PARA-KÄHLER MANIFOLDS OF QUASI-CONSTANT P-SECTIONAL CURVATURE *

CORNELIA L. BEJAN
Seminar Matematic, Universitatea "Al.I. Cuza", Iaşi 700506, ROMANIA
E-mail: bejan@math.tuiasi.ro
MASSIMILIANO FERRARA
Department "V. Pareto", University of Messina, Via dei Verdi, 75, 98100 Messina, ITALY
E-mail: mferrara@unime.it

In the framework of para-Kähler manifolds endowed with a non-isotropic vector field ξ, we generalize the notion of constant P-sectional curvature [11] by quasiconstant P-sectional curvature, meaning that all P-planes making a certain angle with ξ have the same sectional curvature. Some characterizations and curvature properties are given.

1. Introduction

Para-Kähler manifolds are examples of symplectic, locally product and semi-Riemannian manifolds. A lot of authors gave their contributions on paracomplex geometry, as one can see in [6] and the references therein.

Definition 1.1 Let a manifold M be endowed with an almost product structure $P \neq \pm \mathrm{Id}$, which is a $(1,1)$-tensor field such that $P^{2}=\mathrm{Id}$. We say that (M, P) (resp. $(M, P, g))$ is an almost product (resp. almost Hermitian) manifold, where g is a semi-Riemannian metric on M with respect to which P is skew-symmetric, that is

$$
\begin{equation*}
g(P X, Y)+g(X, P Y)=0, \forall X, Y \in \Gamma(T M) \tag{1.1}
\end{equation*}
$$

Then (M, P, g) is para-Kähler if P is parallel w.r.t. the Levi-Civita connection of J. Some examples are given in [2].

[^0]Several authors use the name of "hyperbolic" instead of "para", the first one being M. Prvanović.

The aim of the present note is to give in the para-Kählerian case a correspondent notion to the quasi-constant sectional curvature introduced in the Riemannian case in [4] (see also [10]) as well as to the quasi-constant holomorphic sectional curvature given in the Kählerian case in [3].

2. Para-Kähler manifolds of constant \boldsymbol{P}-sectional curvature

Let $(M, P, g))$ be a para-Kähler manifold and let denote the curvature $(0,4)$ tensor field by $R(X, Y, Z, V)=g(R(X, Y) Z, V), \forall X, Y, Z, V \in \Gamma(T M)$, where the Riemannian curvature (1,3)-tensor field associated to the LeviCivita connection ∇ of g is given by $R=[\nabla, \nabla]-\nabla_{[]}$. Then

$$
\begin{array}{r}
R(X, Y, Z, V)=-R(Y, X, Z, V)=-R(X, Y, V, Z)= \\
=R(J X, J Y, Z, V) \text { and } \sum_{\sigma} R(X, Y, Z, V)=0 \tag{2.1}
\end{array}
$$

where σ denotes the sum over all cyclic permutations.
In [11], M. Prvanović defined the following (0,4)-tensor field:

$$
\begin{align*}
R_{0}(X, Y, Z, V) & =\frac{1}{4}\{g(X, Z) g(Y, V)-g(X, V) g(Y, Z)- \\
& -g(X, P Z) g(Y, P V)+g(X, P V) g(Y, P Z)- \tag{2.2}\\
& -2 g(X, P Y) g(Z, P V)\}, \forall X, Y, Z, V \in \Gamma(T M) .
\end{align*}
$$

For any $p \in M$, a subspace $S \subset T_{p} M$ is called non-degenerate if g restricted to S is non-degenerate. If $\{u, v\}$ is a basis of a plane $\sigma \subset T_{p} M$, then σ is non-degenerate iff $g(u, u) g(v, v)-[g(u, v)]^{2} \neq 0$. In this case the sectional curvature of $\sigma=\operatorname{span}\{u, v\}$ is

$$
k(\sigma)=\frac{R(u, v, u, v)}{g(u, u) g(v, v)-[g(u, v)]^{2}}
$$

From (1.1) it follows that X and $P X$ are orthogonal for any $X \in \Gamma(T M)$. By a P-plane we mean a plane which is invariant by P. For any $p \in M$, a vector $u \in T_{p} M$ is isotropic provided $g(u, u)=0$. If $u \in T_{p} M$ is not isotropic, then the sectional curvature $H(u)$ of the P-plane $\operatorname{span}\{u, P u\}$ is called the P-sectional curvature defined by u. When $H(u)$ is constant, then (M, P, g) is called of constant P-sectional curvature, or a para-Kähler space form.
The following result is known, [7] and [11].

Theorem 2.1 Let (M, P, g) be a para-Kähler manifold. Then for each
$p \in M$, there exists $c(p) \in \mathbb{R}$ satisfying $H(u)=c(p)$ for any non-isotropic $u \in T_{p} M$ iff the Riemannian curvature R satisfies $R=c R_{0}$, where c is a function defined by $p \rightarrow c(p)$.

A Schur-type result is also valid. For the classification of para-Kähler space forms see [7], [8].

Theorem 2.2 [9] A para-Kähler manifold M of dimension ≥ 4 is a paraKähler space form iff M is Einstein and has zero Bochner flat.

3. Algebraic calculus

In this section we denote by (M, P, g, ξ) a para-Kähler manifold endowed with a unit vector field ξ and we work in $T_{p} M$, where $p \in M$ is a fixed arbitrary point. Let $\sigma=\operatorname{span}\{u, P u\}$ be a P-plane. In particular, let denote $\varepsilon=\operatorname{span}\left\{\xi_{p}, P \xi_{p}\right\}$. For any $\theta \in[0, \pi / 2]$, let $P\left(\xi_{p}, \theta\right)$ denote the set of all P-planes in $T_{p} M$, making the angle θ with ξ_{p}. For instance $P\left(\xi_{p}, 0\right)=\{\varepsilon\}$.

Proposition 3.1 If u is a non-isotropic vector in $T_{p} M$, then the angle of $\sigma=\operatorname{span}\{u, P u\}$ with ξ_{p} coincides with the angle of u with ε.

Proof. We may assume that u is unitary. Then

$$
\begin{align*}
& \nless\left(\xi_{p}, \sigma\right)=\theta \Longleftrightarrow\left[g\left(\xi_{p}, u\right)\right]^{2}+\left[g\left(\xi_{p}, P u\right)\right]^{2}=\cos ^{2} \theta \Longleftrightarrow \\
& \Longleftrightarrow\left[g\left(\xi_{p}, u\right)\right]^{2}+\left[g\left(P \xi_{p}, u\right)\right]^{2}=\cos ^{2} \theta \Longleftrightarrow \theta=\nless(u, \varepsilon) . \tag{3.1}
\end{align*}
$$

Example 3.1 Let $\left(\mathbb{R}^{2 n},<>\right), n \geq 2$, be the pseudo-Euclidean space, where $\langle x, y\rangle=x^{1} y^{1}+\ldots+x^{n} y^{n}-x^{n+1} y^{n+1}-\ldots-x^{2 n} y^{2 n}$, w.r.t. the standard frame $\left\{e_{i}\right\}_{i=\overline{1,2 n}}$. Let P be the product structure defined such that $P\left(e_{i}\right)=e_{n+i}, i=\overline{1, n}$. If $\xi=e_{1}$ and $\sigma=\operatorname{span}\{u, P u\}$, where $u=(\sqrt{2} / 2)\left(e_{1}+e_{2}\right)$, then $\nless(\xi, \sigma)=\pi / 4$.

From (3.1), for any $\theta \in[0, \pi / 2]$, we have:

$$
\begin{align*}
& P\left(\xi_{p}, \theta\right)=\left\{\operatorname{span}\{u, P\} / u=\cos \theta\left[\cos \varphi \cdot \xi_{p}+\sin \varphi \cdot P \xi_{p}\right]+\sin \theta \cdot \ell,\right. \\
& \forall \varphi \in \mathbb{R}, \ell \text { is a unit vector orthogonal to } \varepsilon\} . \tag{3.2}
\end{align*}
$$

Lemma 3.2 Let $\theta \in(0, \pi / 2)$ and suppose $H(u)$ is the same for any vector u with $\nless(u, \varepsilon)=\theta$. Then any non-degenerate plane containing ξ_{p} and
orthogonal to $P \xi_{p}$ is of constant curvature s iff $H(\ell)$ is constant for any $\ell \in \varepsilon^{\perp}$. In that case, if u and ℓ are unit vectors, we have

$$
\begin{equation*}
H(u)=\cos ^{4} \theta \cdot H\left(\xi_{p}\right)+8 \cos ^{2} \theta \sin ^{2} \theta \cdot s+\sin ^{4} \theta \cdot H(\ell) \tag{3.3}
\end{equation*}
$$

This relation is trivial for $\theta=0$ or $\pi / 2$.
Proof. Let u and ℓ be unit vectors. From (2.1) we compute:

$$
\begin{aligned}
& H(u)=R(u, J u, J u, u)=\cos ^{4} \theta \cdot H\left(\xi_{p}\right)+ \\
& +4 R(v(\varphi), P v(\varphi), P v(\varphi), w)+6 R(v(\varphi), P w, P w, v(\varphi))+ \\
& +4 R(v(\varphi), P w, P w, w)+2 R(v(\varphi), w, w, v(\varphi))+\sin ^{4} \theta \cdot H(\ell)
\end{aligned}
$$

where $u=v(\varphi)+w$, with $v(\varphi)=\cos \theta\left[\cos \varphi \cdot \xi_{p}+\sin \varphi \cdot P \xi_{p}\right]$ and $w=\sin \theta \cdot \ell$, $\forall \varphi \in \mathbb{R}$.
Since $H(u)$ is the same for any $\varphi \in \mathbb{R}$, we replace φ by $\varphi+\pi$, which yields $v(\varphi)=-v(\varphi+\pi)$ and from (2.1) we obtain

$$
\begin{aligned}
H(u) & =\cos ^{4} \theta \cdot H\left(\xi_{p}\right)+6 R(v(\varphi), P w, P w, v(\varphi))+ \\
& +2 R(v(\varphi), w, w, v(\varphi))+\sin ^{4} \theta \cdot H(\ell)
\end{aligned}
$$

If we replace φ by $\varphi+\pi / 2$, then $v(\varphi+\pi / 2)=P v(\varphi)$ and from (2.1) we have:

$$
\begin{aligned}
H(u) & =\cos ^{4} \theta \cdot H\left(\xi_{p}\right)+6 R(v(\varphi), w, w, v(\varphi))+ \\
& +2 R(v(\varphi), P w, P w, v(\varphi)))+\sin ^{4} \theta \cdot H(\ell) .
\end{aligned}
$$

The last two relations yields $R(v(\varphi), P w, P w, v(\varphi))=R(v(\varphi), w, w, v(\varphi))$, which leads to

$$
H(u)=\cos ^{4} \theta \cdot H\left(\xi_{p}\right)+8 R(v(\varphi), w, w, v(\varphi))+\sin ^{4} \theta \cdot H(\ell)
$$

As $R(v(\varphi), w, w, v(\varphi))$ is the same for any $\varphi \in \mathbb{R}$, then from (2.1) we obtain

$$
R(v(\varphi), w, w, v(\varphi))=\cos ^{2} \theta \cdot \sin ^{2} \theta \cdot R\left(\xi_{p}, \ell, \ell, \xi_{p}\right)
$$

which yield (3.3) and the rest of the statement follows. The proof is complete.
By the help of the previous lemma, we obtain the following characterization.
Proposition 3.3 Assume $H(\ell)$ is the same for any $\ell \in \varepsilon^{\perp}$ and let $\theta \in(0, \pi / 2)$. Then $H(u)$ is constant for any unit vector $u \in T_{p} M$ with $\nless(u, \varepsilon)=\theta$ iff there exist $c_{o}(p), c_{1}(p), c_{2}(p) \in \mathbb{R}$ such that

$$
\begin{equation*}
H(u)=c_{0}(p)+c_{1}(p) \cos ^{2} \theta+c_{2}(p) \cos ^{4} \theta \tag{3.4}
\end{equation*}
$$

4. Quasi-constant P-sectional curvature

We extend the notion of constant holomorphic sectional curvature to the following:

Definition 4.1 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant P-sectional curvature if for any $p \in M$ and $\theta \in[0, \pi / 2]$, the P-sectional curvature $H(u)$ is the same for any $u \in T_{p} M$, with $\nless(u, \varepsilon)=\theta$.

From Proposition 3.3, we obtain
Proposition 4.2 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant P-sectional curvature iff there exist c_{0}, c_{1}, c_{2} functions on M such that

$$
\begin{equation*}
H(u)=c_{0}(p)+c_{1}(p) \cos ^{2} \theta+c_{2}(\theta) \cos ^{4} \theta \tag{4.1}
\end{equation*}
$$

for any unit vector $u \in T_{p} M$ with $\nless(u, \varepsilon)=\theta, \theta \in[0, \pi / 2], p \in M$.
Let $\eta \in \Gamma\left(T^{*} M\right)$ denote the dual form of ξ, i.e. $\eta(X)=g(X, \xi), \forall X \in$ $\Gamma(T M)$. We define the following $(0,4)$-tensor fields:

$$
\begin{align*}
& R_{1}(X, Y, Z, V)=g(S(X, Y, Z), V)+g(S(P X, P Y, Z), V) \\
& R_{2}(X, Y, Z, V)=[\eta(X) \eta(P Y)-\eta(P X) \eta(Y)][\eta(P Z) \eta(V)-\eta(Z) \eta(P V)] \tag{4.2}
\end{align*}
$$

where $S(X, Y, Z))=P(X, Y, Z)-P(Y, X, Z)$, and

$$
\begin{aligned}
& P(X, Y, Z)=\frac{1}{8}\{\eta(Y) \eta(Z) X+\eta(X) \eta(P Z) P Y+ \\
& +\eta(X) \eta(P Y) P Z+g(Y, Z) \eta(X) \xi+g(X, P Z) \eta(Y) P \xi+ \\
& \left.+\frac{1}{2} g(X, P Y)[\eta(P Z) \xi+\eta(Z) P \xi]\right\}, \forall X, Y, Z, V \in \Gamma(T M)
\end{aligned}
$$

Theorem 4.3 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant P sectional curvature iff there exist c_{0}, c_{1}, c_{2} functions on M which express the (0,4)-curvature tensor field by:

$$
\begin{equation*}
R=c_{0} R_{0}+c_{1} R_{1}+c_{2} R_{2} \tag{4.3}
\end{equation*}
$$

Proof. We show (4.3) punctually. For any $p \in M$ and any unit vector $u \in T_{p} M$, we obtain from (3.1) and (4.1):

$$
\begin{aligned}
& R(u, P u, P u, u)=c_{0}(p)+c_{1}(p)\left[\eta^{2}(u)+\eta^{2}(P u)\right]+ \\
& +c_{2}(p)\left[\eta^{2}(u)+\eta^{2}(P u)\right]^{2}=c_{0}(p) R_{0}(u, P u, P u, u)+ \\
& +c_{1}(p) R_{1}(u, P u, P u, u)+c_{2}(p) R_{2}(u, P u, P u, u),
\end{aligned}
$$

which proves (4.3).
Theorem 4.4 A para-Kähler manifold (M, P, g, ξ) is of quasi-constant P sectional curvature iff
(A) $R(\xi, P \xi) \in \varepsilon$
(B) $R(\ell, P \ell) \ell \in \xi^{\perp}, \forall \ell \in \varepsilon^{\perp}$
(C) There exist c_{0}, c_{1} functions on M s.t. the sectional curvature of any plane containing ξ_{p} and orthogonal to $P \xi_{p}$ is $\left(2 c_{0}(p)+c_{1}(p)\right) / 8$ and $H(\ell)=c_{0}(p), \forall \ell \in \xi_{p}^{\perp}, p \in M$.

Proof. From (4.3) follow (A)-(C). Conversely, let $p \in M, \theta \in[0, \pi / 2]$ and a unit vector $u \in T_{p} M$ with $\nless(u, \varepsilon)=\theta$.
To compute $H(u)$ we apply (3.2), (2.1), (A)-(C) and from (2.1) and (C) we use $R(\xi, P \ell, \ell, \xi)=0, \forall \ell \in \xi^{\perp}$. For $c_{2}(p)=H\left(\xi_{p}\right)-c_{0}(p)-c_{1}(p)$, the relation (4.1) is verified, which complete the proof.

5. Examples

1. On $\mathbb{R}^{2 m+1}$ with the coordinates $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z\right)$ we consider the vector field $\xi=2 \frac{\partial}{\partial z}$ and the 1-form $\eta=\left(d z-\sum_{i=1}^{m} y_{i} d x_{i}\right) / 2$. On $M=$ $\mathbb{R}^{2 m+1} \times(0, \infty)$ we take the metric $G=t^{2}\left[\eta \otimes \eta+\sum_{i=1}^{m}\left(d x_{i}^{2}-d y_{i}^{2}\right) / 4\right]-d t^{2}$ and the product structure P defined such that $P\left(e_{h}\right)=e_{m+h}, P\left(e_{m+h}\right)=$ $e_{h}, h=\overline{1, m}, P(\xi)=\frac{d}{d t}$ and $P\left(\frac{d}{d t}\right)=\xi$. Then $\left(M, P, G, \xi / t^{2}\right)$ is a paraKähler manifold of quasi-constant P-sectional curvature.
2. Let N be a para-Kähler manifold of constant P-sectional curvature k and let $S_{1} \times S_{2}$ be a product surface endowed with the canonical product structure and the metric $g_{1}-g_{2}$, where g_{i} is Riemannian on $S_{i}, i=\overline{1,2}$. The manifold $N \times\left(S_{1} \times S_{2}\right)$ with the product para-Kähler structure is of quasi-constant P-sectional curvature (which is not constant if $k \neq 0$).

6. Curvature properties

On a para-Kähler manifold (M, P, g, ξ) of a dimension m, the Ricci tensor field Ric, the Ricci operator Q, the identity operator I, the scalar curvature
r and the Bochner tensor field are defined respectively by:

$$
\begin{aligned}
& \operatorname{Ric}(X, Y)= \operatorname{trace} R(-, X, Y,-) ; g(Q X, Y)=\operatorname{Ric}(X, Y) \\
& r=\operatorname{Trace}(\operatorname{Ric}) \\
& B(X, Y, Z)= R(X, Y) Z+\frac{1}{m+4}\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y+ \\
&+g(Y, Z) Q X-g(X, Z) Q Y+\operatorname{Ric}(P X, Z) P Y- \\
&-\operatorname{Ric}(P Y, Z) P X+g(P X, Z) Q(P Y)- \\
&-g(P Y, Z) Q(P X)+2 \operatorname{Ric}(P X, Y) P Z+ \\
&+2 g(P X, Y) Q(P Z)\}+\frac{r}{(m+2)(m+4)} \rho_{0}(X, Y, Z) \\
& \forall X, Y, Z \in \Gamma(T M)
\end{aligned}
$$

where $R_{0}(X, Y, Z, V)=\left(g\left(\rho_{0}(X, Y, Z), V\right) / 4\right.$.
By analogy with the contact metric manifolds [5, pp. 105], it is natural to introduce the following
Definition 6.1 A para-Kähler manifold (M, P, g, ξ) is called η-Einstein provided the Ricci tensor field is of the form

$$
\operatorname{Ric}=a g+b[\eta \otimes \eta+(\eta \circ J) \otimes(\eta \circ J)],
$$

where a, b are functions on M.
By a straightforward calculation as in [4], we obtain
Theorem 6.2 If a para-Kähler manifold is η-Einstein and Bochner flat, then M is of quasi-constant P-sectional curvature.

Conversely, we obtain
Theorem 6.3 Let (M, P, g, ξ) be a para-Kähler manifold of quasi-constant P-sectional curvature. Then: (i) M is η-Einstein; (ii) M is Bochner flat iff $c_{2}=0$.
Remark 6.4 The manifold constructed in Example 1, $\S 5$, is not Bochner flat.

Let recall the following
Theorem 6.4 [1] If (M, P, g) is a Bochner flat para-Kähler manifold of constant Ricci scalar curvature, then the Pontrjagin classes of M can be expressed only with the fundamental 2 -form $\Omega(-,-)=g(P-,-)$ and with the first Pontrjagin closed form.

Corollary 6.5 If (M, P, g) is a para-Kähler manifold of quasi-constant P sectional curvature with constant Ricci scalar curvature, then its Pontrjagin classes are expressed by the fundamental 2 -form Ω and the first Pontrjagin closed form only.

References

1. C.L. Bejan, The Bochner curvature tensor of a hyperbolic Kähler manifold, Colloq. Diff. Geom., Eger, Hungary, 1989, North-Holland, 93-99.
2. C.L. Bejan, Some examples of manifolds with hyperbolic structures, Rend. Mat. Roma VII, vol. 14, (1994), 557-565.
3. C.L. Bejan, Kähler manifolds of quasi-constant holomorphic sectional curvature, J. Geom. (to appear).
4. V. Boju and M. Popescu, Espaces à courbure quasi-constante, J. Diff. Geom. 13 (1978), 373-383.
5. D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203, Birkhäuser Boston (2002).
6. V. Cruceanu, P. Fortuny and P.M. Gadea, A survey on Paracomplex Geometry, Rocky Mountain J. Math., vol. 26, no. 1 (1996), 83-115.
7. P.M. Gadea and A. Amilibia Montesinos, Spaces of constant paraholomorphic sectional curvature, Pacific J. Math. 136 (1989), 85-101.
8. P.M. Gadea and A. Amilibia Montesinos, Classification of homogeneous parakählerian space forms, Nova J. Alg. Geom. 1 (1992), 111-124.
9. G. Ganchev and A. Borisov, Isotropic sections and curvature properties of hyperbolic Kählerian manifolds, Publ. Inst. Math. (Beograd) (N.S.) 38 (1985), 183-192.
10. G. Ganchev and V. Mihova, Riemannian manifolds of quasi-constant sectional curvatures, J. Reine Angew. Math. 522 (2000), 119-141.
11. M. Prvanović, Holomorphically pojective transformations in a locally product space, Math. Balkanica 1 (1971), 195-213.

[^0]: * MSC 2000: 53C15.

 Keywords: para-Kähler, quasi-constant p-sectional curvature, bochner tensor.

