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Abstract. We introduce “local grand” Lebesgue spaces ngj’,ea (©2), 0 < p < oo, 2CR"™ where the process
of “grandization” relates to a single point z¢o € €2, contrast to the case of usual known grand spaces
LP%(Q), where “grandization” relates to all the points of Q. We define the space LI;)UOG(Q) by means of
the weight a(|]z — xo|)* with small exponent, a(0) = 0. Under some rather wide assumptions on the
choice of the local “grandizer” a(t), we prove some properties of these spaces including their equivalence
under different choices of the grandizers a(t) and show that the maximal, singular and Hardy operators
preserve such a “single-point grandization” of Lebesgue spaces LP(2), 1 < p < oo, provided that the lower
Matuszewska—Orlicz index of the function a is positive. A Sobolev-type theorem is also proved in local
grand spaces under the same condition on the grandizer.
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1. Introduction

We introduce the so called “local grand” Lebesgue spaces LZE)’,%(Q), where the process of

“grandization” relates to a single point zy € Q, contrast to the case of usual known grand
spaces LP)?(Q), where “grandization” relates to all the points of Q.

The grand spaces LP)(Q), defined by the norm

1
p—e

1o = s | / f@P=de |
0<e<p—1 2

were introduced in [1, 2| in the case of a set Q with finite measure. They were widely
investigated during the last decades. We refer e.g. to [3-8]. An approach to grandize Lebesgue
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spaces on sets of infinite measure was suggested and developed in [9-13]. We refer also to [14]
and references therein.
Let €2 be an open set in R™, bounded or unbounded and xy € €2 be fixed. We introduce

the spaces L%’Z(Q) via the (quasi)-norm

P
HfHng@a(g) = Osupf@( /‘f(x)‘l’a(\x — xg|)P° dx) , 0<p< oo,
<e< a

where a(t), 0 < t < diam (2, is a non-negative continuous bounded function vanishing only at
t=0.

Under some rather wide assumptions on the choice of the local “grandizer” a(t), we prove
some properties of the spaces L%’fl(ﬁ) and we show that the maximal, singular and Hardy
operators preserve such a “single-point grandization” of Lebesgue spaces LP(Q), 1 < p < 0.

As a motivation for the introduction of such local grand spaces, we mention the following.
When we study in Lebesgue spaces such operators as Hardy and Hilbert operators, or more
generally integral operators with homogeneous kernel with fixed singularity, of principal
importance is the study of mapping properties near the single point x = 0, because beyond
this point such operators essentially improve properties of functions.

In Section 2 we give precise definitions and prove some properties of the spaces L%’Z(Q),
including their equivalence under different choices of the grandizers a(t). In Section 3 we prove

the main statements on the boundedness of operators in the spaces Lg?{%(ﬁ).

2. Definitions and Properties of Local Grand Lebesgue Spaces

2.1. Definitions. Let @ C R™ be an open set, g € Q, |rg] < oo and d = diam €,
0 < d < oo0. By G(0,d) we denote the set of functions continuous and bounded on [0, d),
satisfying the conditions:

= inf f . 1
a(0) =0 and 5irtl<da(t) >0 forevery € (0,d) (1)

DEFINITION 2.1. Let a € G(0,d). We define the local grand Lebesgue space Lg?{i(ﬁ),

where 0 < p < 00, € > 0, by the (quasi)-norm

1
p
£l oo o 7= sup €| [ |f(@)Pa(jz — @o)* dx | (2)
Laga() O<e<t
Q
when p < co and
11l 200 (o = sup €”sup|f(x)la(|a — zo]), (3)
Laga () O<e<t z€Q

where ¢ € (0,00) is any fixed number.
By (1), the norm (2) is equivalent to

P
I1£1l200 0y = sup €9< / |f<x>|pa<|x—xo|>pfdx> I lr@seom @)

O<e<t
QOB(:B(),(;)

for every § € (0,d). Everywhere in Section 2 we take 0 < p < co.
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The function a € G(0,d) will be referred to as grandizer.
The norm will be sometimes written as || f|| .0 to underline dependence on the range

zo’,a;f (Q)

for e.

Lemma 2.1. The space L%’Z(Q) does not depend on the choice of ¢, up to equivalence
of norms:

HfHLP)ﬁ ‘ (Q) < HfHLP)ﬁ P (Q C||f||LP) 4 (Q)a O < El < 62 < OO, (5)
rQ,aik2

To,aity zg,a;ly

where

1
C = max T a5 .
5 illa ||Loo f1<6<f2

<1 In the case p < oo we have

HfHLZ?{i;ZQ(Q) = max{HfHLp),e (Q),E} ,

zg,a;1

where we denoted

=

E:= sup 69</|f($)|pa(|x_x0|)p€dx>
l1<e<ly O

Let A :=||a||fe<. We have
1
p
E= sup &%A° /|f ( xOD) dz
l1<e<ls
. 1
pli »
< sup €4 (/\f ( ﬂ:o|)> dm)
l1<e<la

<O0A sup 940 HfHLp)g

)
l1<e<lo L1 6@

q.e.d.
Arguments for p = co are similar. >
The embedding
LP(Q) = IP2(Q), 0<p<oo, §>0,

To,a
holds, whenever a € L*°(0, d).
A natural choice of grandizers a in the case of bounded sets €2, may be:

d-e 1 1
ao(t In— |, a1(t)=t, aoft)= , a3(t) = ———=,
oft) = ( " ) 1(2) 2(t) I &2 3(t) ntn 27
where v € R, though this list may be continued.

If © is unbounded, the above functions may be modified e.g. as follows:

w®) =t ) wl =t wO)= 7 b= ™

In £ Inln <

for 0 < ¢t < 1 and identically equal to 1 for 1 < ¢t < co.
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DEFINITION 2.2. We define the vanishing local grand Lebesgue space VL%’Z(Q),
0 < p < o0, as the subspace of functions f € L’é?{fl(ﬂ) such that

lim < / (@) Pz — zolP* dz = 0. (8)
Q

Clearly, the space Lg?{%(ﬁ) contains non-integrable functions when 0 < p < 1. The same

holds for p = 1, since a(0) = 0. This may happen also for p > 1, if a(t) rapidly vanishs at
t=0,eg a(t)= e_%, A > 0. It is easy to check that the condition

o
sup e %P
0<e<eo

d

/tn_la(t)_ap/ <oo, 1<p<oo,

0

guarantees the embedding Lg%’Z(Q) C LYQ). B
Similar local “grandization” may be made not only with respect to a single point xy € €2,

but a finite number of points z(V, ..., (") € Q via the grandizer a(z) = [[p_, ax(|z — z®)]),

ar € G(0,d), k=1,...,N. Such a space coincides with the algebraic sum of the “single-point”

Y Q) k=1,...,N.

(k)yak
2.2. Basic properties.
Lemma 2.2. Let a,b € G(0,d). If there exists a number o > 0 such that

local grand spaces LZ

a(t) < Cb(t)*, e (0,d),

0 0
then LP(Q) < LEG(Q).
<1 The proof is straightforward, with Lemma 2.1 taken into account. >
From Lemma 2.2 it follows that

0
0@ = P (), d< o (9)

xo,a x0,
forall A >0, u > 0.
By Lemma 2.2 we have

PO (Q) s L0 (Q) < LB} () = 126 (Q), (10)

Z0,a3 Zo,a2 Z0o,a1 Z0,a0

where the grandizers ag, a1, az and a3 are from (6) or (7) and coincidence of spaces holds up
to equivalence of norms. The embeddings (10) are strict, see Lemma 2.4.

The coincidence of spaces in (10) and (9) may be observed in a more general situation,
as given in Theorem 2.1, where we use the notion of Matuszewska-Orlicz indices m(a) and
M (a) of a non-negative function a ([15], see also [16]), where properties of these indices are
given in a from convenient for us. The lower index m(a) is defined by

In <lim sup aa((h hl;))
h—0
m(a) ;== sup 1
0<z<1 nr

Note also that
e\ E
m(t) =a, m [(ln dT> ] =0, m((ta(t)) = a+ m(a), m[a(t)ﬁ] = pm(a),

where o € R and 8 € R,
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A non-negative function a(t) on (0,d), 0 < d < oo is called quasi-monotone, if there
exist o, 8 € R, such that (a) is almost increasing (a.i.) and at(g) is almost decreasing (a.d.).
A quasi-monotone function has finite indices and m(a) = sup {« : —a is a.i.} and M(a) =
inf {ﬁ : % is a.d.}.

Theorem 2.1. Let a and b be quasi-monotone on (0,9) for some § € (0,d). If m(a) > 0
and m(b) > 0, then

0 Q) = 1P ()

T0,a 1’07
up to equivalence of norms.

< It suffices to refer to (4), use the fact that for an arbitrarily small ¢ > 0 there exist
constants ¢(g) and C(g) such that

()M < a(t) < O, te (0,0),

where M (a) is the upper Matuszewska-Orlicz index of a, M (a) = m(a) (see [16, Section 6|
and apply Lemma 2.2). >
Keeping in mind that the function

‘ | = belongs to the usual grand Lebesgue space
T—x0

LP9(Q), 6 > 1, below we consider similar inclusion of functions u = u(|z — x|) into the space
LEY(9).
For the cone condition used in the lemma below we refer e.g. to [17].

Lemma 2.3. Let xg € Q and assume that ) satisfies the cone condition at the point x,
when xg lies on the boundary of §). Let u(t) be a non-negative function on (0,d) such that
féd "~ tu(t)P dt < oo for every § € (0,d). Then the condition

d
sup 6p€/t" ! t)Pedt < o0 (11)
0<e<eo 0

for some g > 0 is necessary and sufficient for the inclusion

u(le — wol) € I2.(9).
<1 The proof is straightforward. >
When € is bounded, we put
1 1 1
ul(t) = =, wua(t) = — uz(t) = T (12)
r (7 In G2) 7 [t (nd2) (I &2)]”

correspondingly to the grandizers a;(t), as(t) and as(t).
When (2 is unbounded, we define the functions w;(t) for 0 < ¢t < 1 by (12) with d = 1 and
continue them for ¢ > 1 so that [ " lu;(t)P dt < 0o (e.g. u;(t) =0,t>1,i=1,2,3).
Lemma 2.4. Let a;, i = 1,2,3, be the grandizers defined in (6) and uy, k = 1,2,3, be
the functions (12). Then

we € LY (Q), if 0>

. and wuy & LP)

o, ak(

1
Q),if0<d< -, k=1,2,3, (13)
p

==

and
u ¢ on, (Q), if i >k, 6>0. (14)
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< Let d < 0o. For u; and a1 we have

d d
ep"/t” ! L(t)Pe dt = €° /t1+€p dt,
0 0

so that the statement for u; and a; becoms evident by Lemma 2.2. For u; and as we have

d d
d pE
apg/t"_lm(t)pm(t)ps dt = apg/t_l (1 Te) dt = oo,
0 0

so that uj ¢ Lmo,ag (©) by Lemma 2.2 and then u ¢ Lf,f% %S(Q)
Similarly other cases are verified. >

3. Interpolation of Sublinear Operators in Local Grand Lebesgue Spaces

Everywhere in Section 3 we take 1 < p < oo.

3.1. On interpolation. The proof of Theorem 3.2 in this section is based on the following
theorem known as Stein-Weiss interpolation theorem with change of measure (see [18]; [19,
p. 17]). We formulate it in weight terms.

We use the notation

LP(Q,w) = {f /|f(x)|pw(x) dx < oo}
Q

for weighted Lebesgue spaces.

Theorem 3.1. Let pg,qrx € [1,00) and vy, wy be weights on Q, k = 1,2, and T —
a sublinear operator defined on LP*(Q,wy) U LP2(Q,wy). If T : LP(Q, wy) — LT (Q,vy) with
the norm Ky and T : LP2(Q, wy) — L% (£, v9) with the norm K, then

T: LP(Q,w) — LI(Q,vy)
with the norm K < Kll_tKé, where

1 1—t¢ t 1 1—1t t
= +_’ - = +_’ (15)
Dbt p1 b2 qt q1 q2

(1—t)LL 4Lt (1-t)L ¢

wy=w;  Twy?, w=v T2, 0<t<l (16)

Theorem 3.2. Let 2 C R", 1 < p < 00, 8 > 0 and a and b be grandizers. Assume
that a sublinear operator T is bounded from the space LP(2) to the space L4(S2) and there
exists an €9 > 0 such that it is bounded from the space LP(Q,a(| - —x¢|)P%°) to the space

L1(Q,b(| - —x0])?©). Then the operator T is bounded from ng) a(2) to Liz)’i(Q) and from
,0
VLIEG(Q) to VLIS ().
<1 By Theorem 3.1 we obtain

IT £l La@,p(-—zo)r) < CNFlLr(@,a(—wo))er), 0 < € < €0,
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where C' does not depend on f and €. Hence the statements of the theorem follow for both

the spaces L%’z(Q) and VLQB{,%(Q), with Lemma 2.1 taken into account. >

3.2. Boundeddness of some classical operators of harmonic analysis in local
grand Lebesgue spaces. In this section we take 2 = R™ and stady the action, in the

)

frameworks of the spaces Lgo’z(R"), of the following operators:
1) the mazximal operator

Mf(z) = i‘;‘%m / £l dy, (17)

B(z,r)

2) singular Calderén—Zygmund operators
7f(0) = [ K(w.)f ) dy
]Rn

with standard kernel (see [20, p. 144]),
3) the Riesz potential operator

I°f(x) ::/]x—y]a"f(y)dy, 0<a<n,

RTL
4) the Hardy operators
@ = el [t i@ =l [ Lelay (19)
lyl<l| ly|>|=|

We show that these operators act in the Lebesgue spaces, preserving their grandization at
a single point oy € R™, under a wide choice of the grandizers a(t).

Maximal and singular operators. By A, we denote the Muckenhoupt class of weights.

Theorem 3.3. Let 1 <p < o0, 8 >0 and a € G(R,.). If there exists an g9 > 0 such that
a® € A, (19)

then the maximal operator M and singular Calderén—Zygmund operators 1" with standard
kernel, bounded in L?(R™), are bounded in the space e (R™).

0,0

< It suffices to apply Theorem 3.2 and use the known fact that both M and T" are bounded
in Lebesgue spaces with A,-weights (see e.g. [20, pp. 137, 144]). >

Corollary 3.1. Let 1 < p < oo, 8 > 0, and let a(t) be quasi-monotone with m(a) > 0.
Then the maximal operator M and singular Caldréon—Zygmund operators T' with standard
kernel, bounded in L?(R™), are bounded in the space e (R™).

0,0

<1 By Theorem 2.1 we have

172y, ey = 1l 2y, eny

where

oo b o<t<y,
Qa, =
0 1, t>1.
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It remains to note that ag(|z|)*® € A, under the choice gy € (0,n(p — 1)). This is well known,
if ag was ag(t)®® = t°°, t € R,. For the truncated power function it is easily obtained from
the fact that for radial weights the Muckenhoupt condition is equivalent to (see [21])

s s

p—1
sup/t”lao(t)eo dt( /t”lao(t)POl dt) < 0. >
>0

0

0

Potential operators. In the proof of Theorem 3.4 we use the known (see [21, 22]) Mucken-
houpt-Wheeden class A, , defined by the condition

7

L q é =S w(z)™? dz ’ 00
5&%(@/ e dﬂ”) <IQ|/ (@) d) <o (0)

Q Q

which goes back to [23].
1

Theorem 3.4. Let 0 <a <n,1<p<Z, é =5 . If there exists an g9 > 0 such that

a® € A1+§, then the operator I* is bounded from Lg%’Z(R") to L?’Z(R").

0

<1 We apply Theorem 3.2. The L? — Li-boundedness holds by the well known Sobolev

theorem. The weighted LP(R",a(] - —zo])P*°) — LI(R",a(] - —z0])9°) holds, if a®® € A, ,

(see [22, 23]). It remains to note that, as is known, w € Ay, & w? € Aj o (see e.g. [21]). >
P

Corollary 3.2. Let 0 < a <n,1 <p< 7, % = % — % and let a € G(R,) be quasi-

monotone with m(a) > 0. Then the operator I* is bounded from Lg%’Z(R”) to L%%’Z(R").
<1 The arguments are similar to those in the proof of Corollary 3.1. >

Hardy operators. In this case we take zo = 0.

Weighted boundedness of Hardy operators in Lebesgue spaces was thoroughly studied
in the one-dimensional case (see [21, 24, 25]). The multidimensional versions (18) of Hardy
operators were in particular studied in the case of power weights in [26], where the sharp
constants were also found.

Though the weighted LP — L9-boundedness of Hardy operators is well studied for all
p,q € (1,00), we consider, for simplicity, only the case p < q.

By B, , and %, , we denote the classes of pairs (u,v) of weights on R, satisfying the

conditions
00 1 T 1
q p’
By, : sup /u(t) dt /v(t)l_p dt < 00,
zeRy 4
x
x 1 0 1
q , p’
Bp.q sup /u(t) dt /v(t)l_p dt < 00,
z€R4 o
T
respectively.
Denote

0 o, 0<t<l, 4 o) tho, 0<t<l,
U = an v =
7 e t>1 A oot

It is easy to check that

11 A
Yot —i——,:—oand
p

7°°+1+l,:>‘;°°
p q p b

(u'yaUA) € Bp,q S Yoo < —1, g <p-—1, s (21)
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and

1 1 A 1 1 A
oo+l Lt _ Ao g detl 1

Aoo
Py p q 2 P

(Uy,V2) € Bpg & Yoo > —1, g >p—1, . (22)

The known results for the one-dimensional Hardy operators

/f tydt and HAf(z /f t, xEeR,,

in the case 1 < p < ¢ < oo state that (see [24, p. 6-7]; [25, p. 12-13 |)

(/ |H f (z)|%u(z) d:v) C(/ |f(x)|Po(z) dm) ’ & (u,v) € Bpg, (23)
0

0
00 00 %
</|<%”f(x)|qu(:v) dm) C</|f(:c)|pv(x) dm) & (u,v) € Bpyg. (24)
0 0

Note that norm estimates of multi-dimensional integral operators with kernel k(|x|, |y|)
and radial weights reduce in a sense to similar one-dimensional estimates of spherical mens,
see [26] in the case of Hardy operators and [27] in the case of operators with homogeneous
kernel. In the lemma below we show this in the case of Hardy operators and arbitrary radial
weights.

Q=

Q=

Lemma 3.1. Let 1 < p < ¢ < 00 and a € R. The multi-dimensional inequality

</ﬁ”f U () d ) </u PV (|af)d ) (25)

with radial weights holds, if there holds the one-dimensional inequality

(/umwmmmﬂqs—ilf</mwmwmgi 20
571\

0
where
u(t) = ") ) = tPHAP (g,
Similarly ) )
(/I«%”g(t)qu(t) dt) < %(/Ig(f)lpv(ﬂ dt) (27)
0 S g
implies
</|«%”°‘ NU(|z]) d > (/If WPV (|z|) d ) (28)

u(t) = "Iy (L), o) = P DTy,
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< Passing to polar coordinates, we rewrite (25) as

0o T q % w
/ yn—1+(a=n)q / "L (t)dt| U(r)dr Y < C / eV () dt e, (29)
0 0 0

where

o)~ [ fo)ds, w0~ [ |fo)pdo
Snfl Snfl

By Jensen inequality, |®(¢)[P < |S"1[P~1®,(t). Therefore, (29) will be moreover satisfied, if

o] r q q 0o
/ Pt asnlagy () / " Lo(t) dt| dr <|sn—01| / v e Pdty , (30)
0 0 0

which is nothing else bat (26) with g(t) = t"~1®(¢).
The case of the operator ¢ is similarly treated. >
Corollary 3.3. The conditions

(tnflJr(afn)qU(t),t(nfl)(lfp)v(t)) c Bp7q (31)

and
(e (t), POy (1) € B, (32)

are sufficient for the validity of the inequalities (25) and (28), respectively.
Theorem 3.5. Let 0 < o <n, 1 <p< 2, 1 =1 _2andabec GR,). The Hardy

a’ q D n
operators H* and 5 are bounded from Lg)’e(R") to Lg)l’f(R"), 6 > 0, if there exists an
go > 0 such that

,a

<tn71+(a*n)qb(t)€0q, t(”’l)(lfp)a(t)eop) € Bpq 33)

and
(tn—1+aqb(t)eoq,tfp(n—l)*la(t)zsop) € Bp g, (34)

respectively.

<0 We apply Theorem 3.2. The LP — L? boundedness of H* and J#“ is known (see |26,
Section 4]). By Corollary 3.3, the weighted LP(R",a®0P) — LI(R"™,b°°P)-boundedness for the
operators H® and J#¢ is guaranteed by the conditions (31) with U(¢) = b(¢)%°? and V(t) =
a(t)°P, which proves the theorem. >

Theorem 3.6. Let 0 < a<n, 1 <p< 2, L =1_2a The operators H* and S are

o’ E P n’
bounded from Lg?f(R") to Lg)l’f(R"), 6 > 0, for all grandizers a,b € G(R,), quasi-monotone

in a neighbourhood of the origin, having positive indices m(a) > 0 and m(b) > 0.

<1 By Theorem 2.1, it suffices to prove the theorem in the case

t, 0<t<l,
1, t>1.

a(t) =b(t) = {

Under this choice we have to verify the conditions (33) and (34) for sufficiently small .
This verification is easily done by means of the relations (21) and (22). >
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4. On a Weight Generalisation

In a similar way we can consider local grandization of weighted Lebesgue spaces, defined
by the norm

P

1l 200 ) = sUP € /If(frf)Ipw(ﬂc)a(lfﬂ—900|)€”dfC
w0, 2% 0<e<t 2

It is easy to see that statements of Lemmas 2.1, 2.2, 2.3 and Theorem 2.1 hold also in the
weighted case in the corresponding reformulation. In the case of radial weights w = w(|z—1z9|),
an extension of Lemma 2.4 may be also obtained.

As regards the boundedness of operators in the weighted local grand space Lg%’Z(Q,w),
Theorem 3.1 allows to extend all the results of Section 3 to this case. We leave this to the
reader.
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0
Annoranusi. Mbl BBOAUM <«JIOKaJbHBIE 'DaH/l» IpocTpaHcTBa Jlebera LI;L’,Q(Q), Q C R", rae mporecc
«IPaHIU3alUN» OTHOCUTCA K €MHCTBEHHON TOYKe To € (), B OTJINYHE OT CJIy4asd OOBIMHBIX M3BECTHBIX I'DAH]L
IIPOCTPAHCTB LQ")’G(Q)7 I7le «PaHIM3alnsad» OTHOCUTCH KO BceM Todkam ). MbI ompesessieM mpocTpaHCTBO

0
L2V (€) ¢ momompIo Beca a(|x — xo|)? ¢ Manbm mokasaTenem crenenn, a(0) = 0. IIpu HEKOTOPBIX TOBOIBHO
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MIMPOKMX TIPEJIIOIOKEHUAX O BBIGOPE JIOKAJIBHOIO «IPaHAn3aTopay a(t) Mbl JOKA3bIBAEM HEKOTODPBIE CBOMCTBA
9THUX IPOCTPAHCTB, BKJIIOYAs X SKBUBAJEHTHOCTD IIPU Pa3JIMIHOM BLIGOpE IpaHau3aTopoB a(t), U moKa3bIBa-
€M, YTO MaKCHUMAJIbHBIN, CHHIYJISIDHBINA ONEPATOPhI U ONEPATOPBI Xap/Ii COXPAHSIIOT TaKyI «OJHOTOYEUHYIO
rpasu3anuio» npocrpancTs Jlebera LP(2), 1 < p < 0o, npu yci0BuHM, 9TO HUKHAA nHAEKC MaTyrmeBckoit —
Opinya GyHKIMU o MOJOXKUTEIbHBIA. JlokazaHa Takke Teopema Tuna CobojieBa B JIOKAJIBHBIX I'PaH/L MPO-
CTPAHCTBAX IPU TOM K€ YCJIOBUU Ha T'PAHIU3ATOP.

KuroueBbie ciioBa: rpaH/I-IIPOCTPAHCTBO, IIpocTpaHcTBo Jlebera, Bec MakeHxaynTa, MaKCUMAJIbLHBIHN OI1e-
pATOp, CUHTYJISIDHBIA OllepaTop, oneparop Xapu, uHTeprojsinuontas reopema Creiina — Beiica, nnmekcs
Marymesckoit — Opitrya.
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