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CHAPTER 2

BORDER PATTERNS

2.0  Infinity and Repetition

2.0.1 “What goes (a)round comes (a)round”. You are certainly 
surprised to see this familiar proverb lying near the beginning, in 
fact at the very root, of a mathematical book, aren’t you? Well, no 
treatise on fate here, we are simply quoting it literally: if you are 
moving ‘straight’ on the surface of a sphere or cylinder then you are 
bound to return to the point where you started from, that’s all... This 
is even more obvious to those who like to think about the structure 
of our infinite  universe in terms of space and time, but we are not 
getting into that, either!

What we have in mind is very earthly indeed: when was the last 
time you noticed a certain motif repeating itself around a vase or 
belt or the margin (border ) of a framed photo or ancient mosaic? If 
you do not quite recall ever having noticed such details, you better 
be prepared for a change after you go through this book!  Such 
repeating motifs, called border patterns , have been with us for a 
very long time and, rather surprisingly at first, happen to be subject 
to mathematical rules that are accessible and profound at the same 
time. We investigate these rules and more with the help of many 
examples that might even make this book seem like an art book to 
you: indeed the worlds of art and mathematics are not disjoint!

Before going further, let us point out that infinity and repetition 
do not always go together. You may recall for example that, while 
some numbers with an infinite decimal portion have repeating digits 
after some point (like 4.7217373... = 116,863/24,750), others (like 
the most famous of all such numbers, ππππ = 3.141592654...) come 
with a very unpredictable sequence of digits. And, of course, while 
repeating motifs abound in our finite world, infinite objects exist 
only in our powerful imagination : indeed you will have to train 



yourself to see the finite as infinite throughout much of this book; 
in the case of a border pattern, the easiest way to manage that is to 
simply wrap it around -- in about the same way that geometers 
often consider an infinite straight line as a circle of infinite radius!

2.0.2 Notation. Although border patterns will be best understood 
by following the examples and discussion in the following sections, 
we can briefly state here that they consist of a motif that repeats 
itself infinitely along a straight line (or finitely along a circle, in 
view of what we just discussed above). As we will see, there are a 
total of seven distinct types, each of them equipped with a special 
four-character ‘name’  that always starts with a p  (for “pattern”). 
This special notation, even though not terribly important, will be 
explained as we move through the next seven sections. 

2.1  Translation left alone (p111)

2.1.1 Uneventful repetition. Consider the following pattern, 
consisting of repeated images of the letter F , and try to imagine it 
either extending itself to the right and to the left for ever or going 
straight around a ‘short’ cylinder:  

                                                                                                

Fig. 2.1

Clearly, a horizontal translation  by the vector v
→→→→

 in figure 2.1 
maps the ‘first to the left’ F  to the ‘second’ one, the ‘second’ one to 
the ‘third’ one, and so on; as for that ‘first to the left’ F , you should 
think of it as being in turn the image of its predecessor (not shown),  



etc. Alternatively, we could consider the opposite translation 

defined by −−−−v
→→→→

 that ‘moves’ the Fs from right to left instead of left 

to right; or a translation defined by the vector 3 v
→→→→

 that moves every 
F  to an F  three positions to the right, etc. The possibilities for a 
great variety of translations are endless, and they are all allowed by 
the letter F ’s uni form  repet i t ion  along a straight line. But we will 
usually only consider the ‘minimal’ left-to-right translation defined 

by v
→→→→

, the pattern’s minimal  t ranslat ion  vector .

2.1.2 More than one letters allowed. Instead of repeating a 
single letter, as in figure 2.1, we may create patterns by repeating 
two or more letters or even whole words and more:   

Fig. 2.2

Notice that the (minimal) translation vector in figure 2.2 is 
about twice as long as the translation vector in figure 2.1: the  
fundamental  region  consists now of “FAME ” instead of just “F ”. 

2.1.3 Other motifs. Instead of repeating letters or words, we 
may of course repeat any geometrical or other figure of our choice 
and imagination. Here is an example:

                                                                                      p111
Fig. 2.3

2.1.4  Attention! As we will see very shortly, repeating motifs 



involves ‘positive risks’: we may end up creating patterns with 
more  symmetry (and isometries) than promised by the very title of 
this section! Remember, this section is devoted to patterns of p111  
type, where p  stands for translation and the three 1s denote the 
absence  of other isometries to be revealed in the coming sections.

2.2 Mirrors galore (pm11)   

2.2.1 Not all letters are created equal. What happens when we 
try to use the letter M  instead of F  in figure 2.1? Let’s see:

Fig. 2.4

Clearly, a vector approximately equal to the vector v
→→→→

 of figure 
2.1 works as a translation vector for this pattern. But sooner or 
later one notices something ‘extra’: any vertical line either half way 
between any two successive Ms or right through the middle of any M  
acts as a vert ical  ref lect ion  axis (mirror ) for the entire pattern; 
that is, the whole pattern remains invariant, with each M  being 
reflected onto some other M . 

Fig. 2.5

Now you are probably ready to protest our claim and argue that 
only m 1 is a legitimate reflection axis for our pattern, aren’t you? 



Well, if that is the case, you better hold your horses! For your 
protest is a sure indication that you forgot one important thing: our 
pattern is assumed to extend ‘for ever’ in both directions! So, there 
is no point in worrying that there are only two M s to the left of m 2 

to match the five M s to the right of m 2, or only one M  to the left of 

m 3 to match the five M s to the right of m 3: there are infinitely many 

Ms ‘in both directions’, and our pattern is actually blessed with 
inf in i te ly  m a n y  vertical mirrors! 

Patterns with vertical reflection are denoted by pm11 , where m  
stands for “mirror (reflection)” and, again, the two 1s mark the 
absence of symmetries that we still have to explore.

2.2.2 What made the difference? Why are there infinitely many 
mirrors in the M -pattern but none in the F -pattern? It all has to do 
with the fact that M  itself has an internal mirror  running through 
it (that maps it to itself by mapping its right half to its left half 
and vice versa), while F does not  have such a mirror. Does that mean 
that in order to create a pm11  pattern we must repeat a motif that 
has what we called (1.2.8) “mirror symmetry”? Yes and no: we may 
certainly employ two (or more) motifs without mirror symmetry, 
but the fundamental region itself must have it; the pm11  pattern in 
figure 2.6, where the fundamental region may be taken to be either 
“qp ” (of mirror L 1) or “pq ” (of mirror L 2), is rather illuminating:

Fig. 2.6

2.2.3 Two kinds of mirrors. Our examples in 2.2.1 and 2.2.2 do 
indicate something interesting: there always seem to be two kinds  
of vertical mirrors in a pm11  pattern! Indeed, there are mirrors 
alternatively running either through an M  or between two Ms in 
figure 2.5; likewise, mirrors alternatively running either ‘between 



two lines’ or ‘between two circles’ in figure 2.6 (like L 1 and L 2, 

respectively). In more sophisticated terms, mirrors either bisect  
the fundamental region or separate  two adjacent fundamental 
regions. Moreover, you may also notice something a bit more subtle: 
the distance between every two successive  (hence ‘different’) 
mirrors (like m 2 and m 3 in figure 2.5) is equal to half  the length of 

the minimal translation vector! All these observations are valid in 
every pm11  pattern and for fairly deep reasons that will be 
discussed in chapters 7 and 8, specifically in 7.2.1 and 8.1.5. 

2.2.4 From p111  to pm11 . There is a simple way of turning a 
p111  pattern into a pm11  pattern: simply ‘reverse’ every other  
motif (as if a mirror ran through  it)! We illustrate this idea by 
getting a pm11  pattern out of the p111  pattern of figure 2.3:

                                                                                     pm11
Fig. 2.7

2.3  Only one mirror (p1m1)

2.3.1 An infinite mirror. Let us now duplicate the letter D :

Fig. 2.8

It is obvious that the line L that runs through our D -pattern acts 
as a reflection axis for it: indeed the upper half of each D  is mapped 
to its lower half (and vice versa), and that happens simply because 



the letter D  itself has mirror symmetry . We have just created our 
third border pattern type, characterized by horizontal reflection  
(and only that, save for the translation of course) and denoted by 
p1m1 . (Notice that m  denotes horizontal reflection when in the 
third position and vertical reflection when in the second position.) 

Here is another example of a p1m1  pattern using two letters 
(each of them endowed with a horizontal mirror) instead of one:

Fig. 2.9

2.3.2 From p111  to p1m1 . It is not necessary to use motifs 
with horizontal mirror symmetry in order to create a p1m1  pattern. 
We may in fact start with an arbitrary p111  pattern and then 
reflect it across an axis paral le l  to its ‘d i rect ion’  to get a 
perfectly legitimate p1m1  pattern. Here is how this idea is applied 
to the pattern from figure 2.3:

                                                                                  p1m1

Fig. 2.10

This example simply points to a rather obvious, yet useful, fact: 
in a p1m1  border pattern the horizontal reflection axis must be the 
pattern’s ‘backbone’ (i.e., the intelligible axis that cuts the pattern 
into two equal halves, ‘top’ and ‘bottom’); that is, and unlike in the 



case of vertical reflection, there  is  only  one  place  to  look  for  
hor izon ta l  re f lec t ion !

2.3.3 Aesthetic considerations. We have seen in 2.2.4 and 2.3.2 
how simple modifications of the p111  pattern lead to the pm11  and 
p1m1  patterns. And we have also seen that both the pm11  and the 
p1m1  patterns are created by repetition of a motif that has mirror 
symmetry: we get a p1m1  in case the repetition occurs along a 
direction paral lel  to the motif’s internal mirror, and a pm11  in 
case the repetition occurs along a direction perpendicular  to that 
mirror. This simple geometrical fact bears on the visual impressions 
created by these patterns: using arrows  as in figure 2.11, for 
example, we see that the p1m1  creates a feeling of motion  along 
the pattern’s backbone, while the pm11 ’s vertical mirrors create a 
feeling of sti l lness ; as for the p111  type, it is not unreasonable to 
say that it stands somewhere between stillness and motion!

Fig. 2.11

Do you agree with our statements in the preceding paragraph? 
Well, do not worry in case you do not! When it comes to aesthetics, 
things are a bit more democratic than in mathematics, and 
contrasting opinions are allowed to peacefully coexist: simply 
consider our opinion as a starting point for developing yours! On our 



part, we offer a viewpoint that could support either opinion: 
consider each arrow in figure 2.11 as representing a footprint  
(with the arrow’s tip standing for the toes); then the pm11  pattern 
can be seen as a series of footprints of people standing on line next  
to each other, while the p1m1  pattern can be seen as a series of 
footprints of people standing on line behind  each other. In fact the 
pm11  and p1m1  patterns may also be created by the footprints of a 
jumping individual, and you can verify this yourself: which way 
would you move faster, the pm11  way or the p1m1  way?

 
2.4  Footsteps (p1a1)

2.4.1 Moving for sure now! Consider the arrow-footprint p1m1  
pattern of figure 2.11 ‘cut  in  half’  as in figure 2.12:

Fig. 2.12

Don’t you think that the feeling of motion generated by this 
pattern is much stronger than the one generated by the ‘full pattern’ 
of figure 2.11? With a bit of imagination, you can view the arrows 
as successive positions of a kayak crossing straight through rough 
seas! And if you prefer to stay on land, simply return to the arrow = 
footprint  equation of 2.3.3 and be proud of yourself: you actually 
generate that footstep  pattern  many times per day, in fact every 
time you resort to a straight, steady walk for a few seconds! 

2.4.2 What lies between the footsteps? Recall that our ‘new’ 
pattern has been obtained by ‘cutting in half’ the p1m1  pattern of 
figure 2.11. Moreover, we eliminated precisely those arrows that 
needed to be eliminated in order to destroy  horizontal reflection 
and preserve  translation at the same time. Notice however that the 
minimal translation vector (sol id  line) of the new pattern is 



precisely twice as long  as the minimal translation vector (dotted  
line) of the ‘old’ p1m1  pattern; this does make sense, as we have 
indeed eliminated every other arrow:

Fig. 2.13

What happens if we translate  an arrow, say arrow A  above, by 
the ‘old’  vector? Nothing, unless of course we reflect  it across 
that between-the-arrows line L: then it matches arrow B ! Repeat the 
process to arrow B  -- or first reflect across L and then translate by 
the ‘old’ vector -- and you get to arrow C  (which is A ’s translate by 
the ‘new’  vector), and likewise from C  to D  (which is B ’s translate), 
and so on: our footstep pattern does ‘move’ thanks to a glide  
reflection ! We have just arrived at our fourth border pattern type, 
characterized by glide reflection and denoted by p1a1 . 

Summarizing our observations, we point out that the glide 
reflection axis in every p1a1  pattern (typically denoted by a dotted 
line) runs parallel to the pattern’s direction (and by  necessity  
right  through  its  backbone , of course); further, the minimal glide 
reflection vector equals half  the pattern’s minimal translation 
vector: this reflects on the fact that the glide reflection’s ‘square’  
equals the translation! 

2.4.3 Any good letters out there? Now that you have understood 
what a p1a1  pattern is, can you create one by repeating a single  
English letter, as we did for every border pattern so far? It 
shouldn’t take you that long to realize that this is impossible, even 
if you resort to letters from distant lands’ alphabets or Chinese 
ideograms! And the reason is simple: while we used letters like F  (no 
symmetries), M  (vertical reflection), and D  (horizontal reflection) to 
get the p111 , pm11 , and p1m1  patterns, respectively (in 2.1.1, 
2.2.1, and 2.3.1), there is no letter that has glide reflection! More to 
the point, no  f inite  f igure  may  ever  remain  invar iant  under  



g l ide  re f lec t ion ! 

Does this mean that there is no way to create a p1a1  pattern 
using letters of the English alphabet? Actually not! All we need is 
two  English letters mappable to each other by glide reflection: 

Fig. 2.14 

It is not difficult now to create a p1a1  pattern by infinite 
repetition of the fundamental region “p b ” :

Fig. 2.15

Recall, once again, that all border patterns are infinite  by 
definition, but, of course, we can only show a finite part of them on 
this page, leaving the rest to the imagination. In particular, the 
rightmost b  above is mapped by the ‘standard’ left-to-right glide 
reflection to a p  right next to it that is not shown, etc.  

2.4.4 Example. Consider the following ‘arrow pattern’:

Fig. 2.16



What type is it? Does it have glide reflection? It is tempting to 
say “yes”: arrows A  and C  are mapped to arrows D  and F by a ‘long’  
glide reflection, arrows B  and D  are mapped to arrows C  and E by a 
‘short’  glide reflection, etc. We asked for one  glide reflection but 
ended up with two  instead! Can we still say that there exists glide 
reflection in our pattern ‘endowed’ with two vectors instead of just 
one? No : a glide reflection is by definition associated with precisely 
o n e  vec tor  that  works  for  all  mot i fs  -- otherwise it wouldn’t 
be an isometry! (Indeed our ‘double vector’ pseudo-glide-reflection 
above fails, for example, to preserve the distance between the tips 
of the arrows A  and B , which are ‘mapped’ to the tips of the arrows 
D  and C , respectively.)

What type is it then? There is clearly some symmetry in our 
example, in particular a translation mapping A  to E , B  to F, and so 
on. Could it be just a p111  then? No, a somewhat closer look shows 
that there is vertical reflection, with mirrors -- work ing  for  the  
entire  pattern  -- between A  and B , C  and D , E  and F , etc: it’s a 
pm11 ! (Compare now this pm11  pattern with the one in 2.3.3: what 
makes them differ from each other?)

2.5  Flipovers (p112)

2.5.1 One more variation. Let us revisit the p1m1  and p1a1  
border patterns in figures 2.6 and 2.15, both of them starting with a 
p  and continuing with either a q  or b , respectively. What if we try to 
continue with a d  this time? We end up with the following pattern:

Fig. 2.17



Once again, there seems to be some symmetry involved here, and 
the pattern is clearly invariant under the indicated translation. You 
can check that no reflection or glide reflection is going to leave it 
invariant. There is something else going on though: what happens if 
you turn this page upside  down ? Does the flipped pattern look any 
similar to the original one? Have a classmate hold his/her copy 
straight  right next to yours in case you cannot remember how the 
original looked like! And, if that is not possible, just t race  the 
pattern and then flip it. What do you think? Is the flipped pattern the 
same as the original? Well, you may at first say “no”: the original 
pattern ‘begins’ and ‘ends’ with a p , while the flipped one ‘begins’ 
and ‘ends’ with a d ... But, do not forget: border patterns are infinite , 
so they do not ‘begin’ or ‘end’ anywhere! With this all-important 
detail in mind, you must now agree that the original and flipped 
versions are identical ! 

2.5.2 How do mathematicians flip? Have you really read 1.3.10 
on half turn  or had you assumed it to be little more than a 
footnote? Either way we suggest that you quickly review it, so that 
the special relation between the letters p  and d  illustrated in figure 
2.18 will make full sense to  you: 

Fig. 2.18

Clearly, p  and d  above are images of each other under the shown 
half turn or point  ref lect ion  (as the 1800  rotat ion  was also 
called in 1.3.10). That is, all we need in order to flip a p  into d  or 
vice versa is a point reflection center, easily found by inspection. It 
doesn’t take that long now to realize that the pattern’s backbone  in 
figure 2.17 is full of such centers: a half turn around each one of 
them leaves the entire  pattern invariant! To confirm this you may 
like to trace the pattern and then rotate the tracing paper by 1800 



about your pencil’s tip, held firmly at any one of the half turn 
centers shown in figure 2.19: every p  on the tracing paper moves on 
top of a d  and vice versa! 

Fig. 2.19

In particular, our “p d ”  pattern has half  turn  and belongs to 
the type known as p112 . Notice that the two 1s in the second and 
third positions denote the lack  of vertical reflection and horizontal 
reflection (or even glide reflection), respectively; in the same way, 
the 1  in the fourth position of all types we have seen so far 
indicated the absence of half turn. As for the 2 , that reflects on the 
fact that, with 2 ××××  1800 = 3600, a half turn needs to be applied 
twice  -- as its very name aptly suggests -- in order for everything 
to return to its original position. 

2.5.3 Any single letters? We now ask the same question we 
asked in 2.4.3, providing an affirmative answer this time: it is 
possible to create a p112  pattern using a single letter. All we have 
to do is pick a letter that has internal  half  turn , like N  or Z :

Fig. 2.20 

Notice that the existence of half turn in the “Z ”  pattern is 
much more obvious than in the case of the “p d ”  pattern -- why? 

2.5.4 Two kinds of half turn centers. The p112  patterns in 
figures 2.19 and 2.20 have two  kinds  of half turn centers: between 
either two circles or two lines in the case of the “p d ”  pattern, 



right on the center of a Z  or right between two Zs in the case of the 
“Z ”  pattern. In either case we notice that the distance between any 
two adjacent (hence of distinct type) half turn centers equals half  
the length of the minimal translation vector. This observation is 
very much in tune with our remarks in 2.2.3, and we will return to it 
in 7.5.2.

2.5.5 Example. We now return to the pentagon featured in 2.1.3, 
2.2.4, and 2.3.2 and show how it may be built into a p1a1  or p112 :

Fig. 2.21

Sometimes students confuse a p1a1  pattern for a p112  pattern 
and vice versa. Comparing the two examples above should help you 
understand the difference between them even at the ‘intuitive’ level: 
there is spinning  (with lots of paral lel  segments ) in p112  as 
opposed to straight  motion  (and segments going opposite  ways ) 
in p1a1 . Also, check what happens to each pattern when you flip it 
over by rotating the page by 1800: in one case (p112 ) the new top 
row still ‘points’ to the same  direction (right), while in the other 



case (p1a1 ) the new top row ‘points’ to the opposite direction 
(left). Further, think of what exactly you need to do in each case in 
order to bring a tracing  paper  copy  back to the original pattern! 

Anyhow, the best way to distinguish a p1a1  type from a p112  
type is to remember the isometries that characterize them (glide 
reflection in p1a1 , point reflection in p112 ) and be able to 
explicitly recognize them as such. You may of course wonder: isn’t 
there any way to have both  these wonderful isometries present in 
the same pattern? Well, that’s the topic of the next section! 

2.6  Roundtrip footsteps (pma2) 

2.6.1 Are they mutually exclusive? The discussion in 2.5.5 has 
probably left you with the impression that glide reflection and point 
reflection cannot quite coexist in a border pattern. In particular, you 
would probably be ready to guess that the images of any given figure 
under a glide reflection and under a point reflection must always be 
distinct. This is not true: those two images could actually be one and 
the same in some cases! For an example, look at what happens to the 
letter V  in figure 2.22:

Fig. 2.22

Clearly V gets mapped to ΛΛΛΛ  (capital Greek Lamda) both  by glide 
reflection (left) and point reflection (right)! How did that happen? 
Well, observe that in the case of glide reflection AB  got mapped to 
DE , and AC  to DF , while in the case of point reflection AB  and AC  
got mapped to DF  and DE , respectively; notice in the latter case 
that, consistently with 1.3.10, DF  and DE  are parallel to AB  and AC , 



respectively. In a way, the two isometries acted on V  in two very 
different ways: that should not come as a surprise in view of our 
remarks in 2.5.5. Were AB  a bit longer than AC , for example, the two 
images would have been distinct. Likewise, it is important that AB  
and AC  are not only of equal length, but also at equal distance from 
the vertical line L that bisects V  and acts as an internal  mirror  
for V . In short, the effect of the particular point reflection and the 
particular glide reflection on V  are seemingly  identical precisely  
because V  has (vertical) mirror  symmetry !

2.6.2 All three together now! What happens if we start 
repeating  that “V ΛΛΛΛ  ”  motif created out of V  in figure 2.22? We 
end up with the following border pattern:

Fig. 2.23

In view of the discussion in 2.6.1, it shouldn’t take you long to 
realize that our “V ΛΛΛΛ  ”  pattern has vertical reflection (‘ inheri ted’  
by individual motifs), glide reflection, and point reflection. 
Likewise, you should have no difficulty determining the vertical 
reflection axes, glide reflection vectors, and half turn centers, 
confirming both figure 2.23 and the remarks made on such entities in 
2.2.3, 2.4.2, and 2.5.4. Notice in particular that half  way  between 
every two adjacent mirrors there exists a half turn center (and vice 
versa), while the distance between every two adjacent half turn 
centers (or  mirrors) is equal  to the length of the glide reflection 
vector. Finally, and in view of all the border pattern types and 
notations you have already seen, you ought to be able to guess this 
new pattern’s ‘name’: pma2 .

2.6.3 Two as good as three! Let us now apply either a half turn 
or a glide reflection to pq  and then translate the outcomes 



repeatedly, exactly as we did in the previous section; due to the 
vertical symmetry of pq , we end up, in both cases, with the same  
pma2  pattern (exactly as it happened with the V  in 2.6.1 and 2.6.2):

 
Fig. 2.24

We leave it to you to determine all the isometries of the pqbd  
pattern created in figure 2.24. What is important to observe is that, 
once again, glide reflection and point reflection seem to ‘ imply’  
each other in the presence of vertical reflection.

  
What happens if we start with a motif that has point reflection, 

like pd , and then apply either glide reflection or vertical reflection 
to it, followed by repeated translation? We leave it to you to check 
that, either  way , we end up with the pma2  pattern of figure 2.25:

Fig. 2.25 

Again you should determine all the symmetry elements of this 
pdbq  pattern and confirm the remarks made in 2.6.2. You also have 
the right to suspect that, in the presence of point reflection, 
vertical reflection and glide reflection ‘ imply’  each other.

What happens when we begin with a pb  motif, known from 2.4.3 
to generate a pattern with glide reflection? Will we still be able to 
say that, in the presence of glide reflection, point reflection and 
vertical reflection imply each other? Let’s see... If we apply vertical 
reflection to pb  and then we translate, we end up with the following 
pattern: 



Fig. 2.26
 
The vertical reflection is still there, but there are no signs of 

point reflection. On the other hand, the glide reflection is gone, too: 
this is a pm11  pattern!

Likewise, if we apply point reflection to pb  and then we 
translate, we end up with the p112  pattern of figure 2.27:

Fig. 2.27

That is, we came close, but have finally failed  to produce a 
border pattern that would have glide reflection plus either vertical 
reflection without the point reflection (figure 2.26) or point 
reflection without the vertical reflection (figure 2.27). And for a 
good reason: it can be proven -- see 7.7.4, but also 6.6.2 -- that, 
precisely as our examples so far indicate, whenever a border pattern 
has two  of these three isometries, it must  have  the  third  one  as  
well  (and be a pma2 )! 

Returning to our pb  example: is there any way to get a pma2  
pattern out of it by applying either vertical reflection or point 
reflection followed by translation? Yes, provided that we place the 
mirror or half turn center between p  and b , ‘spacing’ them 
appropriately! We leave it to you to verify that we end up with either 
the pqbd  pattern of figure 2.24 (via vertical reflection) or the pdbq  
pattern of figure 2.25 (via point reflection): those are indeed 
distinct pma2  patterns!

We conclude with a puzzle: can you create a p1a1  pattern by 
translating some permutation of (all  four  of) b , d , p , and q ?



2.6.4 From p1a1  to pma2 . There is no need for any more pma2  
examples, but we would like to justify this section’s title! You may 
recall our ‘footstep’ p1a1  example in figure 2.12. What happens if 
that walker returns through exactly the same route? We could very 
well end up with the following footprint pattern, effectively 
‘doubling’  our p1a1  pattern:

                                                                                   pma2

Fig. 2.28

These ‘roundtrip footsteps’ clearly form a pma2  pattern; glide 
reflection was known to be there by the pattern’s very nature (and 
discussion in 2.4.1), while the vertical mirrors and half turn centers 
are even easier to see: just look ‘between’  the arrows as needed! 

2.6.5 From pma2  to p112  and pm11 . What happens if we 
remove every other ‘column’ of arrows in the pattern of figure 
2.28? We simply arrive at a p112  pattern with all  the half turn 
centers of the original pma2  pattern preserved (figure 2.29):

                                                                                   p112

Fig. 2.29

Notice also that the upper  half  of the pma2  pattern in figure 
2.28 is the familiar pm11  pattern from figure 2.11. That is, every 
pma2  pattern seems to ‘contain’ a pm11 , a p1a1 , and a p112 : in 
view of the isometries involved this observation is not at all 



surprising and you should be able to verify it for every pma2  pattern 
we have studied. How about the p1m1  pattern then? Is it ‘contained’ 
in every pma2  pattern? Well, as we will see right below, such a 
possibility is ruled out by the very nature of the patterns involved. 

2.7  A couple’s roundtrip footsteps (pmm2)

2.7.1 Is it a ‘new’ pattern? As we pointed out in 1.4.8, every 
reflection may be viewed as a very special glide reflection the 
gliding vector of which has length zero . What happens to a pma2  
pattern when its glide reflection is ‘upgraded’ to horizontal 
reflection? Nothing much, in a way; all other isometries will still be 
there, with the minimum distance between vertical mirrors and half 
turn centers reduced to zero : half turn centers are now found at the 
in tersect ions  of the pattern’s hor izonta l  reflection axis with 
every single vertical  reflection axis! You may confirm all this by 
looking at a simple example of such a pattern, created by a letter 
that has both  vertical and horizontal mirror symmetry:

Fig. 2.30 

Once again there are two  kinds  of vertical mirrors (right 
through Hs and right between Hs), hence two kinds of half turn 
centers as well. There isn’t really too much new about this pattern, 
and even its name you should be able to guess: pmm2 , with first m  
for vertical reflection, second m  (instead of a ) for horizontal 
reflection (instead of glide reflection), and 2  for point reflection.

In addition to viewing the horizontal reflection as a glide 
reflection with a gliding vector of zero length, we may as well 
employ it to create glide reflection; this is done by combining the 
horizontal reflection with the minimal translation vector as shown 
in figure 2.30: instead of merely  reflecting each H  back to itself, 



we glide it to the next H , too. This idea of using a reflection axis as 
an axis for a non-trivial, ‘hidden’  glide reflection will become very 
important in future chapters. Notice by the way that the glide 
reflection of the p1a1  pattern in figure 2.13 is none other than the 
‘hidden’ glide reflection of the p1m1  pattern in figure 2.11!

2.7.2 The ‘king’ of border patterns. The pmm2  is the ‘richest’  
type in terms of symmetry: it ‘contains’ both the pma2  type (hence, 
as pointed out in 2.6.5, the pm11 , p1a1 , and p112  types as well) 
and the p1m1  type. Indeed we can ‘reduce’ our pmm2  pattern to 
either a pma2  or a p1m1  pattern by cutting two ‘arms’ off each H :

Fig. 2.31

2.7.3 From pmm2  to pma2 . We now revisit our pentagonal motif 
and construct pmm2  and pma2  patterns as shown below:



Fig. 2.32

Notice that this time we went from pmm2  to pma2  not by 
cutting the pattern in half (as in figure 2.31) but by shift ing  its 
bottom row. This ‘shifting’ will play an important role in chapter 4 
and is also at the very root of the fact that the p1m1  is not 
‘contained’ in the pma2 .

2.7.4 More footsteps. Consider the following ‘arrow-footprint’ 
pattern:

Fig. 2.33

With a little bit of thinking and imagination, you can see this 
pmm2  pattern as the roundtrip  footsteps of a couple walking 
together -- a bit fast perhaps -- and justify this section’s title!

2.7.5 Footnote. Our representation of border patterns as 
footprints and footsteps is partially inspired by a June 24, 1996 
What Shape Are You Into?  lecture delivered at the Art and 
Mathematics conference at SUNY Albany by eminent Princeton 
mathematician John  Horton  Conway : he actually demonstrated 
how to create all seven types ‘walking’ alone (and barefoot)! You may 



like to experiment in that direction, especially when you happen to 
be alone; can you come up with a footprint representation of the 
p112  pattern, alone or not, walking or standing?

Conway has his own orbifold  notation  for border patterns, 
closely related to his startling topological  answer to the question 
discussed right below (and to the harder question of chapter 8, too).

2.8  Why only seven types of border patterns?

2.8.1 Brief summary. We have so far discussed the following 
seven  types of border patterns (with a minimal sequence of English 
letters generating them (fundamental  region ) in brackets):

p111 : Translation only (common to all  seven types) [F ]

pm11 : Vertical Reflection [M ]

p1m1 : Horizontal Reflection [D ]

p1a1 : Glide Reflection [pb ] 

p112 : Half Turn [Z ]

pma2 : Vertical Reflection, Glide Reflection, Half Turn [pqbd ]

pmm2 : Vertical Reflection, Horizontal Reflection, Half Turn [H ]

Are there any other types or ‘combinations’ of border pattern 
isometries? The answer is “no” , and we are in a position to justify 
this claim without too much extra work.

2.8.2 Observations. Based on what we have observed in this 
chapter, and 2.7.1 & 2.6.3 in particular, we summarize here a number 
of useful remarks on how a certain isometry or combination of 
certain isometries implies the existence of another isometry:



[1] Horizontal reflection  ⇒   Glide reflection 

[2] Glide reflection + Point reflection  ⇒   Vertical reflection 

[3] Point reflection + Vertical reflection  ⇒   Glide reflection 

[4] Vertical reflection + Glide reflection  ⇒   Point reflection 

2.8.3 Classification. As we have seen in section 1.5, there exist 
four types of planar isometries: translation, reflection, rotation, and 
glide reflection. In the context of border patterns, only isometries 
that map the border pattern back  to  itself  are allowed. That is, 
translation and glide reflection are allowed only along the pattern’s 
backbone (‘horizontally’), reflection may be either horizontal (along 
the backbone) or vertical (perpendicular to the backbone), and 
rotation is limited to 1800 (half turn) with its centers lying on the 
pattern’s backbone. Putting ever-present translation aside, we are 
left with four border pattern isometries, or ‘four kinds of 
ref lect ion’  if you wish: vertical-, horizontal-, glide-, and point-.

Now for every possible border pattern and each one of the four 
border pattern isometries (and reflection types) discussed above, we 
may, in fact must, ask a simple question: “does the border pattern 
have it, or not?” Clearly the answer to each one of the four possible 
questions is either “yes” or “no”. How many possible combinations 
of answers are there? That will, quite simply, determine an upper 
bound  for the number of possible combinations of border pattern 
isometries and border pattern types: there could be at most  as 
many border pattern types as possible combinations of answers!

In theory there are 24 = 16 possible combinations, precisely 
because there are two  possible answers (“yes” or “no”) to four  
independent questions -- in the same way that, for example, there 
exist 64 = 1,296 possible outcomes when four distinctly colored dice 
are rolled. In practice, the observations made in 2.8.2 reduce the 
number of possible combinations to seven : that is precisely how 
many border patterns have been recorded in 2.8.1 and studied in this 
chapter. In the table below you see the process of elimination, with 



Y  standing for “yes” and N  for “no” (placed between question  
marks  when a negative answer is in fact impossible  because of 
one of the observations in 2.8.2); the number inside the parenthesis 
right next to “impossible” indicates the appl icable  observat ion  
from 2.8.2. Whenever a certain combination of answers happens to be 
impossible for more than one reasons, we cite the ‘simplest’ one. 

2.9  Across borders

2.9.1 Mathematics and the artist’s imagination. Designs that 
belong to the seven possible types of border patterns are found all 
over the world, transcending borders, cultures, and historical 
periods. Two very different looking designs from, say, medieval 
Europe and pre-Colombian America, designed for very different uses 
and having very different cultural meanings to their creators, could 
very well belong to the same type of border pattern. This is not 
surprising: people, and artists in particular, of varying cultural and 
technological backgrounds are attracted to symmetry, but symmetry 



subjects its unsuspecting worshippers to unspoken mathematical 
truths and limitations that we just began to explore in this chapter.

Indeed a careful search through art books will reveal the 
presence of border patterns of any one of the seven types all around 
the world. You could find the same type around a Roman mosaic or on 
a Maori wood rafter, for example: different as they may look 
stylistically, they could very well be the same mathematically. In 
many cases mathematical kinship is in fact accompanied by stylistic 
similarity, leading perhaps to conjectures on cultural exchanges 
between two cultures or periods. While such exchanges and 
influences definitely existed, stylistic similarities are more likely 
to be byproducts of the mathematical limitations discussed above. 

     
For further discussion on such issues we refer you to the book 

Symmetries of Culture: Theory and Practice of Plane 
Pattern Analysis , by Dorothy K. Washburn (an archaeologist) and 
Donald W. Crowe (a mathematician), published by the University of 
Washington Press in 1988. The whole book is full of examples of 
designs from all over the world, while its first chapter discusses 
both border patterns and wallpaper patterns (which we begin to 
explore in chapter 4) from the anthropological perspective .

Less comprehensive yet brilliantly written and example-oriented 
is a book written by architect Peter S. Stevens, titled Handbook of 
Regular Patterns: An Introduction to Symmetry in Two 
Dimensions  and published by the MIT Press in 1981. Stevens 
provides several pages of designs from different parts of the world 
for each border pattern type: going through his book will make you 
feel that there is nothing but perfectly symmetric designs in our 
world, which, fortunately or unfortunately, is not quite true. 
Anyhow, you should from now on be alert and keep an eye open for 
such ‘perfect’ designs around you! We give you a jump start here -- 
and conclude chapter 2 as well -- by citing seven ‘multicultural 
pages’  from Stevens’ book, one for each type of border pattern, and 
in the same order we studied them; these pages have been included 
here with official permission from the MIT Press (which also covers 
a number of figures from Stevens’ book included in chapter 4).

                                                                                                 

first draft: summer 1998                             © 2006 George Baloglou



                                                                  

p111  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 12.6, p. 101 (© MIT Press, 1981):

(12.6a) French, twentieth century

(12.6b) ancient Greek

(12.6c) Roman, Pompeii

(12.6d) Chinese, eleventh century B.C.



pm11  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 14.4, p. 121 (© MIT Press, 1981)

(14.4a) Mesopotamian motif, first millennium B.C.

(14.4b) ancient Egyptian

(14.4c) ancient Greek

(14.4d) ancient Greek



p1m1  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 15.4, p. 129  (© MIT Press, 1981)

(15.4a) ancient Greek

(15.4b) ancient Roman

(15.4c) Victorian

(15.4d) Oklahoma Indian



p1a1  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 13.8, p. 113  (© MIT Press, 1981)

(13.8a) Navaho Indian

(13.8b) Turkish design, sixteenth century

(13.8c) medieval ornament

(13.8d) Pueblo Indian design



 

p112  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 16.7, p. 142 (© MIT Press, 1981)

(16.7a) border design developed by the Chinese, ancient Greeks, 
and Navaho Indians

(16.7b) ancient Greek

(16.7c) Turkish

(16.7d) from pre-Columbian Peru



pma2  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 17.5, p. 152 (© MIT Press, 1981)

(17.5a) ancient Greek

(17.5b) French, Louis XV

(17.5c) Chinese, as well as ancient Greek

(17.5d) Chinese

(17.5e) Chinese



    

pmm2  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns , figure 18.6, p. 162 (© MIT Press, 1981)

(18.6a) Pompeian mosaic

(18.6b) medieval

(18.6c) medieval

(18.6d) Celtic manuscript design

                                             


