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Introduction

In [1], the authors introduced and considered the class of finite homogeneous metric
spaces, its subclasses of (generalized) normal homogeneous spaces and Clifford — Wolf
homogeneous spaces, as well as relationships between these classes. Similar classes were studied
for Riemannian manifolds in [2–6].

It was given the description of the classes under consideration in terms of graph theory.
This description allows to construct some particular examples of finite metric spaces with
unusual properties. For instance, the Kneser graphs are fruitful sources of such quite
unexpected examples [1].

A finite homogeneous metric subspace of an Euclidean space represents the vertex set
of a compact convex polytope with the isometry group that is transitive on the vertex set;
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in each case, all vertices lie on a sphere. In [1, 7, 8], the authors obtained the complete
description of the metric properties of the vertex sets of regular and semiregular polytopes
in Euclidean spaces from the point of view of the normal homogeneity and the Clifford —
Wolf homogeneity. In this survey, we discuss the corresponding classification along with
other important properties of finite homogeneous metric spaces, in particular, homogeneous
polytopes in Euclidean spaces.

The paper is organized as follows. In Section 1 we consider general properties of the class
of homogeneous metric spaces and its important subclasses. Section 2 is devoted to some
special properties of the class of finite homogeneous metric spaces. In Section 3 we discuss
some properties of finite homogeneous subspaces of Euclidean spaces. The most important
results on regular and semiregular polytopes in Euclidean spaces are discussed in Section 4.
Finally, in Section 5 we consider the classification of regular and semiregular polytopes in
Euclidean spaces whose vertex sets have the normal homogeneity property or the Clifford —
Wolf homogeneity property.

1. General Metric Spaces

For a given metric space (M,d), we denote by Isom (M,d) its isometry group.

Definition 1. A metric space (M,d) is called homogeneous, if for every x, y ∈ M
there exists an isometry of (M,d), moving x to y, i. e. the isometry group Isom (M,d) acts
transitively on M .

It should be noted that some proper subgroups of Isom (M,d) could be also act transitively
on M . For example, the isometry group of the sphere S2m−1 with the metric, induced by the
Euclidean metric of R2m, is the orthogonal group O(2m), that acts transitively. On the other
hand, the special orthogonal group SO(2m), the unitary group U(m), and the special unitary
group SU(m) also act transitively on S2m−1.

Definition 2. Let (M,d) be a metric space and x ∈M . An isometry f :M →M is called
a δ(x)-translation or a δ-translation at the point x, if x is a point of maximal displacement
of f , i. e. for every y ∈M the relation d(y, f(y)) 6 d(x, f(x)) holds.

Definition 3. Let (M,d) be a metric space. An isometry f : M → M is called a

Clifford — Wolf translation (CW-translation), if f moves all points of (M,d) the same distance,
i. e. d(y, f(y)) = d(x, f(x)) for every x, y ∈M .

Let us recall one well known fact, which gives us an useful technical tool.

Proposition 1. Let (M,d) be a metric space. If f ∈ Isom (M,d) is such that the group

G = {g ∈ Isom (M,d) | gf = fg}, i. e. the centralizer of f in Isom (M,d), acts transitively

on M , then f is a Clifford — Wolf translation on (M,d).

⊳ Let us take x, y ∈ M and prove that d(x, f(x)) = d(y, f(y)). Since G acts transitively
on M , there is g ∈ G such that g(x) = y. Further, we have

d(y, f(y)) = d
(

g(x), f(g(x))
)

= d
(

g(x), g(f(x))
)

= d(x, f(x)),

since g is an isometry of (M,d) and fg = gf . ⊲

Definition 4. A metric space (M,d) is called generalized normal homogeneous (respec-
tively, Clifford — Wolf homogeneous), if for every x, y ∈ M there exists a δ(x)-translation
(respectively, Clifford — Wolf translation) of (M,d), moving x to y.

Clearly, any Clifford — Wolf translation is a δ(x)-translation for all x ∈ M , any
Clifford — Wolf homogeneous space is generalized normal homogeneous, and the latter one is
homogeneous.
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Since R
n is a commutative group (with respect to the vector addition), then every

Euclidean space is Clifford — Wolf homogeneous by Proposition 1 (but it is easy to find
all suitable CW-translations explicitly). Let us consider a more general example.

Example 1. Let G be a group, supplied with a metric d, that is bi-invariant, i. e. invariant
both with respect to left and right shifts on G (for an element a ∈ G, the maps la : x 7→ a · x
and ra : x 7→ x ·a are called the left shift and the right shift by a respectively). It is clear that
the group of left shifts, as well as the group of right shifts, acts transitively on G. Moreover,
every left shift centralizes the group of right shifts, hence, it is a Clifford — Wolf translation
of (G, d). Analogously, every right shift is a Clifford — Wolf translation of (G, d). This implies
that (G, d) is Clifford — Wolf homogeneous.

Note also that every odd-dimensional sphere (with the standard metric of constant
curvature) is Clifford — Wolf homogeneous, see details e. g. in [4], [6, Chapter 7] or [9].

2. Finite Homogeneous Metric Spaces

Here we recall some important properties of finite homogeneous metric spaces. There are
the following sources for such spaces (see details in [1]):

(1) a homogeneous space G/H of a finite group G by some its subgroup H, endowed with
an invariant metric;

(2) a compact convex polytope in Euclidean space, whose isometry group acts transitively
on the vertex set;

(3) a vertex-symmetric (vertex-transitive, in other terminology) connected finite graph
with the natural metric;

(4) the Cayley graph of a finite group for a minimal generating set.

Definition 5. A map of metric spaces f : (M1, d1) → (M2, d2) is called a submetry, if
it maps every closed ball B(x, s) ⊂ (M1, d1) with center x and radius s onto the closed ball
B(f(x), s) ⊂ (M2, d2) with center f(x) and radius s [10].

Definition 6. A finite homogeneous metric space (M,d) is called normal homogeneous

if for its isometry group Isom (M,d) and its stabilizer H at a point x0 ∈ M , there exists a
subgroup Γ of the group Isom (M,d) which is transitive on M and a bi-invariant metric σ
on Γ such that the canonical projection π : (Γ, σ) → (Γ/(Γ ∩H), d) = (M,d) is a submetry.

Remark 1. It should be noted that there are more restrictive definitions of the normal

homogeneity for some special classes of metric spaces. For instance, that is the case with
Riemannian manifolds, see details in [3, 5, 6].

The following result shows that the property to be generalized normal homogeneous (that
is a pure metrical property) is equivalent to the property to be a normal homogeneous (that
is an algebraic property in fact) in the case of finite metric spaces.

Proposition 2 [1]. A finite metric space (M,d) is generalized normal homogeneous if and

only if it is normal homogeneous.

⊳ At first, let us prove that a finite normal homogeneous metric space (M,d) is generalized

normal homogeneous. Let us denote Γ∩H by H ′ (see Definition 6). We identify elements of M
with left cosets αH ′ = π(α), α ∈ Γ. Since the canonical projection π : (Γ, σ) → (Γ/H ′, d) =
(M,d) is a submetry, then the following statements hold: (I) the map π does not increase
distances; (II) for every three points x, y ∈ M , ξ ∈ π−1(x), there exists a point η ∈ π−1(y)
such that σ(ξ, η) = d(x, y).

Let us consider some x, y ∈M and ξ ∈ π−1(x). We know (by (II)) that there is η ∈ π−1(y)
such that σ(ξ, η) = d(x, y). Let us consider γ = ηξ−1. According to Example 1, the left shift
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by γ is a Clifford — Wolf translation of the space (Γ, σ). On the other hand, γ is an isometry
of (Γ/H ′ = M,d) with γ(x) = y (since γξH ′ = ηH ′). Further, for any z ∈ M and any
ζ ∈ π−1(z), we have

d(x, γ(x)) = d(x, y) = σ(ξ, η) = σ(ξ, γξ) = σ(ζ, γζ)) > (by (I))

> d(π(ζ), π(γζ)) = d(ζH ′, γζH ′) = d(z, γ(z)).

Therefore, γ is a δ(x)-translation. Since x, y ∈ M could be arbitrary, we get that the metric
space (M,d) is generalized normal homogeneous.

Let us prove that a finite generalized normal homogeneous metric space (M,d) is normal

homogeneous. We consider the group G = Isom (M,d) and the stabilizer H of a certain point
x0 ∈M in G. Let us define

σ(g, h) := max
x∈M

d(g(x), h(x)), g, h ∈ G.

It is easy to verify that σ is a bi-invariant metric on G. We state that

π : (G,σ) → (G/H, d) = (M,d)

is a submetry, hence, (M,d) is normal homogeneous. The definition of σ implies

d(π(g), π(h)) = d(g(x0), h(x0)) 6 σ(g, h)

for every g, h ∈ G, i. e. π does not increase the distance. Let x be any point in M . Since
(M,d) is generalized normal homogeneous, there exists g ∈ G such that g(x0) = x and
d(x0, x) = d(x0, g(x0)) > d(y, g(y)) for all y ∈M (i. e. g is a δ(x0)-translation). Therefore,

σ(e, g) = d(x0, g(x0)) = d(π(e), π(g)).

From the above reasoning it follows that π(B(e, r)) = B(x0, r) = B(π(e), r) for each number
r > 0. Since the metric σ is left-invariant, we get π(B(g, r)) = π(lg(B(e, r))) = B(π(g), r) for
any r > 0, g ∈ G, i. e. π is a submetry. ⊲

Let us denote by FGBM,FGLM,FCWHS,FGNHS,FNHS,FHS respectively the
classes of finite groups with bi-invariant metrics, finite groups with left-invariant metrics,
finite Clifford — Wolf homogeneous spaces, finite generalized normal homogeneous spaces,
finite normal homogeneous spaces, and finite homogeneous spaces. Proposition 2 implies the
equality FGNHS = FNHS. It is known also that

FGBM ⊂ FCWHS ⊂ FGNHS = FNHS ⊂ FHS,

FGBM ⊂ FGLM ⊂ FHS.

Moreover, all the above inclusions are strict, see details in [1]. In what follows we will consider
mostly two subclasses of the class of finite homogeneous metric spaces: finite Clifford — Wolf
homogeneous metric spaces and finite (generalized) normal homogeneous spaces.

3. Finite Homogeneous Subspace of Euclidean Spaces

In this section we deal with finite subsets of Euclidean space R
n. We assume that any such

set M is supplied with the metric d induced from R
n.



On Finite Homogeneous Metric Spaces 55

Since the barycenter of a finite system of material points (with one and the same mass) in
any Euclidean space is preserved for any bijection (in particular, any isometry) of this system,
we immediately get the following result.

Proposition 3 [1]. Let M = {x1, . . . , xm}, m > n + 1, be a finite homogeneous metric

subspace of Euclidean space R
n, n > 2, which does not lie in a hyperplane. Then M is the

vertex set of a convex polytope P , that is situated in some sphere in R
n with radius r > 0

and center x0 = 1

m
· ∑m

k=1
xk. In particular, Isom (M,d) ⊂ O(n). Up to a similarity, any

homogeneous finite metric subspace in R
n, n > 2, is a homogeneous metric subspace of the

unit sphere Sn−1 ⊂ R
n.

This result shows that the theory of convex polytopes is very important for the study of finite
homogeneous subspaces of Euclidean spaces. Now, we recall several important definitions. For
a more detailed acquaintance with the theory of convex polytopes, we recommend [11–15].

We say that a n-dimensional polytope P in R
n is homogeneous (or vertex-transitive) if

its isometry group acts transitively on the set of its vertices. Further, P is called a polytope

with regular faces (respectively, a polytope with congruent faces), if all its facets are regular
(respectively, congruent) polytopes.

A one-dimensional polytope is a closed segment, bounded by two endpoints. It is regular
by definition. Two-dimensional regular polytopes are regular polygons on Euclidean plane. For
other dimensions, regular polytopes are defined inductively. A convex n-dimensional polytope
for n > 3 is called regular, if it is homogeneous and all its facets are regular polytopes congruent
to each other. This definition is equivalent to other definitions of regular convex polytopes
(see [16]).

We also recall the definition of semiregular convex polytopes. For n = 1 and n = 2,
semiregular polytopes are defined as regular. A convex n-dimensional polytope for n > 3 is
called semiregular if it is homogeneous and all its facets are regular polytopes.

A generalization of the class of semiregular polytopes is the class of uniform polytopes.
For n 6 2, uniform polytopes are defined as regular. For other dimensions, uniform polytopes
are defined inductively. A convex n-dimensional polytope for n > 3 is called uniform if it is
homogeneous and all its facets are uniform polytopes. In particular, for n = 3, the classes of
uniform and semiregular polytopes coincide, and for n = 4 the facets of the uniform polytope
must be semiregular three-dimensional polytopes. This class of polyhedra is far from complete
classification, see known results in [16, 17].

The classification of regular polytopes of arbitrary dimension was first obtained
by Ludwig Schläfli and is presented in his book [18], see also Harold Coxeter’s
book [12]. The list of semiregular polytopes of arbitrary dimension was first presented
without proof in Thorold Gosset’s paper [19]. Later this list appeared in the work of
Emanuel Lodewijk Elte [20]. The proof of the completeness of this list was obtained much
later by Gerd Blind and Rosvita Blind, see [21] and the references therein. Semiregular (non-
regular) polytopes in R

n for n > 4 are called Gosset polytopes. A lot of additional information
can be found in [22].

4. Regular and Semiregular Polytopes

We briefly recall the classification of regular and semiregular polytopes in Euclidean spaces.
Each regular n-dimensional polytope is characterized by its Schläfli symbol {p1, p2, . . . , pn−1},
an ordered set of (n− 1) natural numbers. A vertex figure of n-dimensional regular polytope,
n > 3, is a (n − 1)-dimensional polytope, which is the convex hull of the vertices, having a
common edge with a given vertex and different from it. Faces of dimension n− 1 (hyperfaces)
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of a n-dimensional polytope commonly referred to as facets. Note that they are also called
cells for n = 4.

Table 1. Regular 3-dimensional polyhedra

Polyhedron V E F α Face Schläfli
symbol

Tetrahedron 4 6 4 2 arcsin(1/
√
3) △ {3, 3}

Cube (hexahedron) 8 12 6 π/2 � {4, 3}
Octahedron 6 12 8 2 arcsin(

√

2/3) △ {3, 4}
Dodecahedron 20 30 12 2 arcsin

(√
ϕ/ 4

√
5
)

D {5, 3}
Icosahedron 12 30 20 2 arcsin(ϕ/

√
3) △ {3, 5}

An one-dimensional polytope (closed segment) is regular and is represented by the Schläfli
symbol { }. Two-dimensional regular polyhedra (polygons) have equal sides and are inscribed
in a circle. A regular p-gon is represented by the Schläfli symbol {p}.

In dimensions n > 3, the Schläfli symbol can be defined inductively: for a n-dimensional
polytope M it is equal to {p1, p2, . . . , pn−1}, where p1 is the number of sides of an (arbitrary)
two-dimensional face of the polytope M , and {p2, . . . , pn−1} is the Schläfli symbol for the
vertex figure of the polytope M . It is clear that the facet of the polytope M has Schläfli
symbol {p1, p2, . . . , pn−2}.

Table 2. Regular 4-dimensional polytopes

Polytope V E F C Cell Schläfli
symbol

Hypertetrahedron or 5-cell 5 10 10 5 tetrahedron {3, 3, 3}
Hypercube or 8-cell 16 32 24 8 cube {4, 3, 3}
Hyperoctahedron or 16-cell 8 24 32 16 tetrahedron {3, 3, 4}
24-cell 24 96 96 24 octahedron {3, 4, 3}
120-cell 600 1200 720 120 dodecahedron {5, 3, 3}
600-cell 120 720 1200 600 tetrahedron {3, 3, 5}

In three-dimensional space, a regular polyhedron with the Schläfli symbol {m,n} has
regular faces of the type {m} and a regular vertex figure with the symbol {n}. For regular
three-dimensional polyhedra, the vertex figure is a polygon. It is well known that there are only
five regular three-dimensional polyhedra: the tetrahedron, cube, octahedron, dodecahedron
and icosahedron with the Schläfli symbols {3, 3}, {4, 3}, {3, 4}, {5, 3} and {3, 5} respectively.
These polyhedra are traditionally called Platonic solids. Some important properties of these
polyhedra could be found in Table 1, where V , E, and F mean respectively the numbers of

vertices, edges, and faces; α is the dihedral angle; the number ϕ := 1+
√
5

2
is known as the

golden ratio.
A regular 4-dimensional polytope with the Schläfli symbol {m,n, s} has cells of the type

{m,n}, 2-faces of the type {m}, and the vertex figures {n, s}. The list of 4-dimensional regular
polytopes together with their important characteristics are given in Table 2, where V , E, F ,
and C mean respectively the numbers of vertices, edges, faces, and cells (3-dimensional faces).
A more detailed description of the structure of four-dimensional regular polytopes could be
found e. g. in [7, Section 3].

For each dimension n > 5, there exists three regular polytopes: the n-dimensional simplex,
the hypercube (n-cube) and the hyperoctahedron (n-orthoplex). Important characteristics of
these polytopes are given in Table 3.
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We now proceed to a brief description of the semiregular (non-regular) polytopes.

In three-dimensional space (in addition to Platonic solids), there are the following
semiregular polyhedra: 13 Archimedean solids and two infinite series of regular prisms and
right antiprisms.

A right prism is a polyhedron whose two faces (called bases) are congruent (equal)
polygons, lying in parallel planes, while other faces (called lateral ones) are rectangles
(perpendicular to the bases). It is easy to see that the vertex set of every right prism is
Clifford — Wolf homogeneous. If lateral faces are squares then the prism is said to be regular.
In this case we get an infinite family of semiregular convex polyhedra.

A right antiprism is a semiregular polyhedron, whose two parallel faces (bases) are equal
regular n-gons, while other 2n (lateral) faces are regular triangles. Note that the octahedron
is an antiprism with triangular bases. It is easy to check that the vertex set of every right
prism is Clifford — Wolf homogeneous.

A detailed description of Archimedean solids could be found in Sections 4 and 5 of [7].

Table 3. Regular n-dimensional polytopes for n > 5

Polytope Schläfli symbol Number of k-faces Facet Vertex figure

n-simplex {3, 3, . . . , 3, 3} Ck+1
n+1 {3, 3, . . . , 3} {3, . . . , 3, 3}

n-cube {4, 3, . . . , 3, 3} 2n−kCk

n {4, 3, . . . , 3} {3, . . . , 3, 3}
n-orthoplex {3, 3, . . . , 3, 4} 2k+1Ck+1

n {3, 3, . . . , 3} {3, . . . , 3, 4}

According to the classification of semiregular polytopes in R
n, n > 4 (see [19] and [21]),

besides regular polytopes, there are three semiregular polytopes in R
4 and one semiregular

polytope in R
n for n = 5, 6, 7, 8.

Recall that the rectified polytope P is the convex hull of the midpoints of the edges of P .
Note also that rectification, also known as critical truncation or complete truncation is the
process of truncating a polytope by marking the midpoints of all its edges, and cutting off its
vertices at those points.

For n = 4 we have exactly three semiregular polytopes: the rectified 4-simplex, rectified
600-cell, and snub 24-cell. A detailed description of these polytopes could be found in Section 5
of [8].

The unique (up to similarity) semiregular Gosset polytope in R
n for n ∈ {5, 6, 7, 8} we

denote by the symbol Goss n. Detailed descriptions of these polytopes could be found in
Sections 6, 7, 8, and 9 of [8] respectively.

Example 2. Let us consider a brief explicit description of Goss 6. This polytope can be
implemented in different ways. Let us set it with the coordinates of the vertices in R

6, as it is

done in [20]. Let us put a =
√
2

4
and b =

√
6

12
. We define the points Ai ∈ R

6, i = 1, . . . , 27, as
follows:

A1 = (0, 0, 0, 0, 0, 4b), A2 = (a, a, a, a, a, b), A3 = (−a,−a, a, a, a, b),
A4 = (−a, a,−a, a, a, b), A5 = (−a, a, a,−a, a, b), A6 = (−a, a, a, a,−a, b),
A7 = (a,−a,−a, a, a, b), A8 = (a,−a, a,−a, a, b), A9 = (a,−a, a, a,−a, b),
A10 = (a, a,−a,−a, a, b), A11 = (a, a,−a, a,−a, b), A12 = (a, a, a,−a,−a, b),
A13 = (−a,−a,−a,−a, a, b), A14 = (−a,−a,−a, a,−a, b), A15 = (−a,−a, a,−a,−a, b),
A16 = (−a, a,−a,−a,−a, b), A17 = (a,−a,−a,−a,−a, b), A18 = (2a, 0, 0, 0, 0,−2b),
A19 = (0, 2a, 0, 0, 0,−2b), A20 = (0, 0, 2a, 0, 0,−2b), A21 = (0, 0, 0, 2a, 0,−2b),
A22 = (0, 0, 0, 0, 2a,−2b), A23 = (−2a, 0, 0, 0, 0,−2b), A24 = (0,−2a, 0, 0, 0,−2b),
A25 = (0, 0,−2a, 0, 0,−2b), A26 = (0, 0, 0,−2a, 0,−2b), A27 = (0, 0, 0, 0,−2a,−2b).
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The Gosset polytope Goss 6 is the convex hull of these points. It is easy to check that
d(A1, Ai) = 1 for 2 6 i 6 17 and d(A1, Ai) =

√
2 for 18 6 i 6 27.

It is clear that the points A2 −A17 are vertices of a five-dimensional semi-hypercube (the
corresponding hypercube has 32 vertices of the form (±a,±a,±a,±a,±a, b)), and the points
A18−A27 are the vertices of the five-dimensional hyperoctahedron (orthoplex), which is a facet
of the polytope Goss 6 (lying in the hyperplane x6 = −2b). The origin O = (0, 0, 0, 0, 0, 0) ∈ R

6

is the center of the hypersphere described around Goss 6 with radius 4b =
√

2/3.

5. Main Results

In [1, 7, 8], the authors obtained the complete description of the metric properties of the
sets of vertices of regular and semiregular polytopes in Euclidean spaces from the point of
view of the normal homogeneity and the Clifford — Wolf homogeneity. Recall that any set M
in the Euclidean space R

n is supposed to be supplied with the metric d induced from R
n.

Here we collect all related results in the following theorem.

Table 4. Metric properties of regular and semiregular polytopes

№ Polytope Dimension Regularity (NH, CWH) Source

1 n-simplex n R (+, +) [1]

2 n-cube n R (+, +) [1]

3 n-orthoplex n R (+, +) [1]

4 any regular polygon 2 R (+, +) [1]

5 dodecahedron 3 R (−, −) [1]

6 icosahedron 3 R (+, −) [1]

7 24-cell 4 R (+, +) [7]

8 120-cell 4 R (−, −) [7]

7 600-cell 4 R (+, +) [7]

8 any regular prism 3 SR (+, +) [7]

9 any right antiprism 3 SR (+, +) [7]

10 any Archimedean solid 3 SR (−, −) [7]

11 rectified 4-simplex 4 SR (+, −) [8]

12 snub 24-cell 4 SR (−, −) [8]

13 rectified 600-cell 4 SR (−, −) [8]

14 Goss 5 5 SR (+, +) [8]

15 Goss 6 6 SR (+, −) [8]

16 Goss 7 7 SR (+, −) [8]

17 Goss 8 8 SR (+, +) [8]

Theorem 1 [1, 7, 8]. For a given regular or semiregular polytope P in R
n, the vertex

set M of P is normal homogeneous or Clifford — Wolf homogeneous if and only if there is

the sign “+” in the suitable place of the intersection of the row corresponding to P with the

fifth column of Table 4, where NH means the normal homogeneity and CWH means the

Clifford — Wolf homogeneity.

Remark 2. In the fourth column of Table 4 we clarify the degree of regularity of P : R and
SR mean respectively a regular polytope and a semiregular (non-regular) polytope. The last
column of Table 4 contains the sources for the corresponding results.

We discuss in more detail some tools that were used for obtaining of suitable results.

The most usual way to prove, that a given metric space (M,d) is Clifford — Wolf
homogeneous, is to supply M with a group structure, such that d is invariant both under
the left and right shifts, see Example 1. For instance, the vertex set M of a regular polygon
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with m vertices could be identified with the cyclic group Cm (with the generator that is a
rotation around center of the polygon with rotation angle 2π/m). Hence the vertices of every
regular two-dimensional polyhedron (regular polygon) form Clifford — Wolf homogeneous
metric spaces. The vertex sets of the n-dimensional simplex and the hypercube (n-cube) can be
considered respectively as the cyclic group Cn+1 and the group (Z2)

n with bi-invariant metrics,
see [1, Corollary 2] (the same idea works in the case of the n-dimensional semi-hypercube,
see [8, Proposition 19]). For n = 1 we get the case of one-dimensional polytope (segment) in
this construction. Note that the vertex sets of the 24-cell, dysphenoidal 288-cell, and 600-cell
could be identified with some subgroups of the group S3 (the group of unit quaternions),
hence, these sets are also Clifford — Wolf homogeneous metric spaces, see [7, Proposition 3].
We specially note that the dysphenoidal 288-cell is neither regular, nor semiregular, nor even
uniform, see Section 3 in [7].

It should be noted that we used quite special methods for some of Clifford — Wolf
homogeneous metric spaces. For instance, the hyperoctahedron (n-ortoplex) is Clifford —
Wolf homogeneous metric spaces in R

n for any n > 1 by [1, Corollary 4].

Let us consider one idea how to prove that a vertex set of a given polytope is not normal
homogeneous. It is based on the following

Proposition 4. Let M be the vertex set of a polytope P ⊂ R
n. Suppose that there are

adjacent each to other points O,O′ ∈M such that

1) for any vertex Q′ ∈M adjacent to O′ and Q′ 6= O we get ∠OO′Q′ > π
2
;

2) there are two distinct vertices Q1, Q2 ∈ M adjacent to O and distinct from O′ such

that ∠QiOO
′ > π

2
, i = 1, 2.

Then (M,d) is not normal homogeneous.

⊳ Denote d(O,O′) by ρ. Suppose that (M,d) is normal homogeneous. Then there is an
isometry ψ of the metric space (M,d), shifting all points by a distance at most ρ and such
that ψ(O) = O′ (ψ is a δ-shift at the point O).

Since ψ is an isometry and the vertex Qi is adjacent to O, then ψ(Qi) is adjacent to O′,
i = 1, 2. Since ψ(Q2) 6= ψ(Q1), one of these point, say ψ(Q1), is distinct from O. Then we
have ∠OO′ψ(Q1) > π/2 and ∠Q1OO

′ > π/2, therefore, d(Q1, ψ(Q1)) > ρ that impossible
(even the orthogonal projection of the line segment [Q1, ψ(Q1)] to the straight line OO′ is
longer than ρ). Hence, the map ψ with desirable properties does not exist. The proposition is
proved. ⊲

This proposition could be used to prove that the vertex sets of the dodecahedron in R
3,

the 120-cell in R
4, and Archimedian solids are not normal homogeneous.

To study all other regular and semiregular polytopes, we refer the reader to detailed
reasoning in [1], [7], and [8].
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Sobolev Institute of Mathematics SB RAS,
4 Acad. Koptyug Ave., Novosibirsk 630090, Russia,
Principal Scientific Researcher

E-mail: valeraberestovskii@gmail.com
https://orcid.org/0000-0001-5739-9380
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Аннотация. Работа представляет собой обзор недавно полученных результатов о конечных одно-
родных метрических пространствах. Основным предметом обсуждения является классификация пра-
вильных и полуправильных многогранников в евклидовых пространствах по наличию у множеств их
вершин свойств нормальной однородности или однородности по Клиффорду — Вольфу. Каждое конеч-
ное однородное метрическое подпространство евклидова пространства представляет собой множество
вершин компактного выпуклого многогранника с группой изометрий, транзитивной на множестве вер-
шин, причем все эти вершины лежат на некоторой сфере. Таким образом, изучение таких подмножеств
тесно связано с теорией выпуклых многогранников в евклидовых пространствах. Нормальная обобщен-
ная однородность и однородность по Клиффорду — Вольфу описывают более сильные свойства, чем
однородность. Поэтому естественно сначала проверить наличие этих свойств для вершинных множеств
правильных и полуправильных многогранников. Помимо классификационных результатов, статья со-
держит описание основных инструментов для исследования соответствующих объектов.

Kлючевые слова: архимедово тело, конечное нормальное однородное метрическое пространство,
конечное однородное метрическое пространство, конечное однородное по Клиффорду — Вольфу метри-
ческое пространство, многогранник Госсета, платоново тело, полуправильный многогранник, правиль-
ный многогранник.
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