THE *k*-STEIN CONDITION ON DAMEK-RICCI SPACES*

MARIA J. DRUETTA[†]

FaMAF, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina E-mail: druetta@mate.uncor.edu

A Riemannian manifold M with associated curvature tensor R and Jacobi operators R_X , X in TM, is said to be k-stein, $k \ge 1$, if there exists a function μ_k on M such that

 $\operatorname{tr}(R_X^k) = \mu_k |X|^{2k}$ for all X in TM.

We study the k-stein condition on Damek-Ricci spaces: these spaces are Einstein and 2-stein, since they are harmonic. We show that Damek-Ricci spaces are not k-stein for any $k \geq 3$, unless they are symmetric.

Let M be a Riemannian manifold, R its curvature tensor and R_X the Jacobi operator defined by $R_X Y = R(Y, X)X$, X a unit tangent vector in TM. For any natural $k \ge 1$, M is said to be k-stein (equivalently, M satisfies the k-stein condition) if there exist a real-valued function μ_k on M such that

 $\operatorname{tr}(R_X^k) = \mu_k(p) |X|^{2k}$ for all X in $T_p M$.

Note the difference between this definition and the one given in [5]. The kstein conditions are related to the Osserman property as follows: A Riemannian manifold M is Osserman if and only if M is k-stein for all k = 1, ...,dim M - 1. A detailed proof is given in [4, Proposition 2.1] (see also [5, Proposition 2.1]).

It is immediate that irreducible symmetric spaces of rank one are k-stein for all $k \ge 1$ (the eingenvalues of the Jacobi operators R_X are constant for $X \in TM$, |X| = 1). The first examples of non-symmetric spaces we know that are k-stein for some $k \ge 2$ are the Damek-Ricci spaces; in this case for k = 2

^{*} MSC 2000: 53C30, 53C55.

 $Keywords\colon$ Damek-Ricci spaces, Jacobi operators, k-stein condition, rank one symmetric spaces.

[†] Partially supported by ANPCyT, CONICET and SECyT (UNC).

(also k = 1), since they are harmonic. Damek-Ricci spaces have sectional curvature $K \leq 0$ and they are the first examples of noncompact harmonic spaces which are not symmetric, in case that the sectional curvature is not strictly negative (see [3]).

We remark that in a locally symmetric space M the k-stein condition coincides with the so called k^{th} -Ledger conditions for all $k \ge 1$, satisfied for harmonic spaces. The first of these is that of being Einstein (or 1-stein if $\dim M \ge 3$) and the second one is the 2-stein condition (see [2]).

In this exposition we analyze the k-stein condition for $k \geq 3$ on Damek-Ricci spaces, which are a distinguished subclass in that of metric Lie groups S of Iwasawa type. They contain the symmetric spaces of noncompact type and rank one, and are defined as solvable extensions of codimension 1 of Heisenberg type groups. The rank one symmetric spaces of noncompact type are characterized among them as those whose sectional curvature is strictly negative. See [1] for details.

We show that if a Damek-Ricci space satisfies the k-stein condition for some $k \geq 3$ then it is a symmetric space of noncompact type and rank one. In this case it is k-stein for all $k \geq 1$.

We refer to [4] where is proved that: If S is a Carnot space that is k-stein for some $k \ge 2$, then S is a Damek-Ricci space (Theorem 4.1).

1. Preliminaries

A Lie group S of Iwasawa type and rank one is a simply connected Lie group with left invariant metric associated to a metric Lie algebra \mathfrak{s} of Iwasawa type and rank one. That is, \mathfrak{s} is a solvable Lie algebra with inner product \langle, \rangle satisfying the conditions:

- (i) $\mathfrak{s} = \mathfrak{n} \oplus \mathbf{R}H$ where $\mathfrak{n} = [\mathfrak{s}, \mathfrak{s}]$ and $H \perp \mathfrak{n}, |H| = 1$.
- (ii) $\operatorname{ad}_{H|_{\mathfrak{n}}}$ is symmetric and has all positive eigenvalues.

The Levi Civita connection ∇ and the curvature tensor R associated to the left invariant metric on S, can be computed by

$$2 \langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle$$
$$R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}, \text{ for any } X, Y, Z \in \mathfrak{s}.$$

In this case \mathfrak{n} decomposes $\mathfrak{n} = \mathfrak{z} \oplus \mathfrak{v}$, where \mathfrak{z} denote the center of \mathfrak{n} and \mathfrak{v} is the orthogonal complement of \mathfrak{z} with respect to the metric \langle,\rangle restricted to \mathfrak{n} . Moreover, \mathfrak{z} and \mathfrak{v} are invariant under ad_H .

For any $Z \in \mathfrak{z}$, the skew-symmetric operator $j_Z : \mathfrak{v} \to \mathfrak{v}$ is defined by

$$\langle j_Z X, Y \rangle = \langle [X, Y], Z \rangle$$
 for all $X, Y \in \mathfrak{v}$,

and plays an important role for describing the geometry of \mathfrak{n} or \mathfrak{s} . S is a Carnot space if its metric Lie algebra $\mathfrak{s} = \mathfrak{n} \oplus \mathbf{R}H$ satisfies

$$\operatorname{ad}_H|_{\mathfrak{z}} = \operatorname{Id}, \ \operatorname{ad}_H|_{\mathfrak{v}} = \frac{1}{2}\operatorname{Id}.$$

Moreover, S is said to be a Damek-Ricci space if S is Carnot and

$$j_Z^2 = -|Z|^2$$
 Id for all $Z \in \mathfrak{z}$

holds, whenever $\mathfrak{v} \neq 0$. If $\mathfrak{v} = 0$, S corresponds to the real hyperbolic space.

Recall that Damek-Ricci spaces S contain the symmetric spaces of noncompact type and rank one, which are those satisfying $\nabla R = 0$. Indeed, they are given by either $\mathfrak{v} = 0$ or dim $\mathfrak{z} = 1, 3$ and 7; in these cases \mathfrak{s} corresponds to the solvable part of the Iwasawa decomposition of the Lie algebra of the isometry group of the real hyperbolic space $\mathbf{R}H^{n+1}$, the complex hyperbolic space $\mathbf{C}H^{n+1}$, the quaternionic hyperbolic space $\mathbf{Q}H^{n+1}$ and the Cayley hyperbolic plane $\mathbf{Cay}H^2$, respectively (see [1] for details).

In what follows we assume that S is a Damek-Ricci space.

1.1. The k-stein condition

We say that S is k-stein, or \mathfrak{s} satisfies the k-stein condition, if for some constant μ_k

$$\operatorname{tr}(R_X^k) = \mu_k |X|^{2k}$$
 for all $X \in \mathfrak{s}$.

Note that for k = 1, it means that S is Einstein.

Let $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ be unit vectors and set $n = \dim \mathfrak{z}$, $m = \dim \mathfrak{v}$. Recall that \mathfrak{v} decomposes as an orthogonal direct sum

$$\mathfrak{v} = \ker \operatorname{ad}_X|_{\mathfrak{v}} \oplus j_{\mathfrak{z}}X.$$

We express $\mathfrak{s} = \mathfrak{s}_0 \oplus \mathfrak{s}^* \oplus \mathfrak{v}^*$ where $\mathfrak{s}_0, \mathfrak{s}^*$ and \mathfrak{v}^* are defined by

$$\mathfrak{s}_0 = \operatorname{span} \{ Z, X, j_Z X, H \}, \ \mathfrak{s}^* = \mathfrak{z} \cap Z^\perp \oplus j_{\mathfrak{z} \cap Z^\perp} X$$
$$\mathfrak{v}^* = \ker \operatorname{ad}_X|_{\mathfrak{n}} \cap X^\perp, \text{ respectively.}$$

Note that \mathfrak{s}_0 and $\mathfrak{z} \oplus \mathbf{R}H$ are totally geodesic subalgebras of \mathfrak{s} ; that is $\nabla_U V \in \mathfrak{s}_0 \ (\mathfrak{z} \oplus \mathbf{R}H)$ whenever $U, V \in \mathfrak{s}_0 \ (\mathfrak{z} \oplus \mathbf{R}H)$. Moreover, \mathfrak{s}_0 is the metric Lie algebra of Iwasawa type associated to the symmetric space $\mathbf{C}H^2$

(n = 1, m = 2) and $\mathfrak{z} \oplus \mathbf{R}H$, as subalgebra of \mathfrak{s} , has associated Lie group that corresponds to the real hyperbolic space $\mathbf{R}H^{n+1}$.

We remark that any symmetric space of noncompact type and rank one is kstein for all $k \ge 1$ (see [4, Section 2]). In particular, the Lie algebras $\mathfrak{z} \oplus \mathbf{R}H$ and \mathfrak{s}_0 , as defined above, satisfy the k-stein condition. Consequently, for any unit vectors $Z \in \mathfrak{z}$, $X \in \mathfrak{v}$ and real numbers r, s, with $r^2 + s^2 = 1$ we have that for all $k \ge 1$,

$$\operatorname{tr}\left(\left.R_{rZ+sH}^{k}\right|_{\mathfrak{z}\oplus\mathbf{R}H}\right) = \operatorname{tr}(\left.\operatorname{-ad}_{H}^{2}\right|_{\mathfrak{z}\oplus\mathbf{R}H})^{k}$$

and

$$\operatorname{tr}\left(R_{rZ+sX}^{k}\big|_{\mathfrak{s}_{0}}\right) = \operatorname{tr}(\left.-\operatorname{ad}_{H}^{2}\big|_{\mathfrak{s}_{0}}\right)^{k}.$$

1.2. The curvature formulas

For all unit vectors $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$, using the curvature formulas, we get

$$\begin{aligned} R_Z|_{\mathfrak{z}\oplus\mathbf{R}H\cap Z^{\perp}} &= -\mathrm{Id}, \quad R_Z|_{\mathfrak{v}} = -\frac{1}{4} \mathrm{Id}, \qquad R_H = -\mathrm{ad}_H^2, \\ R_X|_{\mathfrak{z}\oplus\mathbf{R}H} &= -\frac{1}{4} \mathrm{Id}, \qquad R_X|_{\ker\mathrm{ad}_X|_{\mathfrak{v}}\cap X^{\perp}} = -\frac{1}{4} \mathrm{Id}, \quad R_X|_{\mathfrak{z}\mathfrak{z}X} = -\mathrm{Id}, \end{aligned}$$

for all unit vectors $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$.

1.3. Properties of the operator $j_{(.)}$.

For all $X, Y \in \mathfrak{v}$ and $Z, Z^* \in \mathfrak{z}$

$$\begin{aligned} j_Z^2 &= -|Z|^2 \operatorname{Id}, & [Y, j_{Z^*}Y] = |Y|^2 Z^*, \\ \langle j_Z Y, j_{Z^*}Y \rangle &= |Y|^2 \langle Z, Z^* \rangle, & \langle j_Z X, Y \rangle + \langle X, j_Z Y \rangle = 0, \\ j_Z \circ j_{Z^*} + j_{Z^*} \circ j_Z &= -2 \langle Z, Z^* \rangle \operatorname{Id}_{\mathfrak{v}}. \end{aligned}$$

Recall that the symmetric spaces of noncompact type and rank one are characterized in the class of Damek-Ricci spaces, as those satisfying the so called J^2 -condition; that is,

$$j_{Z^*}j_Z X \in j_{\mathfrak{z}} X$$
 for all $X \in \mathfrak{v}$ and $Z \perp Z^*$ in \mathfrak{z}

unit vectors. See [1, Chapter 4] for details.

2. Damek-Ricci spaces and the k-stein condition

Next we show in Theorem 2.1 that a Damek-Ricci space S is not k-stein for any $k \geq 3$, unless S is symmetric. Let S be a Damek-Ricci space with metric Lie algebra $\mathfrak{s} = \mathfrak{z} \oplus \mathfrak{v} \oplus \mathbf{R}H$, |H| = 1. Let $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ be unit vectors and set $n = \dim \mathfrak{z}$, $m = \dim \mathfrak{v}$. We use the same notation as in Preliminaries.

In what follows we fix unit vectors $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ and take r, s real numbers such that $r^2 + s^2 = 1$. We express

$$R_{rZ+sX} = r^2 R_Z + s^2 R_X + rsT,$$

where T is the symmetric operator on \mathfrak{s} defined by $T(\cdot) = R(\cdot, Z)X + R(\cdot, X)Z$.

We compute

$$T(Z^*) = \frac{3}{4} j_{Z^*} j_Z X, \quad T(Y) = \frac{3}{4} [j_Z X, Y],$$

for any $Z^* \perp Z$ in \mathfrak{z} and $Y \perp X$ in $\mathfrak{v} \cap (j_Z X)^{\perp}$. It is a direct computation to see that

$$T^2|_{\mathfrak{z}\cap Z^{\perp}} = \frac{9}{16} \text{Id and } T^2|_{j_{\mathfrak{z}\cap Z^{\perp}}(j_Z X)} = \frac{9}{16} \text{Id.}$$

Some properties of T related with the Jacobi operators R_Z and R_X are given in the following lemma, which is very useful for the proof of Proposition 2.1. See the proofs in [4, Lemma 3.2 and Proposition 3.3].

We fix $\{Z_i^*: i=1,...,n-1\}$ an orthonormal basis of $\mathfrak{z}\cap Z^\perp$ and set

$$\operatorname{tr}\left(\left.\left(-R_{X}\right)^{i}\right|_{j_{j\cap Z^{\perp}}(j_{Z}X)}\right) = \sum_{l=1}^{n-1} \left\langle\left(-R_{X}\right)^{i}(j_{Z_{l}^{*}}j_{Z}X), j_{Z_{l}^{*}}j_{Z}X\right\rangle \text{ for any } i \ge 1.$$

Lemma 2.1 If $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ are unit vectors of the Lie algebra \mathfrak{s} with $\mathfrak{n} = \mathfrak{z} \oplus \mathfrak{v}$ then,

(i) for all odd
$$k \ge 1$$
 and $j, l \ge 1$,
 $tr\left((r^2R_Z + s^2R_X)^j T^k \left(r^2R_Z + s^2R_X\right)^l\right) = 0.$
(ii) $\left|tr\left(R_X^j TR_X^i T\Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*}\right)\right| =$
 $= \frac{9}{16} \frac{1}{4^{i+j}} \left(4^i tr\left((-R_X)^i\Big|_{j_{\mathfrak{s}\cap Z^{\perp}}(j_Z X)}\right) + 4^j tr\left((-R_X)^j\Big|_{j_{\mathfrak{s}\cap Z^{\perp}}(j_Z X)}\right)\right)$
 $\le \frac{9}{16} (n-1) \left(\frac{4^i + 4^j}{4^{i+j}}\right).$

Proposition 2.1 Let S be a Damek-Ricci space that is k-stein for some $k \geq 3$. Then, for any unit vectors $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ the operators R_Z , R_X and the associated T defined by $T(\cdot) = R(\cdot, Z)X + R(\cdot, X)Z$, are related by the following condition

$$0 = ktr \left(R_Z R_X^{k-1} - \left(-ad_H^2 \right)^k \right) \Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} + ktr \left(R_X^{k-2} T^2 \right) \Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} + \sum_{l=1}^{k-3} \sum_{i=0}^{k-3-l} tr \left(R_X^{i+l} T R_X^{k-2-l-i} T \right) \Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} + \sum_{i=1}^{k-3} tr \left(R_X^i T R_X^{k-2-i} T \right) \Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*}.$$

Theorem 2.1 Let S be a Damek-Ricci space. If S is k-stein for some $k \ge 3$, then S is a symmetric space of noncompact type and rank one.

Proof. Assume that S is k-stein for some $k \geq 3$ and we will prove that S is symmetric. To that end we will show that the J^2 -condition (see 1.3) is satisfied. Let $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ be unit vectors; we use the terminology given at the beginning of this section.

Next, we express the condition given by Proposition 2.1. For this purpose we compute:

(i)
$$\operatorname{tr}\left(R_X^{k-1}R_Z - \left(-\operatorname{ad}_H^2\right)^k\right)\Big|_{\mathfrak{v}^*} = 0,$$

which is immediate since $R_Z|_{\mathfrak{v}^*} = R_X|_{\mathfrak{v}^*} = -\frac{1}{4}\mathrm{Id} = -\mathrm{ad}_H^2|_{\mathfrak{v}^*}$.

(ii)
$$\operatorname{tr}\left(R_X^{k-1}R_Z - \left(-\operatorname{ad}_H^2\right)^k\right)\Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} = 3(n-1)(-1)^k \left(\frac{1-4^{k-1}}{4^k}\right).$$

In fact, since

$$\operatorname{tr} \left(R_X^{k-1} R_Z \right) \Big|_{\mathfrak{s}^*} = \operatorname{tr} \left(R_X^{k-1} R_Z \right) \Big|_{\mathfrak{s} \cap Z^\perp} + \operatorname{tr} \left(R_X^{k-1} R_Z \right) \Big|_{j_{\mathfrak{s} \cap Z^\perp}(X)}$$

$$= -\operatorname{tr} \left(\left. R_X^{k-1} \right|_{\mathfrak{s} \cap Z^\perp} \right) + \left(-\frac{1}{4} \right) \operatorname{tr} \left(\left. R_X^{k-1} \right|_{j_{\mathfrak{s} \cap Z^\perp}(X)} \right)$$

$$= -(n-1) \left(\left(\left(-\frac{1}{4} \right)^{k-1} + \frac{1}{4} (-1)^{k-1} \right) \right)$$

$$= (n-1)(-1)^k \left(\frac{1+4^{k-2}}{4^{k-1}} \right)$$

and

$$\operatorname{tr}\left(\left(-\operatorname{ad}_{H}^{2}\right)^{k}\Big|_{\mathfrak{s}^{*}}\right) = (n-1)\left(\left(-1\right)^{k} + \left(-\frac{1}{4}\right)^{k}\right) = (n-1)(-1)^{k}\left(\frac{4^{k}+1}{4^{k}}\right),$$

it follows that

$$\operatorname{tr}\left(R_X^{k-1}R_Z - \left(-\operatorname{ad}_H^2\right)^k\right)\Big|_{\mathfrak{s}^*} = (n-1)(-1)^k \left(\frac{1+4^{k-2}}{4^{k-1}} - \frac{4^k+1}{4^k}\right)$$
$$= 3(n-1)(-1)^k \left(\frac{1-4^{k-1}}{4^k}\right).$$

The assertion follows from (i) above.

(iii)
$$\operatorname{tr} \left(R_X^{k-2} T^2 \right) \Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} = (-1)^k \left(\frac{9}{16} (n-1) \left(\frac{1+4^{k-2}}{4^{k-2}} \right) + \left(\frac{1-4^{k-2}}{4^{k-2}} \right) \operatorname{tr} \left(T^2 \Big|_{\mathfrak{v}^*} \right) \right).$$

Expressing

$$\mathrm{tr} \left(R_X^{k-2} T^2 \right) \big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} = \mathrm{tr} \left(R_X^{k-2} T^2 \right) \big|_{\mathfrak{z} \cap Z^\perp} + \mathrm{tr} \left(R_X^{k-2} T^2 \right) \big|_{j_{\mathfrak{z} \cap Z^\perp}(X) \oplus \mathfrak{v}^*} \,,$$

we compute these two terms separately, by taking orthonormal bases $\{Z_i^* : i = 1, ..., n-1\}$ of $\mathfrak{z} \cap Z^{\perp}$ and $\{Y_j : j = 1, ..., m-n-1\}$ of \mathfrak{v}^* . We set

$$\operatorname{tr}(T^{2}|_{\mathfrak{v}^{*}}) = \sum_{j=1}^{m-n-1} \langle T^{2}(Y_{j}), Y_{j} \rangle = \sum_{j=1}^{m-n-1} |T(Y_{j})|^{2}$$

Thus,

$$\operatorname{tr}\left(R_X^{k-2}T^2\right)\Big|_{\mathfrak{z}\cap Z^{\perp}} = \sum_{l=1}^{n-1} \left\langle R_X^{k-2}T^2(Z_l^*), Z_l^* \right\rangle = \frac{9}{16} \sum_{l=1}^{n-1} \left\langle R_X^{k-2}(Z_l^*), Z_l^* \right\rangle$$
$$= \frac{9}{16} (n-1) \left(-\frac{1}{4}\right)^{k-2} = \frac{9}{16} (n-1)(-1)^k \frac{1}{4^{k-2}}$$

and

$$\operatorname{tr} \left(R_X^{k-2} T^2 \right) \Big|_{j_{\mathfrak{z} \cap \mathbb{Z}^{\perp}} X \oplus \mathfrak{v}^*} = \\ = \sum_{l=1}^{n-1} \left\langle T^2 R_X^{k-2}(j_{\mathbb{Z}_l^*} X), j_{\mathbb{Z}_l^*} X \right\rangle + \sum_{j=1}^{m-n-1} \left\langle T^2 R_X^{k-2}(Y_j), Y_j \right\rangle,$$

which gives

$$\begin{split} &= (-1)^{k-2} \sum_{l=1}^{n-1} \left\langle T^2(j_{Z_l^*}X), j_{Z_l^*}X \right\rangle + \left(-\frac{1}{4}\right)^{k-2} \sum_{j=1}^{m-n-1} \left\langle T^2(Y_j), Y_j \right\rangle \\ &= (-1)^k \left(\operatorname{tr} T^2|_{j_{\mathfrak{z} \cap \mathbb{Z}^{\perp}}(X) \oplus \mathfrak{v}^*} + \left(\frac{1}{4^{k-2}} - 1\right) \operatorname{tr} \left(T^2|_{\mathfrak{v}^*}\right) \right) \\ &= (-1)^k \left(\operatorname{tr} T^2|_{\mathfrak{s}_0^{\perp} \cap \mathfrak{v}} + \left(\frac{1}{4^{k-2}} - 1\right) \operatorname{tr} \left(T^2|_{\mathfrak{v}^*}\right) \right) \\ &= (-1)^k \left(\frac{9}{16}(n-1) + \left(\frac{1-4^{k-2}}{4^{k-2}}\right) \operatorname{tr} \left(T^2|_{\mathfrak{v}^*}\right) \right), \end{split}$$

since $\operatorname{tr}\left(T^2\big|_{\mathfrak{s}_0^{\perp}\cap\mathfrak{v}}\right) = \operatorname{tr}\left(T^2\big|_{j_{\mathfrak{z}\cap Z^{\perp}}(j_Z X)}\right) = \frac{9}{16}(n-1).$

(iv)
$$\left| \operatorname{tr} \left(R_X^{i+l} T R_X^{k-2-l-i} T \right) \right|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right| \le \frac{9}{16} (n-1) \frac{(4^{i+l} + 4^{k-2-l-i})}{4^{k-2}}$$

This is a direct application of Lemma 2.1 (ii). Moreover, we remark that

$$\begin{aligned} \operatorname{tr} \left(R_X^{i+l} T R_X^{k-2-l-i} T \right) \Big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} &= \\ &= \left. \frac{9}{16} (-1)^k \left(\frac{1}{4^{i+l}} \operatorname{tr} (-R_X)^{k-2-l-i} \right) \Big|_{j_{\mathfrak{s}\cap Z^{\perp}}(jzX)} \right. \\ &+ \left. \frac{1}{4^{k-2-l-i}} \operatorname{tr} (-R_X)^{i+l} \right) \Big|_{j_{\mathfrak{s}\cap Z^{\perp}}(jzX)} \right) \\ &= \left. (-1)^k \left| \operatorname{tr} \left(R_X^{i+l} T R_X^{k-2-l-i} T \right) \right|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right|, \text{ since } (-1)^k = (-1)^{k-2}. \end{aligned}$$

Now, taking into account the above remark and substituting the equalities given by (ii), (iii) in the condition given by Proposition 2.1, we obtain

$$\begin{split} 0 &= 3k(n-1)(-1)^k \left(\frac{1-4^{k-1}}{4^k}\right) \\ &+ (-1)^k k \left(\frac{9}{16}(n-1) \left(\frac{1+4^{k-2}}{4^{k-2}}\right) + \left(\frac{1-4^{k-2}}{4^{k-2}}\right) \operatorname{tr} \left(T^2\big|_{\mathfrak{v}^*}\right)\right) \\ &+ (-1)^k \sum_{l=1}^{k-3} \sum_{i=0}^{k-3-l} \left| \operatorname{tr} \left(R_X^{i+l}TR_X^{k-2-l-i}T\right) \big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right| \\ &+ (-1)^k \sum_{i=1}^{k-3} \left| \operatorname{tr} \left(R_X^iTR_X^{k-2-i}T\right) \big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right|, \end{split}$$

which in turn is equivalent to

$$0 = k \left(\frac{1 - 4^{k-2}}{4^{k-2}} \right) \operatorname{tr} \left(T^2 \big|_{\mathfrak{v}^*} \right) + 3k(n-1) \left(\frac{1 - 4^{k-1}}{4^k} \right)$$
(1)
+ $\frac{9}{16} (n-1)k \left(\frac{1 + 4^{k-2}}{4^{k-2}} \right)$
+ $\sum_{l=1}^{k-3} \sum_{i=0}^{k-3-l} \left| \operatorname{tr} \left((R_X)^{i+l} T(R_X)^{k-2-l-i} T \right) \big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right|$
+ $\sum_{i=1}^{k-3} \left| \operatorname{tr} \left((R_X)^i T(R_X)^{k-2-i} T \right) \big|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right|.$

By using the inequality obtained in (iv) we have that

$$\sum_{l=1}^{k-3} \sum_{i=0}^{k-3-l} \left| \operatorname{tr} \left(R_X^{i+l} T R_X^{k-2-l-i} T \right) \right|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \right| + \sum_{i=1}^{k-3} \left| \operatorname{tr} \left(R_X^i T R_X^{k-2-i} T \right) \right|_{\mathfrak{s}^* \oplus \mathfrak{v}^*} \\ \leq \frac{9}{16} (n-1) \frac{1}{4^{k-2}} \left(\sum_{l=1}^{k-3} \sum_{i=0}^{k-3-l} \left(4^{i+l} + 4^{k-2-l-i} \right) + \sum_{i=1}^{k-3} \left(4^i + 4^{k-2-i} \right) \right).$$

Therefore, since $k\left(\frac{1+4^{k-2}}{4^{k-2}}\right)$ is exactly the sum of the k terms equal to $\frac{1+4^{k-2}}{4^{k-2}}$ in the sum

$$\frac{1}{4^{k-2}} \sum_{l=0}^{k-2} \sum_{i=0}^{k-2-l} \left(4^{i+l} + 4^{k-2-l-i} \right),$$

corresponding to the values $l=0,\,i=0,\,i=k-2$ and for each $1\leq l\leq k-2,$ i=k-2-l, we have

$$\frac{9}{16}(n-1)k\left(\frac{1+4^{k-2}}{4^{k-2}}\right) + \sum_{l=1}^{k-3}\sum_{i=0}^{k-3-l} \left| \operatorname{tr}\left(R_X^{i+l}TR_X^{k-2-l-i}T\right) \right|_{\mathfrak{s}^*\oplus\mathfrak{v}^*} \right|$$

$$+ \sum_{i=1}^{k-3} \left| \operatorname{tr}\left(R_X^iTR_X^{k-2-i}T\right) \right|_{\mathfrak{s}^*\oplus\mathfrak{v}^*} \right|$$

$$\leq \frac{9}{16}(n-1)\frac{1}{4^{k-2}}\sum_{l=0}^{k-2}\sum_{i=0}^{k-2-l} \left(4^{i+l}+4^{k-2-l-i}\right) = 3k(n-1)\left(\frac{4^{k-1}-1}{4^k}\right),$$
(2)

provided that

$$\sum_{l=0}^{k-2} \sum_{i=0}^{k-2-l} \frac{1}{4^{k-2}} \left(4^{k-2-l-i} + 4^{i+l} \right) = \frac{1}{3} k \frac{4^{k-1} - 1}{4^{k-2}}.$$

This formula was showed in [4, Section 3].

Therefore, condition (1) implies that

$$0 = k \left(\frac{1 - 4^{k-2}}{4^{k-2}} \right) \operatorname{tr} \left(T^2 \big|_{\mathfrak{v}^*} \right) + 3k(n-1) \left(\frac{1 - 4^{k-1}}{4^k} \right) + A,$$

where

$$0 \le A \le 3k(n-1)\left(\frac{4^{k-1}-1}{4^k}\right).$$

Thus, equality occurs in (2) and also

$$k\left(\frac{4^{k-2}-1}{4^{k-2}}\right)\operatorname{tr}\left(T^{2}\big|_{\mathfrak{v}^{*}}\right) = 0$$

Hence, since $k \geq 3$ we have that

$$\operatorname{tr}\left(\left.T^{2}\right|_{\mathfrak{n}^{*}}\right)=0$$

From this condition, it follows that for any unit vectors $Z \in \mathfrak{z}$ and $X \in \mathfrak{v}$ the associated operator T satisfies $T(Y) = \frac{3}{4}[j_Z X, Y] = 0$ for all $Y \in \mathfrak{v}^* = \ker \operatorname{ad}_X|_{\mathfrak{v}} \cap X^{\perp}$. Thus, for all $Z^* \perp Z$ in \mathfrak{z} and $Y \in \ker \operatorname{ad}_X|_{\mathfrak{v}}$, $\langle [j_Z X, Y], Z^* \rangle = 0$ or equivalently,

$$\langle j_{Z^*} j_Z X, Y \rangle = 0$$
 for all $Y \in \ker \operatorname{ad}_X|_{\mathfrak{p}}$.

Hence, $j_{Z^*}j_Z X \in (\ker \operatorname{ad}_X|_{\mathfrak{v}})^{\perp} = j_{\mathfrak{z}} X$. This fact means that \mathfrak{n} satisfies the J^2 -condition, which in turn is equivalent for S to be a symmetric space. The assertion of the theorem is proved.

Example 2.1 Any non symmetric Damek-Ricci space provides examples of homogeneous spaces S which are Einstein and 2-stein but are not k-stein for any other $k \geq 3$.

In particular, an example in dimension seven is obtained when we put n = 2, m = 4. Assume that $\{Z_1, Z_2\}$ and $\{X, Y, j_{Z_1}X, j_{Z_2}X\}$ are orthonormal bases of \mathfrak{z} and \mathfrak{v} , respectively, with $Y = j_{Z_1}j_{Z_2}X$. Here, j_{Z_i} i = 1, 2, are skew-symmetric operators on \mathfrak{v} satisfying $j_{Z_i}^2 = -\mathrm{Id}$ and $j_{Z_1}j_{Z_2} = -j_{Z_2}j_{Z_1}$. Let \mathfrak{s} be the Lie algebra spanned by the orthonormal basis $\{Z_1, Z_2, X, Y, j_{Z_1}X, j_{Z_2}X, H\}$ with bracket

$[Z_1, Z_2] = [X, Y] = 0,$	$[X, j_{Z_i}X] = Z_i, \ i = 1, 2,$
$[Y, j_{Z_1}X] = -Z_2,$	$[Y, j_{Z_2}X] = Z_1,$
$\operatorname{ad}_{H} _{\mathfrak{z}} = \operatorname{Id},$	$\operatorname{ad}_H _{\mathfrak{v}} = \frac{1}{2}$ Id.

Then S, the simply connected Lie group associated to \mathfrak{s} , is a homogeneous space of dimension 7 satisfying the required properties.

References

- J. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathematics 1598, Springer, 1995.
- 2. A. Besse, Manifolds all of whose geodesics are closed, Springer, 1978.
- E. Damek and F. Ricci, Harmonic Analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213–248.
- 4. M. J. Druetta, *Carnot spaces and the k-stein condition*, Advances in Geometry **6**, (2006), 447–473.
- P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quarterly Journal of Mathematics 46, (1992), 299–320.