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In the framework of para-Kähler manifolds endowed with a non-isotropic vector
field ξ, we generalize the notion of constant P -sectional curvature [11] by quasi-
constant P -sectional curvature, meaning that all P -planes making a certain angle
with ξ have the same sectional curvature. Some characterizations and curvature
properties are given.

1. Introduction

Para-Kähler manifolds are examples of symplectic, locally product and
semi-Riemannian manifolds. A lot of authors gave their contributions on
paracomplex geometry, as one can see in [6] and the references therein.

Definition 1.1 Let a manifold M be endowed with an almost product
structure P 6= ±Id, which is a (1, 1)-tensor field such that P 2 = Id. We say
that (M, P ) (resp. (M,P, g)) is an almost product (resp. almost Hermitian)
manifold, where g is a semi-Riemannian metric on M with respect to which
P is skew-symmetric, that is

(1.1) g(PX, Y ) + g(X,PY ) = 0, ∀X, Y ∈ Γ(TM).

Then (M,P, g) is para-Kähler if P is parallel w.r.t. the Levi-Civita connec-
tion of J . Some examples are given in [2].

∗MSC2000: 53C15.
Keywords: para-Kähler, quasi-constant p-sectional curvature, bochner tensor.

29



30

Several authors use the name of ”hyperbolic” instead of ”para”, the first
one being M. Prvanović.

The aim of the present note is to give in the para-Kählerian case a cor-
respondent notion to the quasi-constant sectional curvature introduced in
the Riemannian case in [4] (see also [10]) as well as to the quasi-constant
holomorphic sectional curvature given in the Kählerian case in [3].

2. Para-Kähler manifolds of constant P -sectional curvature

Let (M, P, g)) be a para-Kähler manifold and let denote the curvature (0, 4)-
tensor field by R(X,Y, Z, V ) = g(R(X, Y )Z, V ), ∀X, Y, Z, V ∈ Γ(TM),
where the Riemannian curvature (1, 3)-tensor field associated to the Levi-
Civita connection ∇ of g is given by R = [∇,∇]−∇[ ]. Then

(2.1)
R(X, Y, Z, V ) = −R(Y,X, Z, V ) = −R(X, Y, V, Z) =

= R(JX, JY, Z, V ) and
∑

σ

R(X, Y, Z, V ) = 0,

where σ denotes the sum over all cyclic permutations.

In [11], M. Prvanović defined the following (0,4)-tensor field:

(2.2)

R0(X, Y, Z, V ) =
1
4
{g(X, Z)g(Y, V )− g(X, V )g(Y, Z)−

−g(X,PZ)g(Y, PV ) + g(X,PV )g(Y, PZ)−
−2g(X,PY )g(Z, PV )}, ∀X, Y, Z, V ∈ Γ(TM).

For any p ∈ M , a subspace S ⊂ TpM is called non-degenerate if g restricted
to S is non-degenerate. If {u, v} is a basis of a plane σ ⊂ TpM , then σ is
non-degenerate iff g(u, u)g(v, v) − [g(u, v)]2 6= 0. In this case the sectional
curvature of σ = span{u, v} is

k(σ) =
R(u, v, u, v)

g(u, u)g(v, v)− [g(u, v)]2

From (1.1) it follows that X and PX are orthogonal for any X ∈ Γ(TM).
By a P -plane we mean a plane which is invariant by P . For any p ∈ M ,
a vector u ∈ TpM is isotropic provided g(u, u) = 0. If u ∈ TpM is not
isotropic, then the sectional curvature H(u) of the P -plane span{u, Pu}
is called the P -sectional curvature defined by u. When H(u) is constant,
then (M, P, g) is called of constant P -sectional curvature, or a para-Kähler
space form.

The following result is known, [7] and [11].
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Theorem 2.1 Let (M,P, g) be a para-Kähler manifold. Then for each

p ∈ M , there exists c(p) ∈ IR satisfying H(u) = c(p) for any non-isotropic
u ∈ TpM iff the Riemannian curvature R satisfies R = cR0, where c is a
function defined by p → c(p).

A Schur-type result is also valid. For the classification of para-Kähler space
forms see [7], [8].

Theorem 2.2 [9] A para-Kähler manifold M of dimension ≥ 4 is a para–
Kähler space form iff M is Einstein and has zero Bochner flat.

3. Algebraic calculus

In this section we denote by (M,P, g, ξ) a para-Kähler manifold endowed
with a unit vector field ξ and we work in TpM , where p ∈ M is a fixed
arbitrary point. Let σ = span{u, Pu} be a P -plane. In particular, let
denote ε = span{ξp, P ξp}. For any θ ∈ [0, π/2], let P (ξp, θ) denote the
set of all P -planes in TpM , making the angle θ with ξp. For instance
P (ξp, 0) = {ε}.
Proposition 3.1 If u is a non-isotropic vector in TpM , then the angle of
σ = span{u, Pu} with ξp coincides with the angle of u with ε.

Proof. We may assume that u is unitary. Then

(3.1)
≮ (ξp, σ) = θ ⇐⇒ [g(ξp, u)]2 + [g(ξp, Pu)]2 = cos2 θ ⇐⇒
⇐⇒ [g(ξp, u)]2 + [g(Pξp, u)]2 = cos2 θ ⇐⇒ θ =≮ (u, ε).

Example 3.1 Let (IR2n, < >), n ≥ 2, be the pseudo-Euclidean space,
where < x, y > = x1y1 + ... + xnyn − xn+1yn+1 − ... − x2ny2n, w.r.t. the
standard frame {ei}i=1,2n. Let P be the product structure defined such
that P (ei) = en+i, i = 1, n. If ξ = e1 and σ = span{u, Pu}, where
u = (

√
2/2)(e1 + e2), then ≮ (ξ, σ) = π/4.

From (3.1), for any θ ∈ [0, π/2], we have:

(3.2)
P (ξp, θ) = {span{u, P}/u = cos θ[cos ϕ · ξp + sin ϕ · Pξp] + sin θ · `,
∀ϕ ∈ IR, ` is a unit vector orthogonal to ε}.

Lemma 3.2 Let θ ∈ (0, π/2) and suppose H(u) is the same for any vector
u with ≮ (u, ε) = θ. Then any non-degenerate plane containing ξp and
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orthogonal to Pξp is of constant curvature s iff H(`) is constant for any
` ∈ ε⊥. In that case, if u and ` are unit vectors, we have

(3.3) H(u) = cos4 θ ·H(ξp) + 8 cos2 θ sin2 θ · s + sin4 θ ·H(`).

This relation is trivial for θ = 0 or π/2.

Proof. Let u and ` be unit vectors. From (2.1) we compute:

H(u) = R(u, Ju, Ju, u) = cos4 θ ·H(ξp)+

+4R(v(ϕ), Pv(ϕ), Pv(ϕ), w) + 6R(v(ϕ), Pw, Pw, v(ϕ))+

+4R(v(ϕ), Pw, Pw,w) + 2R(v(ϕ), w, w, v(ϕ)) + sin4 θ ·H(`),

where u = v(ϕ)+w, with v(ϕ) = cos θ[cos ϕ·ξp+sin ϕ·Pξp] and w = sin θ ·`,
∀ϕ ∈ IR.

Since H(u) is the same for any ϕ ∈ IR, we replace ϕ by ϕ + π, which yields
v(ϕ) = −v(ϕ + π) and from (2.1) we obtain

H(u) = cos4 θ ·H(ξp) + 6R(v(ϕ), Pw, Pw, v(ϕ))+

+2R(v(ϕ), w, w, v(ϕ)) + sin4 θ ·H(`).

If we replace ϕ by ϕ + π/2, then v(ϕ + π/2) = Pv(ϕ) and from (2.1) we
have:

H(u) = cos4 θ ·H(ξp) + 6R(v(ϕ), w, w, v(ϕ))+

+2R(v(ϕ), Pw, Pw, v(ϕ))) + sin4 θ ·H(`).

The last two relations yields R(v(ϕ), Pw, Pw, v(ϕ)) = R(v(ϕ), w, w, v(ϕ)),
which leads to

H(u) = cos4 θ ·H(ξp) + 8R(v(ϕ), w, w, v(ϕ)) + sin4 θ ·H(`).

As R(v(ϕ), w, w, v(ϕ)) is the same for any ϕ ∈ IR, then from (2.1) we obtain

R(v(ϕ), w, w, v(ϕ)) = cos2 θ · sin2 θ ·R(ξp, `, `, ξp)

which yield (3.3) and the rest of the statement follows. The proof is com-
plete.

By the help of the previous lemma, we obtain the following characterization.

Proposition 3.3 Assume H(`) is the same for any ` ∈ ε⊥ and let
θ ∈ (0, π/2). Then H(u) is constant for any unit vector u ∈ TpM with
≮ (u, ε) = θ iff there exist co(p), c1(p), c2(p) ∈ IR such that

(3.4) H(u) = c0(p) + c1(p) cos2 θ + c2(p) cos4 θ.



33

4. Quasi-constant P -sectional curvature

We extend the notion of constant holomorphic sectional curvature to the
following:

Definition 4.1 A para-Kähler manifold (M,P, g, ξ) is of quasi-constant
P -sectional curvature if for any p ∈ M and θ ∈ [0, π/2], the P -sectional
curvature H(u) is the same for any u ∈ TpM , with ≮ (u, ε) = θ.

From Proposition 3.3, we obtain

Proposition 4.2 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant
P -sectional curvature iff there exist c0, c1, c2 functions on M such that

(4.1) H(u) = c0(p) + c1(p) cos2 θ + c2(θ) cos4 θ,

for any unit vector u ∈ TpM with ≮ (u, ε) = θ, θ ∈ [0, π/2], p ∈ M.

Let η ∈ Γ(T ∗M) denote the dual form of ξ, i.e. η(X) = g(X, ξ), ∀X ∈
Γ(TM). We define the following (0, 4)-tensor fields:

(4.2)
R1(X, Y, Z, V )=g(S(X, Y, Z), V ) + g(S(PX,PY,Z), V );
R2(X, Y, Z, V )=[η(X)η(PY )−η(PX)η(Y )][η(PZ)η(V )−η(Z)η(PV )].

where S(X, Y, Z)) = P (X, Y, Z)− P (Y, X, Z), and

P (X, Y, Z) =
1
8
{η(Y )η(Z)X + η(X)η(PZ)PY +

+ η(X)η(PY )PZ + g(Y, Z)η(X)ξ + g(X, PZ)η(Y )Pξ+

+
1
2

g(X, PY )[η(PZ)ξ + η(Z)Pξ]}, ∀X,Y, Z, V ∈ Γ(TM).

Theorem 4.3 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant P -
sectional curvature iff there exist c0, c1, c2 functions on M which express
the (0, 4)-curvature tensor field by:

(4.3) R = c0R0 + c1R1 + c2R2.

Proof. We show (4.3) punctually. For any p ∈ M and any unit vector
u ∈ TpM , we obtain from (3.1) and (4.1):

R(u, Pu, Pu, u) = c0(p) + c1(p)[η2(u) + η2(Pu)]+
+c2(p)[η2(u) + η2(Pu)]2 = c0(p)R0(u, Pu, Pu, u)+
+c1(p)R1(u, Pu, Pu, u) + c2(p)R2(u, Pu, Pu, u),



34

which proves (4.3).

Theorem 4.4 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant P -
sectional curvature iff

(A) R(ξ, Pξ) ∈ ε

(B) R(`, P `)` ∈ ξ⊥, ∀` ∈ ε⊥

(C) There exist c0, c1 functions on M s.t. the sectional curvature of any
plane containing ξp and orthogonal to Pξp is (2c0(p)+c1(p))/8 and
H(`) = c0(p), ∀` ∈ ξ⊥p , p ∈ M.

Proof. From (4.3) follow (A)-(C). Conversely, let p ∈ M, θ ∈ [0, π/2] and
a unit vector u ∈ TpM with ≮ (u, ε) = θ.

To compute H(u) we apply (3.2), (2.1), (A)-(C) and from (2.1) and (C)
we use R(ξ, P `, `, ξ) = 0, ∀` ∈ ξ⊥. For c2(p) = H(ξp) − c0(p) − c1(p), the
relation (4.1) is verified, which complete the proof.

5. Examples

1. On IR2m+1 with the coordinates (x1, ..., xm, y1, ..., ym, z) we consider the

vector field ξ = 2
∂

∂z
and the 1-form η =

(
dz −

m∑

i=1

yidxi

)
/2. On M =

IR2m+1×(0,∞) we take the metric G = t2

[
η ⊗ η +

m∑

i=1

(dx2
i − dy2

i )/4

]
−dt2

and the product structure P defined such that P (eh) = em+h, P (em+h) =

eh, h = 1,m, P (ξ) =
d

dt
and P

(
d

dt

)
= ξ. Then (M,P, G, ξ/t2) is a para-

Kähler manifold of quasi-constant P -sectional curvature.

2. Let N be a para-Kähler manifold of constant P -sectional curvature k

and let S1 × S2 be a product surface endowed with the canonical product
structure and the metric g1 − g2, where gi is Riemannian on Si, i = 1, 2.
The manifold N × (S1 × S2) with the product para-Kähler structure is of
quasi-constant P -sectional curvature (which is not constant if k 6= 0).

6. Curvature properties

On a para-Kähler manifold (M,P, g, ξ) of a dimension m, the Ricci tensor
field Ric, the Ricci operator Q, the identity operator I, the scalar curvature
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r and the Bochner tensor field are defined respectively by:

Ric(X, Y ) = trace R(−, X, Y,−); g(QX, Y ) = Ric(X, Y );

r = Trace(Ric)

B(X,Y, Z) = R(X, Y )Z +
1

m + 4
{Ric(Y,Z)X − Ric(X, Z)Y +

+ g(Y,Z)QX − g(X,Z)QY + Ric(PX,Z)PY−
−Ric(PY, Z)PX + g(PX, Z)Q(PY )−
− g(PY, Z)Q(PX) + 2Ric(PX, Y )PZ+

+2g(PX, Y )Q(PZ)}+
r

(m + 2)(m + 4)
ρ0(X,Y, Z),

∀X, Y, Z ∈ Γ(TM),

where R0(X, Y, Z, V ) = (g(ρ0(X,Y, Z), V )/4.

By analogy with the contact metric manifolds [5, pp. 105], it is natural to
introduce the following

Definition 6.1 A para-Kähler manifold (M, P, g, ξ) is called η-Einstein
provided the Ricci tensor field is of the form

Ric = ag + b[η ⊗ η + (η ◦ J)⊗ (η ◦ J)],

where a, b are functions on M .

By a straightforward calculation as in [4], we obtain

Theorem 6.2 If a para-Kähler manifold is η-Einstein and Bochner flat,
then M is of quasi-constant P -sectional curvature.

Conversely, we obtain

Theorem 6.3 Let (M,P, g, ξ) be a para-Kähler manifold of quasi-constant
P -sectional curvature. Then: (i) M is η-Einstein; (ii) M is Bochner flat
iff c2 = 0.

Remark 6.4 The manifold constructed in Example 1, §5, is not Bochner
flat.

Let recall the following

Theorem 6.4 [1] If (M,P, g) is a Bochner flat para-Kähler manifold of
constant Ricci scalar curvature, then the Pontrjagin classes of M can be
expressed only with the fundamental 2-form Ω(−,−) = g(P−,−) and with
the first Pontrjagin closed form.
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Corollary 6.5 If (M,P, g) is a para-Kähler manifold of quasi-constant P -
sectional curvature with constant Ricci scalar curvature, then its Pontrjagin
classes are expressed by the fundamental 2-form Ω and the first Pontrjagin
closed form only.
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