) = 0.

Step 2. Let n € H, |nllx = 1, p=n®n, z € K(H)", and let Tr(zq) = 0 for any one
dimensional projection g with gp = 0. Then there exists f € H such that z =n&® f+ f®n —
(m@n)(f @n), [Iflln < llz]lo-

Indeed, if ¢ is an one dimensional projection with gp = 0 then ¢grq = aq for some a € R,
and 0 = Tr(zq) = Tr(qzq) = Tr(aq) = a, that is, @« = 0 and qzqg = 0. Let e € P(H),
dime(H) =1,ep =0,eq =0,y = (g + e)z(q + e). If y # 0 then there exists r € P(H),
dimr(H) = 1 such that r < ¢+ e and rzr = ryr = pr for some 0 # 8 € R. Since rp = 0,
it follows that 0 = Tr(xr) = Tr(rar) = f # 0. Thus y = 0. Continuing this process, we
construct a sequence of finite-dimensional projections g, T (I — p) such that g,zg, = 0 for all
n € N, where I(h) = h, h € H. Consequently, (I —p)z(l —p) =0.

If f=uax(n) then zp = f @ n and pr =n® f. In addition,

(I = p)ap(h) = (I = p)a((h,n)n)) = (h,n)(I —=p)f, heH,

that is, (I — p)xzp = (I — p)f @ n. Therefore,

r=pr+{I—-prp=n@f+ U —-p)f®n and |flx < ||7|c-

Step 3. Let n € H, ||Inllx = 1, p = n ®n. Then there exists f € H such that

Hnen) =ne f+fon  |fllx<I[H].

Indeed, if x = Hn®mn), £ € H, (n,€) =0, ¢ = £ ®E, then by Step 1 we obtain that
(2(€),8) = (2,6 ®&) = Tr(x - £ ® &) = 0. Using Step 2, we have that there exists f € H such
that Hp@n) =2z =n f+ f@n—(n®n)(f ®n). Since H is a skew-Hermitian operator,
it follows that

0=(Hman),nen) =nef+fon—nmen)(fen).,nn)
=Tr(nennef+fon—nen(fen))
=Tr(n@n)®m® f) = (e fm).m) = 0 f).

Thus (n, f)=0andz=n® f+ f@n—(nen)(f®n) =n® f+ f@n. In addition,
1l < llzlloo < ll2lles = [Hm@0)llee < H| - In@nlles = [[HI - [In®@nllee = [1H].

Step 4. There exists a € B(H) such that H(x) = ax + za* for every x € Cp.

Let {pi}2; = {m ® 1;}32, be a basis in real linear space F(H)", where {n;}32,
is an orthonormal basis of H. For every n; € H there exists f; € H such that H(n; @ ;) =
;@ fi+ fi®n;, and || filli < ||H|| for all i € N (see Step 3). Define a linear operator a: H — H
setting a(n;) = fi. Since ||fil|lx < ||H]|| for all i € N, it follows that a € B(H), in addition,
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H(p;) = n; ® a(mi) + a(n;) @ n;. Since m; @ a(n;) = (n; @ n;)a” and a(n;) @ m; = a(n; @ 1;), it
follows that H(z) = ax + za* for all z € F(H)".

If (Cg,| - |lcy) is a separable space then F(H)" is dense in (CL, | - |lc;;). Consequently,
H(z) = az + za* for all x € CP.

Let now (Cg.| - |lcy) be a perfect Banach symmetric ideal. Repeating the proof
of Theorem 4.4 [14] that establishes the o(Cg, C5 )-continuity of the Hermitian operators acting
in (Cg,| - |lcy), we obtain that the skew-Hermitian operator H also o(Ch, (C5)")-continuous.
Since the space F(H)" is o(Ch, (C5)")-dense in C, it follows that H(x) = ax + xa* for all
z€Ch.

Step 5. a = ib for some b € B(H)".

Indeed, if a = ay + ias, a1, as € B(H)", then

H(z) = ax + za™ = a1z + zay + i(agx — zaz) = S1(z1) + Sa(x),

where S1(x) = a1z + zaq, So(x) = i(agx — xag), x € Cg. Since H and Sy are skew-Hermitian,
it follows that S; = H — S5 is also skew-Hermitian.

If p € P(H), dimp(H) = 1, then the lineal functional ¢(y) = (y,p) = Tr(yp), y € Ch,
is support functional at p. Thus Tr(pa;p + pai) = Tr(Si(p)p) = 0, that is, —Tr(pa;) =

Tr(paip) = Tr(pai). This means that Tr(pa;) = 0 for all p € P(H) with dimp(H) = 1.
Consequently, Tr(za;) = 0 for all z € F(H), and by [26, Lemma 2.1] we have a; = 0.
Therefore, a = iasy. >
4. The Proof of Theorem 2
Let (Cg, | - |lcg) be a Banach symmetric ideal. We say that a bounded linear operator

T:Ch — C has the property (P) if for any a € B(H)" there are operators b € B(H)" and
c € B(H)" such that T'(i(bx —xb)) = i(aT(x) —T(x)a) and T(i(ax —xa)) = i(cT(x) —T(z)c)
for all z € Ch.

It is clear that a bounded linear bijection T': Cg — Cg has the property (P) if and only
if 7! has the property (P).

Lemma 1. Let (Cg,| - |lc;) be a separable or a perfect Banach symmetric ideal other
than Co, and let V : Cg — Cg be a surjective isometry. Then an isometry V has the
property (P).

< If @ € B(H)" then the linear operator H : Cf — C% defined by H(z) = i(va — ax),
T € C}}, is a skew-Hermitian operator. By the Proposition 1 the operator V! H -V is also
skew-Hermitian. Using the Theorem 3 we obtain that there exists b € B(H)" such that
V=L H - V(z) =i(bz — ab), that is, i(aV () — V(2)a) = V (i(bx — xb)) for all x € C}.

Similarly, V - H - V™! is a skew-Hermitian operator. Hence, there exists an operator ¢ €
B(H)" such that V-H-V~1(y) = i(cy—yc) for all y € C. If V=1(y) = x, then V (i(az—za)) =
i(cV (z) — V(x)c) for all z € Ch. 1>

Let (Cg, || |lc;) be a Banach symmetric ideal, 0 # = € C%, and let Z(x) = {x} NB(H)" =
{y € B(H)" : xy = yz}. A non-zero operator z € C% is said to be a C,-maximal if Z(z) = Z(y
for any 0 # y € C with Z(x) C Z(y) (cf. [27, Definition 1.4]).

Lemma 2. The following conditions are equivalent:

(i) z € Ch is a Cl-maximal operator;

(ii) z = ap, where 0 £ p € P(H)N F(H), 0#a €R.



20 Aminov, B. R. and Chilin, V. L

< (i) = (ii). Since = € Ck, it follows that z = i, \;ips, t € N or t = oo (the series
converges with respect to the norm || - [|o), where 0 # p; € P(H) N F(H), pipj =0, i # 7,
0# XN € R, forall4,j =1,...,t. If y € Z(z) then yp; = pyy |28, Ch.1, §4, p. 17|, that
is, Z(z) C Z(p;) for all i = 1,...,t. Since, = is a C—maximal operator, it follows that
Z(x) = Z(p;), thus Z(p;) = Z(pg) for all i,k =1,...,t

Suppose that ¢t >2. As Z(p1) = Z(p2), we have

)Y =} ={a p+8-(I—p2): a,feC},

that is, p1 = ag - p2+ Bo - (I — p2) for some g, By € C. Consequently, 0 = pips = ag - p2, and
ag = 0. Therefore p; = 3y - (I — p2), which contradicts the inclusion p; € F(#H). Thus t =1
and = A\p1.

(ii) = (i). Let = = ap, where 0 #p € P(H)NF(H), 0 #a € R. If 0 #y € Ck and
Z(x) C Z(y) then Z(p) = Z(x) C Z(y), and y € {y}" C{p}" = {a-p+B-(I—p): o, B €C},
that is, y = ag - p+ Bo - (I — p) for some ay, fy € C. Since y is a compact operator, it follows
that Bp =0, that is, y =ap-p and Z(z) = Z(y). >

Lemma 3. Let T': Cg — Cg be a bounded linear bijective operator with the property (P).
Then T'(x) is a Ch -maximal operator for any C%—maxima] operator T € C%.

<1 Suppose that x € CE is a Cg—maximal operator, but T'(x) is not C%—maximal, that is,
there exists 2 € C% such that Z(T(x)) C Z(z) and Z(T(x)) # Z(z). Since T is a bijection,
z = T(y) for some y € Ck. Hence, Z(T(z)) C Z(T(y)) and Z(T(x)) # Z(T(y)).

We show that Z(x) C Z(y). Since an operator 7" has property (P), it follows that for
a € Z(z) there exists b € B(H)" such that

T(i(ac — ca)) = i(bT(c) — T(c)b) (6)
for all ¢ € CI. Using equations (6) and T'(i(ax — za)) = T'(0) = 0, and the injectivity of the
mapping 7', we obtain that bT(z) = T'(z)b, that is, b € Z(T(z)) C Z(T(y)). Consequently,

T(i(ay — ya)) = 0 and ay — ya = 0 (see (6)), i.e. a € Z(y). Therefore Z(x) C Z(y), and
by the Cl-maximality of the operator  we obtain that Z(z) = Z(y).

Since Z(T'(x)) # Z(T'(y)), there exists an operator a € Z(T'(y)) such that a ¢ Z(T(z)).
By the property (P) we can choose b € B(H)" such that

T(i(bc — cb)) = i(aT(c) — T(c)a) (7)

for all ¢ € C&. Thus T(i(by — yb)) = 0, and by — yb = 0, that is, b € Z(y). Besides, aT(z) —
T(x)a #0 1mphes that bz — xb # 0 (see (7)), that is, b ¢ Z(z), which contradicts the equality

Z(x) =Z(y). >

Lemma 4. Let V : Cg — Cg be a surjective linear isometry with the property (P).
Then for every p € P(H) N F(H)) there exists q, € P(H) N F(H) such that V(p) = g, or
V(p) = —p-

< Let 0 # p; € P(H)NF(H), i = 1,2, pip2 = 0. Since p; is a Ch-maximal operator
(Lemma 2), it follows that V(p;) is a Cp-maximal operator too, i = 1,2 (Lemma 3).
Consequently, there exist 0 # ¢; € P(H) N F(H), and 0 # «; € R such that V(p;) =
a;q;, © = 1,2 (Lemma 2). Since p1ps = 0, it follows that (p1 + p2) € P(H) N F(H) and
V(p1+p2) = asgs for some non-zero projection g3 € P(H)NF(H) and 0 # a3 € R (Lemma 2).
Therefore $1q1 + §2q2 = g3. By [29] there are four possibilities:

() =132 =1if qg2=0;
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(iii) &2 = —1, 22 =1 and q1¢2 = q1;

(i) &L =1, 52 = —1 if qig2 = go;
3 3

(iv) 2+ 2 =1 and (¢1 —¢2)* =0 if q192 # q2q1-

The case (iv) is impossible because ||(g1 — ¢2)||% = [|(¢1 — ¢2)?||oc = 0, which contradicts
the bijectivity of V. In other cases we have V(p2) = agy or V(p2) = —age, where o = aj.
Consequently, V(p) = agp, or V(p) = —agq, for an arbitrary 0 # p € P(H) N F(H), pip = 0.

Let now 0 # e € P(H) N F(H) and pie # 0. Then there exists a non-zero finite
dimensional projection f, such that p;f = 0 and ef = 0. According to above, we have
a1qr = V(p1) = apgp, or V(p1) = —asqp, and V(e) = apge or V(e) = —aysge for some
non-zero finite dimensional projections ¢y, ¢ and for non-zero real number «y. Consequently,
¢1 = @p, and a1 = Fay. In particular, V(e) = ayge or V(f) = —aige.

If ¢ € P(H) and dime(H) = 1, then 1=|elles =V (e)les =lalldellcs > lallgelloo=lal,
that is, |o| < 1.

Replacing the isometry V with V=1 we get that V~1(p) = Br, or V~1(p) = —Br, for
arbitrary p € P(H)NF(H), where r, € P(H)NF(H) and S does not depend on the projection
p. In particular, if e € P(H) N F(H) and dime(H) = 1, then 1 = |le|lcy, = [V (e)|ley =
Blllrelice > 18llrelloe = 18, i-e. [8] < 1.

Therefore, for p € P(H) N F(H) we obtain that V(p) = +ag,, and p = V1(+aq) =
+(af)rq. Hence || =1 and |a| = 1. >

We say that the norm || - ¢, is a not uniform if ||p||c, > 1 for any p € P(H)NF(H) with
dimp(H) > 1.

Lemma 5. Let (Cg, || - ||c,) be a Banach symmetric ideal with not uniform norm, and let
V:Ch — CL be a surjective isometry with the property (P). Then V(p) or (=V)(p) is one
dimensional projection for any one dimensional projection p.

< Let p € P(H) N F(H), dimp(H) = 1. By Lemma 4 we have that there exists ¢, €
P(H) N F(H) such that V(p) = ¢, or V(p) = —qp. If dimg,(H) > 1 then 1 = |[|p|l¢, =
WV (p)llex = llapllcy > 1, what is wrong. >

Lemma 6. Let (Cg, || - |lc,) and an isometry V' be the same as in the conditions of the
Lemma 5. Then

V(P(H)NF(H)) CPH)NF(H)

or

(=V)(P(H) N F(H)) € P(H) N F(H).

< Let Pi(H) = {p € P(H) : dimp(H) = 1}, and let p,e € P1(H). By Lemma 5, there
exists ¢,r € Py1(H) such that V(p) = q or V(p) = —q and V(e) = r or V(e) = —r. If
V(p) =¢q, V(e) = —r then ¢ —r = V(p+q) = £f for some 0 # f € P(H) (see Lemma 4),
which is not possible because ¢, € Pi(H). Similarly, the case V(p) = —q, V(e) = r is
also impossible. Consequently, V(P1(H)) € Pi(H) or (=V)(Pi(H)) € Pi(H). Since each
projector p € P(H) N F(H) is the final sum of one-dimensional projectors, it follows that
V(IP(H)NF(H)) CPH)NF(H) or (=V)(PH)NF(H)) CPH)NF(H). >

Corollary 1. Let (Cg, || - |lc,) and V' be the same as in the conditions of the Lemma 5.
Then

(i) V(p)V(e) =0 for any p,e € P(H) N F(H) with pe = 0;

(ii) V is a bijection from P1(H) onto P1(H).
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< (i). By Lemma 5, V(p) = ¢, € P(H)NF(H) for all p € P(H)NF(H) or V(p) = —qp €
P(H)NF(H) for all p e P(H) N F(H). In the first case for p,e € P(H) N F(H) with pe = 0,
we have that V(p) = ¢p, V(e) = qp, ¢ + ¢ = V(r + €) = ¢y, that is, V(r)V(e) = ¢,qg. = 0.
The case V(p) = —qp € P(H) N F(H) for all p € P(H) N F(H) is proved similarly.

Item (ii) directly follows from Lemma 5. >

< PROOF OF THEOREM 2. We suppose that V(P(H)NF(H)) C P(H) N F(H) (the case
(=V)(P(H)NF(H)) C P(H) N F(H) is proved by replacing V with (—=V)). Let

k
T = Z)\npn € F(H)hv Pn € 731(7'[), PnPm = 0,
n=1

n#m, 0\, €R, nm=1,... k.
Since V(pn) - V(pm) = 0, n # m (Corollary 1 (i)), it follows that

k k
V(?) =V ( > Aipn> =Y AV(pa) = V(2)?
n=1 n=1
and i i
Tr(V(2) = > MWTr(V(pn)) = Y An = Tr(z).
n=1

If pe,q, f € P1(H), V(p) =¢q, V(e) = f, then
2Tr(pe) = Tr(pe) + Tr(ep) = Tr((p +e€)* —p —e)
=Tr(V((p+e)?) —2=Tr(V(p+e)® —2="Te((g+ f)?) — 2 = 2Tx(qf).

Consequently, Tr(pe) = Tr(V (p)V (e)) for all p,e € P1(H). By |30, Ch. 3, §3.2, Theorem 3.2.8|
we obtain that there exists an unitary or anti-unitary operator u such that V' (p) = upu* for
all p € Py(H) . Thus V(x) = u*zu for all x € F(H)".

If (Cg,|| - |lcg) is a separable space then F(H)" is dense in (CL, | - |lcy). Consequently,
V(x) = u*zu (respectively, V(z) = —uzu*) for all € Ck.

If (Cg,| - |lcy) is a perfect Banach symmetric ideal, then V is o(Cg,Cj )-continuous
(see proof of Step 4 in Theorem 4). Since F(H)" is 0(C,Cj)-dense in (C, || - ||lc), it follows
that V(z) = u*zu (respectively, V(z) = —uzu*) for all x € C}.

In the case (=V)(P(H) N F(H)) € P(H) N F(H) we get that V(z) = —uazu® for all
zeCh >
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N30OMETPUN JENCTBUTE/IBHLIX ITOJIIPOCTPAHCTB
CAMOCOITPA?KEHHBIX OITEPATOPOB
B BAHAXOBBIX CUMMETPUYHBIX NJIEAJIAX

Awmunos B. P.!, Yuun B. 1.1

! Haronabublii yauBepcnTer Y3bexucrana,
V36ekucran, 100174, Tamkent, Bysropomok
E-mail: aminovbehzod@gmail. com,

vladimirchil@gmail.com, chilin@ucd.uz

Amnnoranust. Ilycrs (Cg, ||-||c; ) 6aHaxoB cuMMETPUYHBIH Hleal KOMIAKTHBIX OIIEPATOPOB, JIEHCTBY IOIIUX
B KOMILJIEKCHOM cenapabesbnom GeckoneunomepnoM rumbséeprosom H. Ilyers Cp = {x € Cp : = = z*}
JieficTBUTENIbHOE GAHAXOBO IIOAIPOCTPAHCTBO CAMOCOIPsIKEHHBIX oneparopos B (Cr, || - [lcy). JokasbiBaercs,
4gro B ciyuae, korga (Cg, || - [|cp) ecTb cenmapabesbHBI MJIM COBEPIIEHHBIH GaHAXOB CHMMETPHYHBIN Heal
(Cr # C2) xaxblit KocospmuToBsrii oneparop H : Ch — Ck umeer cuemytommii sun H(z) = i(za — ax) mis
HekoToporo a* = a € B(H) u mis Beex x € Ch. Vcmombayst 9T0 ONMMcaHHe KOCOSPMHTOBBIX OIEPATOPOB MBI
ITOJTyYaeM CJICLYIONmHil OBl BU CIOPBbEKTHBHBIX JIHHEHHBIX n3omerpuii V : Ch — Ch: TIycrs (Cr, || - |leg)
cernrapabesIbHbLIl MJIM COBEPIIEHHbIH GaHAXOB CUMMETPUYHBIN MJleasl ¢ HePABHOMEPHOIT HOpMOI, T. e. ||p|lcy > 1
IUIsL BCEX KOHEYHOMEDHBIX IpoeKTopoB p € Cg ¢ dimp(H) > 1, mycrs Cg # C2, u nycrs V : Ch — Ch
CIOPBEKTUBHAsA JIMHEHHasT n30MeTpusi. Torma cyecTByeT TakKOil YHUTAPHBIA WU aHTUYHUTAPHBINA OIIepaTop U
na H, uro V(z) = uzu® wm V(z) = —uzu* aus seex x € Ch.

KiroueBble CJIOBa: CHMMETPUYHBIH HJ1€a] KOMIIAKTHBIX ONEPATOPOB, KOCOIPMHUTOBBIA OIIEpaTOp, U30-
MeTpusi.
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