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Abstract. The main aim of the present note is to consider bounded orthomorphisms between locally
solid vector lattices. We establish a version of the remarkable Zannen theorem regarding equivalence
between orthomorphisms and the underlying vector lattice for the case of all bounded orthomomorphisms.
Furthermore, we investigate topological and ordered structures for these classes of orthomorphisms, as well.
In particular, we show that each class of bounded orthomorphisms possesses the Levi or the AM -properties
if and only if so is the underlying locally solid vector lattice. Moreover, we establish a similar result for
the Lebesgue property, as well.

Key words: orthomorphism, bounded orthomorphism, f -algebra, locally solid vector lattice.

Mathematical Subject Classification (2010): 46A40, 47B65, 46A32.

For citation: Sabbagh, R. and Zabeti, O. Bounded Orthomorphisms Between Locally Solid Vector
Lattices, Vladikavkaz Math. J., 2021, vol. 23, no. 4, pp. 89–95. DOI: 10.46698/c1197-8093-8231-u.

1. Motivation and Introduction

Let us start with some motivation. Suppose X is an Archimedean vector lattice and
Orth(X) is the space of all orthomorphisms on X. This space has many important
consequences using just the order structure (see [1, Section 2.3]). One of the most remarkable
advantages in Orth(X) is the pointwise lattice operations. On the other hand, there are
several non-equivalent ways to define bounded operators between locally solid vector lattices;
furthermore, these spaces have some ordered and topological structures, as well (see [2, 3]
for a detailed exposition). Therefore, it is natural to expect some special properties from
bounded orthomorphisms defined on a locally solid vector lattice. This is what our paper
is about. We shall consider some topological and ordered structures for different types of
bounded orthomorphisms. In particular, we establish a version of the known Zannen theorem
[1, Theorem 2.62] for each category of bounded orthomorphisms. Moreover, we investigate
topologically and ordered closedness for these classes of operators, as well. Now, let us recall
some preliminaries we need in the sequel.

A vector lattice X is called order complete if every non-empty bounded above subset of X
has a supremum and X is Archimedean if nx 6 y for each n ∈ N implies that x 6 0. It is
known that every order complete vector lattice is Archimedean. A set S ⊆ X is called a solid

set if x ∈ X, y ∈ S and |x| 6 |y| imply that x ∈ S. Also, recall that a linear topology τ on a
vector lattice X is referred to as locally solid if it has a local basis at zero consisting of solid
sets.

Suppose X is a locally solid vector lattice. A net (xα) ⊆ X is said to be order convergent
to x ∈ X if there exists a net (zβ) (possibly over a different index set) such that zβ ↓ 0 and
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for every β, there is an α0 with |xα − x| 6 zβ for each α > α0. A set A ⊆ X is called order

closed if it contains limits of all order convergent nets which lie in A. Keep in mind that a
topology τ on a vector lattice X making it a locally solid vector lattice is referred to as Fatou

if it has a local basis at zero consisting of solid order closed neighborhoods. In this case, we
say that X has the Fatou property. Observe that a locally solid vector lattice (X, τ) is said
to have the Levi property if every τ -bounded upward directed set in X+ has a supremum.
Finally, recall that a locally solid vector lattice (X, τ) possesses the Lebesgue property if for
every net (uα) in X, uα ↓ 0 implies that uα

τ
−→ 0.

Recall that, for an Archimedean vector lattice X, by Orth(X), we mean the space of
all orthomorphisms on X; more precisely, an order bounded band preserving operator on X

is called an orthomorphism. For more details on this subject, see [1]. Observe that a linear
operator T on a vector lattice X is called band preserving if x⊥y in X implies that T (x)⊥y.
Note that by x⊥y, we mean |x| ∧ |y| = 0. Now, suppose X is a locally solid vector lattice.
An orthomorphism T on X is called nb-bounded if there exists a zero neighborhood U ⊆ X

such that T (U) is bounded in X; T is said to be bb-bounded provided that it maps bounded
sets into bounded sets. First, observe that compatible with the different spaces of all bounded
operators on X, these notions of bounded orthomorphisms are not equivalent, in general.
Consider the identity operator on R

N; it is bb-bounded and continuous but not nb-bounded.
Note that here we consider RN with the product (coordinate-wise) topology. Suppose X is c00
with the norm topology. Consider the orthomorphism T on X defined via T ((xn)) = (nxn);
indeed, it is neither bb-bounded nor continuous.

The class of all nb-bounded orthomorphisms on X is denoted by Orthn(X) and is equipped
with the topology of uniform convergence on some zero neighborhood, namely, a net (Sα) of
nb-bounded orthomorphisms converges to zero on some zero neighborhood U ⊆ X if for any
zero neighborhood V ⊆ X there is an α0 such that Sα(U) ⊆ V for each α > α0. The class of all
bb-bounded orthomorphisms on X is denoted by Orthb(X) and is allocated to the topology of
uniform convergence on bounded sets. Recall that a net (Sα) of bb-bounded orthomorphisms
uniformly converges to zero on a bounded set B ⊆ X if for any zero neighborhood V ⊆ X

there is an α0 with Sα(B) ⊆ V for each α > α0.
The class of all continuous orthomorphisms on X is denoted by Orthc(X) and is

equipped with the topology of equicontinuous convergence, namely, a net (Sα) of continuous
orthomorphisms converges equicontinuously to zero if for each zero neighborhood V ⊆ X there
is a zero neighborhood U ⊆ X such that for every ε > 0 there exists an α0 with Sα(U) ⊆ εV

for each α > α0. See [10] for a detailed exposition on these classes of operators. In general,
we have Orthn(X) ⊆ Orthc(X) ⊆ Orthb(X) and when X is locally bounded, they coincide.

Furthermore, suppose X is a locally solid vector lattice. We say that X has the AM -

property provided that for every bounded set B ⊆ X, B∨ is also bounded with the same
scalars; namely, given a zero neighborhood V and any positive scalar α with B ⊆ αV , we
have B∨ ⊆ αV . Observe that by B∨, we mean the set of all finite suprema of elements of B;
for ample information, see [3].

All vector lattices in this note are assumed to be Archimedean. For undefined terminology
and related topics, see [1, 4].

2. Main Result

First, we have the following useful facts.

Lemma 1. Suppose X is a locally solid vector lattice. Then Orthn(X), Orthb(X), and

Orthc(X) are vector lattices.
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⊳ It is enough to prove that, in each case, the modulus of the orthomorphism exists and is
also bounded. By [1, Theorem 2.40], the modulus of an orthomorphism T exists and satisfies
|T |(x) = |T (x)| for each x ∈ X+. Therefore, it is easy to see that if T is either nb-bounded or
bb-bounded or continuous, then so is its modulus. ⊲

Furthermore, we have a domination property, as well.

Proposition 1. Suppose X is a locally solid vector lattice and T, S are linear operators

on X such that 0 6 T 6 S. Then we have the following observations.

(i) If S ∈ Orthn(X) then T ∈ Orthn(X).
(ii) If S ∈ Orthb(X) then T ∈ Orthb(X).
(iii) If S ∈ Orthc(X) then T ∈ Orthc(X).

⊳ (i) There exists a solid zero neighborhood U ⊆ X such that S(U) is bounded; moreover S
is order bounded and band preserving. We need show that T is also order bounded, band
preserving and nb-bounded. Choose arbitrary solid zero neighborhood V ⊆ X. Find scalar
γ > 0 with S(U) ⊆ γV . For each x ∈ U+, we have 0 6 T (x) 6 S(x) ∈ γV so that T (x) ∈ V

since V is solid. Since U ⊆ U+ − U−, we conclude that T (U) is also bounded. It is clear
that T is also order bounded. Now, suppose x, y ∈ X such that x⊥y. By [1, Theorem 2.36
and Theorem 2.40], we have

|T (x)| ∧ |y| = T (|x|) ∧ |y| 6 S(|x|) ∧ |y| = |S(x)| ∧ |y| = 0,

so that T (x)⊥y.
(ii) It is similar to the part (i); just if necessary, replace a bounded set B with its solid

hull which is also bounded and use the inclusion B ⊆ B+ −B−.
(iii) Similar to the part (i), we conclude that T is a orthomorphism. Choose arbitrary

solid zero neighborhood W ⊆ X. Find solid zero neighborhood V ⊆ X with V − V ⊆ W .
There exists a solid zero neighborhood U ⊆ X with S(U) ⊆ V so that S(x) ∈ V for each
positive x ∈ U . This implies that T (x) ∈ V , as well; since V is solid. Therefore, T (U+) ⊆ V .
We conclude that T (U) ⊆ T (U+)− T (U−) ⊆ V − V ⊆ W , as claimed. ⊲

Proposition 2. Suppose X is a locally solid vector lattice. Then Orthn(X), Orthb(X)
and Orthc(X) are locally solid vector lattices.

⊳ For Orthn(X): by Lemma 1, Orthn(X) is an Archimedean vector lattice. By [4, Theo-
rem 2.17], it suffices to prove that the lattice operations in Orthn(X) are uniformly continuous.
Suppose (Tα) is a net of nb-bounded orthomorphisms on X which converges uniformly on
some zero neighborhood to zero. It is enough to show that |Tα| → 0. There exists a zero
neighborhood U ⊆ X such that for each zero neighborhood V ⊆ X there is an α0 such that
Tα(U) ⊆ V for each α > α0. So, for each x ∈ U+, by [1, Theorem 2.40], |Tα|(x) = |Tα(x)| ∈ V

for sufficiently large α. Note that U and V are solid so that the proof would be complete.
The proof for Orthb(X) is similar to the case of Orthn(X); just, we may assume that

every bounded set B ⊆ X is solid otherwise, consider the solid hull of B which is bounded,
certainly.

For Orthc(X): by Lemma 1, Orthc(X) is an Archimedean vector lattice. By [4, Theo-
rem 2.17], it suffices to prove that the lattice operations in Orthc(X) are uniformly continuous.
Suppose (Tα) is a net of continuous orthomorphisms on X which converges equicontinuously
to zero. It is enough to show that |Tα| → 0. For every arbitrary solid zero neighborhood
V ⊆ X, there exists a solid zero neighborhood U ⊆ X such that for each ε > 0, there
is an α0 with Tα(U) ⊆ εV for each α > α0. So, for each x ∈ U+, by [1, Theorem 2.40],
|Tα|(x) = |Tα(x)| ∈ εV for sufficiently large α. Note that U and V are solid so that the proof
would be complete. ⊲
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Theorem 1. Suppose X is a locally solid vector lattice. If X possesses the AM -property,

then so is Orthn(X), Orthb(X) and Orthc(X).

⊳ For Orthn(X): assume that X possesses the AM -property and D ⊆ Orthn(X) is
bounded. This means that D is bounded uniformly on some zero neighborhood. So, there
is a zero neighborhood U ⊆ X such that for arbitrary zero neighborhood V ⊆ X, there exists
a positive scalar α such that {T (U) : T ∈ D} ⊆ αV . In particular, for any x ∈ U , the set
Bx = {T (x) : T ∈ D} ⊆ αV . This implies that, by the assumption, Bx

∨ is also bounded in X.
Again, by [1, Theorem 2.43] and using [5, Lemma 3], (T1∨ . . .∨Tn)(x) = T1(x)∨ . . .∨Tn(x) ∈
αV ∨ . . . ∨ αV = αV for each T1, . . . , Tn ∈ D. So, (T1 ∨ . . . ∨ Tn)(U) ⊆ αV . This would
complete the proof.

The proof for Orthb(X) is similar to the case of Orthn(X); just, we may assume that
every bounded set B ⊆ X is solid otherwise, consider the solid hull of B which is bounded,
certainly.

For Orthc(X): assume that X possesses the AM -property and D ⊆ Orthc(X) is bounded.
This means that D is bounded equicontinuously. Therefore, for arbitrary zero neighborhood
V ⊆ X, there exists a zero neighborhood U ⊆ X with T (U) ⊆ V for each T ∈ D. In
particular, for any x ∈ U , the set Bx = {T (x) : T ∈ D} ⊆ V . This implies that, by the
assumption, Bx

∨ is also bounded in X. Again, by [1, Theorem 2.43] and using [5, Lemma 3],
(T1 ∨ . . . ∨ Tn)(x) = T1(x) ∨ . . . ∨ Tn(x) ∈ V ∨ . . . ∨ V = V for each T1, . . . , Tn ∈ D. So,
(T1 ∨ . . . ∨ Tn)(U) ⊆ V . This would complete the proof. ⊲

Remark 1. Observe that the converse of Theorem 1 is not true, in general. Consider X =
ℓ1; it does not have the AM -property. By [1, Theorem 4.75 and Theorem 4.77] , Orthn(X) is
an AM -space with unit so that a C(K)-space for some compact Hausdorff space K. Therefore,
Orthn(X) possesses the AM -property.

Nevertheless, when we consider a locally solid f -algebra X, we can have the converse, as
well. Before this, we have two useful facts. Recall that by an f -algebra X, we mean a Riesz
algebra such that given x, y ∈ X with x ∧ y = 0, we have zx ∧ y = xz ∧ y = 0 for each
positive z ∈ X. A locally solid Riesz space which is an f -algebra at the same time is called
a locally solid f -algebra. Observe that a locally solid f -algebra is a topological algebra in its
own nature so that the multiplication is continuous in this case. For a comprehensive context,
see [6, 7].

Theorem 2. Suppose X is a locally solid f -algebra with a multiplication unit e. Then

there is an f -algebra isomorphism homeomorphism from X onto Orthb(X).

⊳ By [1, Theorem 2.62], there is an f -algebra isomorphism from X onto Orth(X) defined
by u → Tu such that Tu(x) = ux. Now, consider this mapping from X into Orthb(X);
note that each Tu is bb-bounded using [7, Proposition 2.1]. Furthermore, another using of
[1, Theorem 2.62], convinces that this mapping is also onto and an f -isomorphism. So, it
is enough to show that it is a homeomorphism. Suppose (uα) is a null net in X. We need
show that Tuα

is null in the topology of uniform convergence on bounded sets. Fix a bounded
set B ⊆ X and choose arbitrary zero neighborhood V ⊆ X. By another application of [7,
Proposition 2.1], we find a zero neighborhood U ⊆ X such that UB ⊆ V . There exists an
α0 with uα ∈ U for each α > α0 so that Tuα

(B) = uαB ⊆ V for sufficiently large α. For
the converse, suppose (Tuα

) is a null net in Orthb(X). This means that for each x ∈ X,
Tuα

(x) → 0 in X. Put x = e, the multiplication unit of X. We see that uα → 0, as claimed. ⊲

Theorem 3. Suppose X is a locally solid f -algebra with a multiplication unit e. Then

there is an f -algebra isomorphism homeomorphism from X onto Orthc(X).
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⊳ The proof has the same line as in the proof of Theorem 2. By [1, Theorem 2.62], there
is an f -algebra isomorphism from X onto Orth(X) defined by u → Tu such that Tu(x) = ux.
Now, consider this mapping from X into Orthc(X); note that each Tu is continuous since
the multiplication is continuous in X. Furthermore, another using of [1, Theorem 2.62],
convinces that this mapping is also onto and an f -isomorphism. So, it is enough to show
that it is a homeomorphism. Suppose (uα) is a null net in X. We need show that Tuα

is null equicontinuously. Choose arbitrary zero neighborhood V ⊆ X. there exists a zero
neighborhood U ⊆ X such that UU ⊆ V . For each ε > 0, there exists an α0 with uα ∈ εU for
each α > α0 so that Tuα

(U) = uαU ⊆ εUU ⊆ εV for sufficiently large α. For the converse,
suppose (Tuα

) is a null net in Orthc(X). This means that for each x ∈ X, Tuα
(x) → 0 in X.

Put x = e, the multiplication unit of X. We see that uα → 0, as claimed. ⊲

Corollary 1. By considering [1, Theorem 2.62] and also Theorem 2 and Theorem 3, we

conclude that when X is a locally solid f -algebra with unit, we have, Orthb(X) = Orthc(X) =
Orth(X) = X. Therefore, in this case, we can transfer the Lebesgue property or the Fatou

property between X and different classes of bounded orthomorphisms.

Remark 2. Note that we can expect Corollary 1 for Orthn(X), in general. Consider
X = R

N; it is a locally solid f -algebra with unit. By Corollary 1, Orthb(X) = Orthc(X) =
Orth(X) = X = R

N. But we claim that Orthn(X) = {0}. For if 0 6= T ∈ Orthn(X), then by
[1, Theorem 2.62], it should be of the form T = Tu(x) = ux for some 0 6= u ∈ X. Nevertheless,
in this case, T can not be nb-bounded since X is not locally bounded.

Theorem 4. Suppose X is a locally solid vector lattice. If X possesses the Levi property,

then so are Orthn(X), Orthb(X), and Orthc(X).

⊳ We prove the result for Orthn(X); the proofs for other cases are similar. Assume that
(Tα) is a bounded increasing net in Orthn(X)

+
. The general idea follows from the proof

of [3, Theorem 2.15]. This implies that there is a zero neighborhood U ⊆ X such that (Tα(U))
is uniformly bounded for each α. So, for each x ∈ X+, the net (Tα(x)) is bounded and
increasing in X+ so that it has a supremum, namely, αx. Define T : X+ → X+ via T (x) = αx.
It is an additive map; it is easy to see that αx+y 6 αx +αy. For the converse, fix any α0. For
each α > α0, we have Tα(x) 6 αx+y − Tα(y) 6 αx+y − Tα0

(y) so that αx 6 αx+y − Tα0
(y).

Since α0 was arbitrary, we conclude that αx + αy 6 αx+y. By [1, Theorem 1.10], it extends
to a positive operator T : X → X. It is clear that T is also order bounded. We need show
that it is band preserving. By [1, Theorem 2.36], it is sufficient to prove that x⊥y implies that
Tx⊥y. Note that each Tα is band preserving so that

|T (x)| ∧ |y| =

(

∨

α

|Tα(x)|

)

∧ |y| =
∨

α

(|Tα(x)| ∧ |y|) = 0.

Suppose V is an arbitrary order closed zero neighborhood in X. There is a positive scalar γ

with Tα(U) ⊆ γV . This means that T (U) ⊆ γV since V is order closed. ⊲

Remark 3. Observe that the converse of Theorem 4 is not true, in general. Consider
the Banach lattice E consists of all piecewise linear continuous functions on [0, 1].
By [8, Theorem 6], Orthn(E) = Orth(E) is the space {αI : α ∈ R}, where I denotes the
identity operator on E. Clearly Orthn(E) possesses the Levi property but E fails to have the
Levi property (it is not even order complete). Moreover, this example also shows that the
Lebesgue property does not transfer from the space of all bounded orthomorphisms into the
underlaying space, as well.

Note that a linear operator T between vector lattices X and Y is said to be disjoint
preserving provided that for each x, y ∈ X with x⊥y, we have T (x)⊥T (y). Moreover, recall
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that a linear operator T on a vector lattice X is called band preserving if given x, y ∈ X,
x⊥y, implies that T (x)⊥y. For more information, see [1].

Lemma 2. Suppose X,Y are locally solid vector lattices such that Y is Hausdorff and

(Tα) is a net of disjoint preserving operators from X into Y which is convergent pointwise to

the operator T . Then T is also disjoint preserving.

⊳ Choose arbitrary solid zero neighborhood W ⊆ Y ; there exists a zero neighborhood
V ⊆ Y with V +V ⊆ W . Consider x, y ∈ X with x⊥y. Find an index α0 with (Tα0

−T )(x) ∈ V

and (Tα0
− T )(y) ∈ V . We claim that T (x)⊥T (y). By the Birkhoff’s inequality, we have

0 6 ||T (x)| ∧ |T (y)| − |Tα0
(x)| ∧ |Tα0

(y)||

= ||T (x)| ∧ |T (y)| − |Tα0
(x)| ∧ |T (y)|+ |Tα0

(x) ∧ |T (y)| − |Tα0
(x)| ∧ |Tα0

(y)||

6 |Tα0
(x)− T (x)|+ |Tα0

(y)− T (y)| ∈ V + V = W.

Since Tα0
is disjoint preserving, |Tα0

(x)| ∧ |Tα0
(y)| = 0. Since W is solid, we conclude that

|T (x)| ∧ |T (y)| ∈ W . This happens for each arbitrary solid zero neighborhood W ⊆ Y .
Therefore, |T (x)| ∧ |T (y)| = 0 as claimed. ⊲

Lemma 3. Suppose X is a Hausdorff locally solid vector lattice and (Tα) is a net of band

preserving operators on X which is convergent pointwise to the operator T . Then T is also

band preserving.

⊳ Choose arbitrary solid zero neighborhood W ⊆ Y . Consider x, y ∈ X with x⊥y. Find
an index α0 with (Tα0

− T )(x) ∈ W . We claim that T (x)⊥y. By the Birkhoff’s inequality, we
have

0 6 ||T (x)| ∧ |y| − |Tα0
(x)| ∧ |y|| 6 ||Tα0

(x)| − |T (x)|| 6 |Tα0
(x)− T (x)| ∈ W.

Since Tα0
is band preserving, |Tα0

(x)|∧|y| = 0. Since W is solid, we conclude that |T (x)|∧|y| ∈
W . This happens for each arbitrary solid zero neighborhood W ⊆ X. Therefore, |T (x)|∧|y| = 0
as desired. ⊲

Observe that, in general, the uniform limit of a sequence of order bounded operators need
not be order bounded (see [1, Example 5.6], due to Krengle); note that, in the example, each
Kn is order bounded and Kn → T uniformly, nevertheless, we can choose the coefficients
(αn) such that T is not even order bounded (the modulus does not exist). Furthermore,
Kn ↑ T , but T is not order bounded, as mentioned. Consider this point that in the example,
the underlying space E, is not an AM -space. Now, we focus on locally solid vector lattices.
Compatible with Lemma 3, [3, Corollary 2.7] and [9, Lemma 3.1 and Lemma 3.2], we have
the following. Observe that by a topologically complete topological vector space we mean a
topological vector space in which every Cauchy net is convergent.

Corollary 2. Suppose X is a topologically complete Hausdorff locally solid vector lattice

with the Levi and AM -properties. Then, Orthb(X) and Orthc(X), with respect to the assumed

topologies, are topologically complete. Moreover, they form bands in Orth(X).

Remark 4. Note that we are able to consider some results presented for Orthb(X) and
Orthc(X), for Orthn(X), as well. Just, observe that Orthn(X) is not topologically complete
as shown in [10, Example 2.22].
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ОГРАНИЧЕННЫЕ ОРТОМОРФИЗМЫ МЕЖДУ
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Аннотация. Цель настоящей заметки — изучение понятия ограниченного ортоморфизма между
локально солидными векторными решетками. Устанавливается вариант замечательной теоремы Цаа-
нена об изоморфизме между ортоморфизмами и векторными решетками, в которых они действуют,
для различных типов ограниченных ортоморфизмов. Кроме того, рассматриваются топологическая и
порядковая структура этих классов ортоморфизмов. В частности, показано, что каждый класс ортомор-
физмов обладает свойством Леви или AM -свойством в том и только в том случае, когда этим свойством
обладает соответствующая локально солидная векторная решетка. Аналогичный результата получен и
для свойства Лебега.

Ключевые слова: ортоморфизм, ограниченный ортоморфизм, f -алгебра, локально солидная век-
торная решетка.

Mathematical Subject Classification (2010): 46A40, 47B65, 46A32.

Образец цитирования: Sabbagh, R. and Zabeti, O. Bounded Orthomorphisms Between Locally Solid
Vector Lattices // Владикавк. мат. журн.—2021.—Т. 23, № 4.—C. 89–95 (in English). DOI: 10.46698/c1197-
8093-8231-u.


