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Mean curvature of submanifolds in the Euclidean Space is a well established con-
cept, an old and active research field. When we face to the same concept in a
finite dimensional normed space, we have many choices for the definition of mean
curvature of a submanifold. Here we shall concentrate on normed spaces with
smooth and strictly convex unit sphere, also called Minkowski spaces. On such a
space there are different natural definitions of volume. Then, if we consider the
mean curvature as the first variation of the area, we face to different notions of
mean curvature. In this very partial survey we shall focus on some recent work on
the mean curvature showing the advantages and disadvantages of the definitions
of mean curvature arising from the Hausdorff and Holmes-Thompson notions of
volume.

1. Introduction

In Euclidean Geometry there are two equivalent approaches from which
the notion of mean curvature of a submanifold arises. One starts with the
definition of the second fundamental form as the orthogonal component of
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the directional derivative of a tangent vector field to the submanifold, and
the mean curvature appears as the “trace” of the second fundamental form.
The other one considers the volume functional defined on the submanifolds
of the same dimension and the mean curvature appears as the gradient of
this functional.

On a normed space, these two approaches give different concept of mean
curvature. Our choice in this short survey is to give a definition of mean
curvature based on the variational approach, because we think that it cap-
tures the essential geometric meaning of mean curvature. However, it has
another difficulty impossible to overcome: there are more that one natural
notion of volume in a normed space, then we have as many definitions of
mean curvature as definitions of volume we have. Then, when we face to
some problem on mean curvature in a normed space, we have to decide first
which theory (definition of volume) we are developing in order to obtain a
theorem.

In this paper we dedicate the first three sections to the basic notions:
Minkowski spaces (normed spaces with not necessarily symmetric norm,
but on which we can still use differential tools),volume (the axioms for a
good definition and different definitions satisfying the axioms), and mean
curvature associated to a definition of volume. It follows from this approach
that mean curvature can be defined for “densities” not necessarily coming
from a normed space. In fact, the definitions and computations given here
are inspired in [3], who works on this more general context. More details
for sections 2 and 3 can be found in [2], [11] and [14] . In sections 5 to 8
we give a rapid account of some results of J.C. Alvarez-Paiva, G. Berck, D.
Burago, S. Ivanov, Q. She, Y.B.Shen, M. Souza, J. Spruck and K. Tennen-
blat on minimal submanifolds for the mean curvature associated to the two
known natural definitions of volume: the Hausdorff volume (cf. Definition
3.1) and the symplectic volume (cf. Definition 3.4).

After looking at all these results, it is apparent that the symplectic volume
gives a lot much more positive results than the Hausdorff one. This made
some people to think that symplectic is the right definition of volume in a
Minkowski space or, more general, in a Finsler manifold. However, the fact
that all Randers norms with the same associated Euclidean metric have the
volume form of this metric (Proposition 5.1) tells us that, sometimes, the
symplectic volume is not sharp enough to distinguish between Minkowski
and Euclidean Geometry. May be the symplectic volume gives better results
just because it forgets many of the specific facts of Minkowski Geometry
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not present in Euclidean Geometry. That is: may be the symplectic volume
gives not better results, but just results more similar to the Euclidean ones.

The authors would like to thank M. C. Domingo-Juan the stimulating talks
we had about the subject of this survey.

2. The Minkowski Space

2.1. Definitions

Definition 2.1 A (non-symmetric in general ) normed space of dimen-
sion n: is a pair (V, F ), where V is a n-dimensional real vector space and
F : V −→ R is a map which satisfies

i) F (v) ≥ 0 for every v ∈ V , and F (v) = 0 iff v = 0,

ii) F (λv) = λ F (v) for every λ ∈ R, λ ≥ 0, and

iii) F (v + w) ≤ F (v) + F (w) for every v, w ∈ V .

If condition ii) holds under the form F (λv) = |λ| F (v) for every λ ∈ R, we
have the usual definition of (symmetric) normed space.

Definition 2.2 The unit ball BF and the unit sphere SF of (V, F ) are
defined by BF = {v ∈ V ; F (v) ≤ 1}, and SF = {v ∈ V ; F (v) = 1}

From Def 2.1.iii) it follows that BF and SF are a convex. It is also clear that
F is a (symmetric) norm if and only if BF and SF are centrally symmetric.

Remark 2.1 It is also possible to define a norm F on a vector space V by
giving a convex body B with 0 ∈ B and defining the norm F by F (v) = λ

iff λ v0 = v and v0 is the intersection point of the boundary of B with the
half-line {t v; t ≥ 0}. In this case B = BF .

In the Euclidean case, there is a natural isomorphism [ between V and V ∗

induced by the metric. The generalization to normed spaces is a bijection
L called Legendre transformation.

Definition 2.3 The Legendre Transformation from V to V ∗ is defined on
SF by

L : SF −→ V ∗

v 7−→ L(v) : V −→ R
w 7−→ 0 if w ∈ TvSF , or 1 if w = v.

This is equivalent to say that L(v) is the linear map satisfying
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TvSF = KerL(v)a and L(v)(v) = 1. Now, we extend L to all V by

L(λv) = λL(v) for λ ≥ 0 and v ∈ SF .

It follows that L is positively homogeneous of degree 1.

The above definition is univoque if TvSF is well defined (unique) for every
v ∈ SF . This happens if SF is C1.

Lines are geodesics in a normed space. If we want the geodesic between two
points to be unique always, we need that SF be strictly convex. The same
condition is necessary if we want that the geodesic realizing the distance
between a point and an hyperplane be unique.

Let us denote L =
1
2
F 2. If F is smooth,

L(v) = dL(v) = F (v) dF (v/F (v)) for every v ∈ V.

Definition 2.4 A Minkowski space is a finite dimensional normed space
(V, F ), with F smooth on V − {0} and strongly convex. By “F strongly
convex” we mean that, for every u ∈ V − {0}

D2 (L)u (v, v) > 0 for every v ∈ V − {0}. (1)

Let us remark that condition (1) implies the properties Def 2.1.i) and iii),
then we can give a more economical definition of Minkowski space as a
pair(V, F ) where F is a smooth function on V − {0}, strongly convex, and
satisfying Def 2.1 ii).

From condition (1), F defines a Riemannian metric on the unit bundle
SF × V of (V, F ) or, equivalently, on SF , by

g(v,x) := gv := D2 (L)v .

From the homogeneity of L it follows that gv has the following properties:

a) gv(v, v) = F (v)2,

b) gv(v, w) = 0 if v ∈ SF and w ∈ TvSF .

c) gλv = gv if λ > 0.

Condition (1) is not just a trick in order to apply Riemannian Geometry.
There are two good reasons to introduce this condition in the definition of
Minkowski Space. These are given by the next propositions 2.2 and 2.4.

aWe consider TvSF as a vector subspace. The definition looks different (but it is the
same) in the books where TvSF is considered as an affine subspace.
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2.2. Banach-Mazur distance

If T : (V, F ) −→ (W,G) is a linear map between symmetric normed spaces,
the norm of T is defined by

||T || := sup{G(T (x)); x ∈ SF }. (2)

Proposition 2.1 Given any symmetric norm || · || on a finite dimensional
vector space V , there is a symmetric Minkowski norm F on V satisfying

F ≤ || · || ≤ (1 + ε)F.

The Banach - Mazur distance between two n-dimensional Banach spaces
(V, F ) and (W,G) is the infimum of the numbers ln(||T ||||T−1||) where T

ranges over all the invertible linear maps from V to W . Then, it follows
from Proposition 2.1 that

Proposition 2.2 The set of symmetric Minkowski norms on a given n-
dimensional vector space is dense (in the topology given by the Banach-
Mazur distance) in the set of symmetric norms on the same spaces.

2.3. Dual unit sphere

Definition 2.5 The dual or polar set D∗ of a subset D ⊂ V is D∗ = L(D).

An interesting property of this definition is the following

Proposition 2.3 Given a normed space (V, F ), there is an induced norm
F ∗ on V ∗ defined by

F ∗(w) = sup{w(v); v ∈ SF }, (3)

then one has:

SF∗ = S∗F . (4)

In fact, for every w ∈ S∗F , there is a u ∈ SF such that w = L(u). On the
other hand, for every v ∈ SF not parallel to TuSF , there is a λ ∈ R, λ >

1 or λ < 0, such that λv ∈ TuSF , and w(v) = (1/λ)L(u)(λv) = 1/λ ≤ 1,
with the equality when u = v. Then F ∗(w) = sup{w(v); v ∈ SF } = 1, and
S∗F ⊂ SF∗ . The other inclusion follows from the bijectivity of L. tu

In a normed space with F smooth and BF strictly convex, it is clear that
SF is smooth. If we want to apply differential geometry in the study of
(V, F ), it is natural to require that also S∗F be smooth. Then, the following
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result gives a justification of condition (1) in the definition of Minkowski
space.

Proposition 2.4 Let (V, F ) be a normed space with F smooth and BF

strictly convex. Then S∗F is smooth if and only if F satisfies (1)

Related with Proposition 2.3 is the following result, very useful for some
computations where we need L−1.

Proposition 2.5 Let (V, F ) be a Minkowski space, F ∗ the dual norm on
V ∗. After the natural identification of V with V ∗∗, F becomes the norm
induced by F ∗ on V by (3). If LF∗ : V ∗ −→ V and LF : V −→ V ∗

are the Legendre transformations associated to F ∗ and F respectively, then
LF∗ = L−1

F .

2.4. Orthogonality in normed spaces

Definition 2.6 In (V, F ), we say that u is orthogonal to v (u a v) if
v ∈ T u

F (u)
SF . This is equivalent to say that the minimizing line from the

origin to a line of the form p + t v is in the direction of u.

This definition of orthogonal is not symmetric: u a v does not imply v a u.
But we can consider the reciprocal notion of orthogonality:

Definition 2.7 In (V, F ), we say that u has v as orthogonal (u ` v) if
v a u.

There is also a third definition of orthogonality,

Definition 2.8 We say that two vectors v, w ∈ V are u-orthogonal if they
are orthogonal in the metric gu

In this context, the following relations are useful:
(1) u a v iff gu(u, v) = 0

(2) gu(u, v) = L(u)(v) = F (u)dF (u)(v) = dL(u)(v).

(3) If γ(t) is a curve parametrized by arc-length, then γ′(t) a γ′′(t).

3. Volume in Minkowski spaces

3.1. Axioms and definitions

Before giving a definition of volume in a Minkowski space, it is natural to
consider a series of natural axioms that such a definition should satisfy. We
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follow [2] to state the axioms. As usual, the volume of a body Ω in V will
be given as the integral along Ω of a density µV on V . A density µV on a
normed space V defines a “symmetric” norm on ΛnV (where n = dim(V )).
We require this symmetric norm to satisfy the following axioms.

(A1) If T : X −→ Y is a contractive linear map, n = dim(X) = dim(Y ),
then the induced linear map T∗ : (ΛnX, µX) −→ (ΛnY, µY ) is con-
tractive.

(A2) The map (X, F ) 7→ (ΛnX,µX) is continuous with respect the
Banach-Mazur distance.

(A3) If (X,F ) is Euclidean, then µX is the standard Euclidean volume
on X.

(A4) Every k-subspace has an induced norm, which induces a volume on
it. In this way, each definition of volume induces a k-density on
V , that is, a continuous function, homogeneous and of degree 1, on
Λk

sV , the set of simple (or decomposable) exterior k-vectors on V .
When k = n− 1, then Λn−1

s V = Λn−1V , and we impose:
The induced density σ on each n− 1-dimensional subspace gives a
norm on Λn−1V .

Condition (A4) is natural because it is equivalent to the following one: If
P is a closed polyhedron in V , then the area of any of its facets is less than
or equal to the sum of the areas of the remaining facets.

From condition (A1), volume is invariant by isometries, then it is invariant
by translations, and every volume has to be a multiple of the Lebesgue
measure. The freedom is in the choosing of the constant. This is not
relevant when we consider n-volumes in V , but it gives dramatic differences
when we consider k-volumes of k-submanifolds, since the norms induced on
each k-dimensional subspace are not equivalent in general. There are three
well known definitions of volume satisfying conditions (A1) to (A4):

Definition 3.1 The Busemann or Hausdorff volume is the multiple of the
Lebesgue measure for which the volume of the unit ball equals the volume
εn of the Euclidean unit ball of dimension n. In other words, the density
µb associated to this volume is

µb(x1 ∧ ... ∧ xn) =
εn

vol(BF : x1 ∧ ... ∧ xn)
,

where vol(BF : x1 ∧ ... ∧ xn) indicates the volume of BF in the Lebesgue
measure determined by the basis x1, ..., xn.
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Busemann proved that this volume coincides with the Hausdorff measure
defined on the metric space (V, dF ).

Definition 3.2 The symplectic volume on T ∗V = V × V ∗ is defined by

the density Ω =
1
n!

ω ∧ · · · ∧ ω, where ω is the symplectic form on V × V ∗

defined by
ω((x, ξ), (y, ζ)) = ξ(y)− ζ(x).

Definition 3.3 The Dazord-Holmes-Thompson or symplectic volume on
V is the multiple of the Lebesgue measure for which the volume of the
unit ball equals the symplectic volume of BF ×B∗

F divided by the volume
of the Euclidean unit ball of dimension n. In other words, the density µs

associated to this volume is

µs(x1 ∧ ... ∧ xn) =
1
εn

vol(B∗
F : ξ1 ∧ ... ∧ ξn),

where ξ1, . . . , ξn is the dual basis of x1, . . . , xn and vol(B∗
F : ξ1 ∧ ... ∧ ξn)

indicates the volume of B∗
F in the Lebesgue measure determined by the

basis ξ1, ..., ξn.

Definition 3.4 The Benson’s volume or Gromov mass∗ is the multiple of
the Lebesgue measure for which the volume of the minimal parallelotope
circumscribed to the unit ball equals 2n. In other words, the density µ∗

associated to this volume is

µ∗(x1 ∧ ... ∧ xn) =
1

µm
V ∗(ξ1 ∧ ... ∧ ξn)

,

where µm
V ∗(ξ1 ∧ ... ∧ ξn) = inf{F ∗(ζ1) . . . F ∗(ζn); ζ1 ∧ ... ∧ ζn = λ ξ1 ∧ ... ∧

ξn for some λ}.
Remark 3.1 A Finsler metric on a manifold is a continuous function on
its tangent bundle that is smooth away from the zero section and such that
its restriction to each tangent space is a Minkowski norm.

Given a definition of volume of normed spaces, we have a definition of vol-
ume on Finsler manifolds: the volume density on an n-dimensional Finsler
manifold M assigns to each parallelotope formed by the tangent vectors
v1, ..., vn ∈ TxM its volume in the normed space TxM . The condition
that the volume density be smooth is satisfied by both the Busemann and
Dazord-Holmes-Thompson definitions, but not by mass∗. Then, only two,
among the known definitions of volume in a Minkowski space remain nat-
ural.
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3.2. The volumes induced on k-submanifolds

The k-densities induced on V by the above definitions of volume are: for
every a ∈ Λk

sV ,

σb(a) =
εk

vol(BF∩ < a >; a)
, σs(a) = ε−1

k

∫

π(B∗F )

|a|.

Where π : X∗ −→< a >∗ is the dual projection of the inclusion i :< a >−→
X and a is considered as a k-form on < a >∗ (then |a| is a k-density).

3.3. Minkowski contents, isoperimetrix and Gauss map.

An important concept related with the (n−1)-volume of a hypersurface M

of V is the

Definition 3.5 The (n−1)-Minkowski density associated to a convex body
I of V and a Lebesgue measure λ on V is the symmetric norm σI defined
on Λn−1V by

σI(x1 ∧ ... ∧ xn−1) :=
1
n

lim
t→0+

λ([x1, ..., xn−1] + t I)
t

,

where [x1, ..., xn−1] denotes the parallelotope generated by the vectors
x1, ..., xn−1, and A + B = {a + b; a ∈ A, b ∈ B}.
The corresponding (n − 1)-Minkowski contents of a hypersurface M of V

is defined by

µmi(M) =
∫

M

σI .

In the opposite sense, given a symmetric norm σ on Λn−1V and a Lebesgue
measure λ on V , we can ask: Is there a convex set I ⊂ V such that σ = σI ?
Before giving the answer, we introduce some machinery. Given a volume
form Ω on V , we define

iΩ : Λn−1V −→ V ∗; iΩ(x1 ∧ · · · ∧ xn−1)(x) = Ω(x1, ..., xn−1, x). (5)

It is easy to check that iΩ is an isomorphism. Then it induces a norm σ∗

on V ∗ by σ∗( iΩ(x1 ∧ · · · ∧ xn−1)) = σ(x1 ∧ · · · ∧ xn−1). Obviously, if Bσ is
the unit ball of σ, then iΩ(Bσ) is the unit ball of σ∗.

Theorem 3.1 Let σ be a symmetric norm on Λn−1V , Bσ its unit ball, λ a
Lebesgue measure on V , Ω a volume form on V such that λ = |Ω|. By the
natural identification of V with the dual of V ∗, we can consider the polar
set I = (iΩ(Bσ))∗ with respect to σ∗. Then σI = σ.
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I (or, sometimes, its boundary ∂I) is called the isoperimetrix or the Wulf
shape of σ.

Let us consider σ, λ and Ω, with the meaning they have in the above
theorem, fixed on V . The (n − 1)-density σ on V allows us to define
the (n − 1)-volume of any hypersurface M of V by

∫
M

σ. The name of
isoperimetrix for I comes from the following result:

Theorem 3.2 Among all convex bodies in V with a fixed (n−1)-volume of
their boundary, the one that encloses the largest λ-volume is, up to trans-
lation, a dilate of I = (iΩ(Bσ))∗.

Then I gives, for any definition of volume in a Minkowski space, the solution
of the isoperimetric problem among convex bodies.

There are more ways for describing the isoperimetric I determined by σ:

Definition 3.6 Given 0 6= a ∈ Λn−1V , we say that vI ≡ vσ ∈ V is a unit
vector normal to a with respect to I (or σ) if vσ ∈ ∂I, Tvσ∂I =< a >, and
Ω(a ∧ vσ) > 0.

Notice that vσ is constructed in such a way that

Ω(a ∧ vσ) = sup{|Ω(a ∧ x)|; x ∈ I}
and vσ a< a > in the norm defined by I on V , that is, in the norm on V

dual of σ∗ induced on V ∗ by σ and iΩ as we indicated above. Then, we
have the following result, which is the normed version of the fact, in the
the Euclidean space, that the volume form a hypersurface is the contraction
with the unit normal vector of the volume form of the ambient space.

Proposition 3.1 If vσ ∈ V is normal to < a > (a ∈ Λn−1V ) with respect
to I = (iΩ(Bσ))∗, then

σ(a) = Ω(a ∧ vσ).

When ∂I is smooth, vσ is uniquely defined by < a >, then, given a, vσ

is the unique vector satisfying the above equation, and also the vector in I

maximizing |Ω(a∧x)|. All these considerations allows to say that, when ∂I

is smooth, there is a well defined map

vσ : Λn−1V − {0} −→ ∂I/ a 7→ vσ(a); σ(a) = Ω(a ∧ vσ(a)).

which gives a diffeomorphism between Sσ and ∂I.
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Let M be an oriented hypersurface of (V, F ), and let σ be the (n−1)-density
induced by F through some definition of volume. The σ-unit normal νσ to
M is defined by

νσ(x) = vσ(e1 ∧ · · · ∧ en−1),

for a positively oriented basis {e1, ..., en−1} of TxM . By analogy with
the Euclidean case, we call the map νσ : M −→ ∂I the σ-Gauss
map. We also define the σ-Weingarten map Wσx : TxM −→ TxM by
Wσx(X) = −dνσx(X) after identification of TxM with Tvσ

∂I (because they
are parallel by the definition of νσ).

4. Mean curvature

4.1. Generic mean curvature

Let M be a hypersurface of (V, F ), and let σ be the (n−1)-density induced
by F through a definition of volume. After the above definition for the
Weingarten map of M , it is natural to define the σ-mean curvature Hσx of
M at x by

Hσx = −tr dνσx. (6)

In this section we shall show that this definition is in agreement with the
concept of mean curvature arising in a variational problem on the (n− 1)-
volume of a hypersurface.

Given an immersion x : M −→ V , let X : M × I −→ V be a variation of x,

xt(u) := X(u, t), with variation vector field Y =
∂X

∂t

∣∣∣∣
t=0

. If (U, u) is a coor-

dinate system of M , the σ-volume form in this coordinate system for the im-

mersion xt can be written as ωt = σ (xt) du, where xt :=
∂xt

∂u1
∧· · ·∧ ∂xt

∂un−1

and du := du1 ∧ ... ∧ dun−1. For the volume volσ(xt(U) of xt(U) we have

dvolσ(xt(U))
dt

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

∫
u(U)

σ (xt) du =
∫

u(U)

∂

∂t

∣∣∣∣
t=0

σ (xt) du and

∂

∂t
σ

(
∂xt

∂u1
∧ · · · ∧ ∂xt

∂un−1

)∣∣∣∣
t=0

= dσx0

(
∂

∂t

(
∂xt

∂u1
∧ · · · ∧ ∂xt

∂un−1

)∣∣∣∣
t=0

)

=
n−1∑

j=1

dσx0

(
∂x0

∂u1
∧ · · · ∧ ∂2xt

∂t∂uj

∣∣∣∣
t=0

∧ · · · ∧ ∂x0

∂un−1

)
.
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But
∂2xt

∂t∂uj

∣∣∣∣
t=0

=
∂2xt

∂uj∂t

∣∣∣∣
t=0

=
∂Y

∂uj
= Y ν

j + Y T
j ,

where Y ν
j and Y T

j are the components of
∂Y

∂uj
under the decomposition

V =< νσ(x0(u)) > ⊕Tx0(u)M . Then

∂

∂t
σ (xt)

∣∣∣∣
t=0

=




n−1∑

j=1

duj(Y T
j )


 dσx0 (x0)

+
n−1∑

j=1

dσx0

(
∂x0

∂u1
∧ · · · ∧ Y ν

j ∧ · · · ∧ ∂x0

∂un−1

)
.

By the homogeneity of σ, dσx0 (x0) = σ (x0), and a direct computation us-

ing Proposition 3.1 gives dσx0

(
∂xt

∂u1
∧ · · · ∧ Y ν

j ∧ · · · ∧ ∂xt

∂un−1

)
= 0. From

all this, we obtain the formula of the first variation for vol(xt(U)):

dvolσ(xt(U))
dt

∣∣∣∣
t=0

=
∫

U




n−1∑

j=1

duj(Y T
j )


σ(x0)du. (7)

Any variation vector field Y can be written under the form Y = h νσ + y>,
where y> is tangent to M , and

n−1∑

j=1

duj(Y T
j ) =

n−1∑

j=1

duj

(
∂(h νσ + y>)

∂uj

)T

=
n−1∑

j=1

duj

(
h

∂νσ

∂uj
+

∂y>

∂uj

)T

= h tr dνσ +
n−1∑

j=1

duj

(
∂y>

∂uj

)T

. (8)

Now, let us give an interpretation of the second adding term in the last
formula. The (n − 1)-density σ on V restricted to TM defines a (n − 1)-
density σ on M , and, on the domain U of the chart (U, u), there is a
differential (n − 1)-form σ such that σ = |σ|. Then, associated to σ, we
have a divergence divσ defined, as usual, by

divσZ σ = LZσ for every Z ∈ X(M), (9)

where LZ denotes the Lie derivative respect to Z. Since σ is a form of
maximal degree we have LZσ = dιZσ, and a standard computation gives

dιZσ =
n−1∑

j=1

(
∂Zj

∂uj
+ Zj

n−1∑

i=1

(
∂2x

∂ui∂uj

)T
)

σ =
n−1∑

j=1

duj

(
∂Z

∂uj

)T

,
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and the second adding term in (8) is

n−1∑

j=1

duj

(
∂y>

∂uj

)
= dιy>σ = divσy> σ. (10)

If the variation X of the immersion x is normal (y> = 0) or keeps fixed the
boundary of U , the substitution of (10) in (8) and (7) gives

dvolσ(xt(U))
dt

∣∣∣∣
t=0

=
∫

U

h tr dνσ σ. (11)

From (11) we have the announced variational justification of the definition
(6) for the mean curvature:

Proposition 4.1 An immersion x : I −→ M is a critical point for vol(U)
for normal variations or for variation preserving the boundary of U if and
only if Hσ = 0

An important fact is that mean curvature depends on the concept of volume
that we are taking. In the definition of mean curvature of a hypersurface in a
generic Minkowski space, the isoperimetrix plays the role that metric sphere
played in the Euclidean space. Then there are two natural phenomena. i)
the ties between metric properties and minimality are not necessarily as
deepen as they are in the Euclidean case, ii) these ties will be different for
different notions of volume.

In the next sections we shall examine some properties related to mean cur-
vature both for the symplectic and the Hausdorff measure notions. In all
cases, we obtain stronger theorems using symplectic volume. Does it mean
that this is the right concept of measure to be used in Finsler Geometry,
or does it gives more properties just because its definition corrects in some
extent the differences with the Euclidean case and makes things more sim-
ilar to Euclidean. We hope that future research will give the right answer
to these questions.

5. Minimal surfaces in a 3-dimensional Minkowski space for
the symplectic notion of volume

Perhaps the simplest non-euclidean and non-symmetric Minkowski norms
are Randers norms, which are of the form F = || || + b, where || || is the
norm induced by an Euclidean metric a and b is a 1-form with ||b|| < 1.
We call a the Euclidean metric of F .
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A friendly property of a Randers norm F on a vector space V is that it
induces a Randers norm F on every vector hyperplane and its Euclidean
metric is the restriction to this hyperplane of the Euclidean metric of F . As
a consequence, if x : M −→ V is an isometric immersion of a hypersurface
M of V with a Randers norm F with metric a, then M has a Randers
metric with Riemannian metric a, and x : (M, a) −→ (V, a) is an isometric
immersion.

An easy to prove but surprising property for the symplectic volume induced
by a Randers norm is the following

Proposition 5.1 (He-Shen [8]) The Dazord-Holmes-Thompson densities
of a Randers vector space and any isometrically immersed hypersurface M

are just those of their Riemannian metrics.

As a consequence, in a Randers vector space the minimal hypersurfaces are
the same that in the Euclidean vector space of the same dimension.

For general norms and the same notion of density, the study of minimal
hypersurfaces not necessarily reduces to the Euclidean case, but we still
have the following Bernstein’s type theorem.

Theorem 5.1 (He-Shen [8]): Any complete minimal graph in a 3-
dimensional Minkowski space is a plane.

6. Minimal surfaces in a 3-dimensional Minkowski space for
the Hausdorff notion of volume

With the Hausdorff notion of volume, results on minimal submanifolds are
much more complicated. As far as we know, apart from planes, there are
only examples and theorems for Randers metrics.

First, the classification of revolution minimal surfaces

Theorem 6.1 (Souza-Tennenblat [13]) Let (V, || || + b) be a Randers
Minkowski space. Let us take the coordinates of V in such a way that
b = β dz. For each b, 0||b|| < 1, there exists a unique, up to homothety,
forward completeb

bA Finsler manifold (M, F ) is said to be forward complete if every forward Cauchy
sequence converges in M . (cf. [4]) minimal surface of revolution around the axis z. The
surface is embedded, symmetric with respect to a plane perpendicular to the rotation
axis, and it is generated by a concave plane curve.
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Moreover, when 1/
√

3 < ||b|| < 1, the slope of the tangent lines to the
curve is bounded by ±√1− b2/

√
3 b2 − 1. In this case, besides the forward

complete minimal surfaces of rotation, there are non complete ones which
include explicit minimal cones

For the Bernstein problem, we have

Theorem 6.2 (Souza-Spruck-Tennenblat [12]) A minimal surface in a 3-
dimensional Randers Space (V 3, || || + b), 0 ≤ ||b|| < 1/

√
3, which is the

graph of a function defined over a plane, is a plane.

This theorem is proved by using the ellipticity of a partial differential equa-
tion equivalent to the vanishing of the mean curvature. This equation is
not elliptic any more for ||b|| ≥ 1/

√
3, which gives the restriction in the

hypothesis of the theorem.

Theorem 5.1 is proved following the same technique that the above one,
but in that case the equation is elliptic for any Minkowski norm.

7. About minimizers of the volume

From the definition (6) and Proposition 4.1 it is clear that hyperplanes are
minimal hypersurfaces (Hσ = 0) or, equivalently, they are critical points
for the (n−1)-volume functional defined on all the hypersurfaces of a given
Minkowski space.

The problem is quite different if, instead of looking for minimal hypersur-
faces we look for “minimizers” . We say that a d-dimensional submanifold
M of V is a minimizer if, for every x ∈ M and every convex neighborhood
Ux of x in M diffeomorphic to a Euclidean d-ball Dd and every embed-
ding f : Dd −→ V such that f |∂D is a diffeomorphism onto ∂Ux, one
has vol(f(D)) ≥ vol(Ux). For minimizers we have the following result for
planes

Theorem 7.1 (Burago-Ivanov [7] and Ivanov [9]) . For the symplectic
notion of volume, a 2-dimensional affine subspace of a Minkowski space
(V, F ) is a minimizer.

And the following for hyperplanes:

Theorem 7.2 (Alvarez Paiva- Berck [1]) A hyperplane in a Minkowski
space (V, F ) is a minimizer with respect to the symplectic notion of volume.
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As far as we know, the corresponding results for the Hausdorff measure
are unknown. Look into the next section to see that the known results in
general Finsler manifolds are negative for the Hausdorff measure.

8. Higher codimension and general ambient spaces

The notion of mean curvature Hσ that we have presented in sections 3
and 4 can be generalized (following the idea that Hσ must appear in the
integrand of the first variation formula for the (n− 1)-volume and Hσ = 0
must be the condition for M to be a critical point for the volume) to higher
codimensions and to Finsler manifolds.

This is done, for instance, by Z. Shen [10] for the Hausdorff measure and
by G. Berck [6] for the symplectic one. Although their approaches look
different than our presentation in section 4, they are essentially equivalent
when restricted to hypersurfaces in normed spaces. The approach given
by Bellettini [5] coincides with ours if we use the norm σI defined by the
isoperimetrix as the starting norm φ in [5].

The next theorems state that results 7.1 and 7.2 can be extended to general
Finsler ambient spaces.

Theorem 8.1 (Ivanov [9]) A totally geodesic two-dimensional subman-
ifold N of a Finsler manifold (M, F ) is a minimizer with respect to the
symplectic notion of volume.

Theorem 8.2 (Alvarez Paiva and Berck [1]) A totally geodesic hypersur-
face N of a Finsler manifold (M, F ) is a minimizer with respect to the
symplectic notion of volume.

However, when we use the Hausdorff notion of volume, even the minimality
of hyperplanes that we noted at the beginning of section 7 fails for general
ambient Finsler spaces, as the following amazing result states:

Theorem 8.3 (Alvarez Paiva and Berck [1]) For any value of the param-
eter λ, all geodesics of the Finsler metric

Fλ(x, v) =
(1 + λ2||x||2)||v||2 + λ2〈x, v〉2

||v||
on R3 (where 〈 , 〉 is the standard scalar product, and || || its associated
norm) are straight lines. However, the only value of λ for which all planes
are minimal submanifolds of the Hausdorff 2-area functional of Fλ is λ = 0.
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And, for minimality in every dimension and codimension, we have that
symplectic volume has a “good behavior”:

Theorem 8.4 (Berck [6]) Every totally geodesic submanifold of a Finsler
manifold is minimal for the symplectic notion of volume.
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