
THE GRAPHICAL REPRESENTATION OF

NEIGHBOURHOODS IN CERTAIN TOPOLOGIES ∗

EBERHARD MALKOWSKY †

Department of Mathematics, University of Gießen, Arndtstraße 2, D–35392

Gießen, Germany

AND

Department of Mathematics, Faculty of Science and Mathemtics, University of
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We apply our own software package and its extensions ([16, 14, 15, 18]) for visual-

isations and animations in mathematics to the graphical representation of neigh-
bourhoods in certain relative and weak topologies that arise in the theories of dual
spaces of sequence spaces and of matrix transformations between FK spaces. The
paper contains a short introduction to some of the main concepts of our software
package, and its portability, and also an outline of the mathematical theory that

motivates our graphical representations.

1. Introduction

In this paper, we apply our software package to the graphical representa-

tion of neighbourhoods in certain topologies in two– and three–dimensional

space. Most of the topologies considered arise in the theory of sequence

spaces in summability, in particular in FK and BK spaces, their α–, β–,

γ– and continuous duals. FK spaces are of special interest in the charac-

terizations of matrix transformations between sequence spaces. We give a

short introduction to some of the main concepts of our software package,

and its portability, and also an outline of the mathematical theory that

motivates our graphical representations.
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Visualisations and animations are of vital importance in modern mathe-

matical education. They strongly support the understanding of mathemat-

ical concepts. We think that the application of most conventional software

packages is neither a satisfactory approach for illustrating theoretical con-

cepts nor can it be used as their substitute. The emphasis in the academic

mathematical education should be put on teaching the underlying theories.

Thus we developed our own software package ([16, 14, 15, 18]) in Bor-

land PASCAL and DELPHI to create our graphics for visualisations and

animations, mainly of the results from classical differential geometry. Since

the source files are available to the users, it can and has been extended to

applications in physics, chemistry, crystallography ([3, 4]), and the engi-

neering sciences. It also has various applications in research.

Our graphics can be exported to several formats such as BMP, PS,

PLT, SCR (screen files under DOS), or GCLC, the Geometry Constructions

Language Converter, developed at Belgrade University ([1, 6]). This is done

directly in the PASCAL or DELPHI programmes themselves.

These formats can be converted to a number of other formats by means

of any graphics converter software, for instance in Corel Draw to a CDR or

GIF file, an EPS file to be included in a TEX or LATEX file, or a PNG or

PDF file to be included in a TEX or LATEX file which is directly converted

into a PDF file by means of PDFLATEX.

We also use the software packages Animagic GIF 32 to create an ani-

mation in animated GIF format from a number of GIF files of our graphics,

and include the animation as an animated GIF image in an HTML file.

Originally our graphics software package was a collection of programmes

written in Borland PASCAL. Recently Vesna Veličković translated the PAS-

CAL code to DELPHI; she also created a user interface for the interactive

use of our software. The users become independent of programming.

Currently we are working on an electronic textbook for differential ge-

ometry including visualisations and animations, and interactive graphics.

The preliminary table of contents, list of figures, the index and a few sample

pages are available at

http://www.pmf.ni.ac.yu/visualization

We emphasize that all the graphics in this paper were created with our

software package and then processed in the way described above; we did

not use any other software package.
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2. Relative, Sup and Weak Topologies

First, we recall a few basic results and definitions.

There are many ways to introduce topologies on a set. A standard way

to introduce a topology on a subset of a topological space is to use the

relative topology. Sup topologies and their special cases, weak and product

topologies, can be used to introduce topologies on sets in a more general

case.

Let S be a subset of a topological space (X, T ). Then the relative

topology TS of X on S is given by TS = {O ∩ S : O ∈ T } (Figures 1 and

2).

Figure 1. The intersection of a catenoid and a sphere

Let (X, T ) be a topological space. A subbase for T is a collection Σ ⊂ T

such that, for every x ∈ X and every neighbourhood N of x, there exists a

finite subset {S1, . . . , Sn} ⊂ Σ with x ∈
⋂n

k=1 Sk ⊂ N . If X 6= ∅ and Σ is a

collection of sets with
⋃

Σ = X, then there is a unique topology TΣ which

has Σ as a subbase; TΣ is the weakest topology with Σ ⊂ TΣ, and is called

the topology generated by Σ. It consists of ∅, X and all unions of finite

intersections of members of Σ.

If a set X is given a nonempty collection Φ of topologies and Σ = {
⋃

T :

T ∈ Φ}, then the topology
∨

Φ = TΣ is called the sup–topology of Φ; it is

stronger than each T ∈ Φ. If X has a countable collection {dn : n ∈ IN}
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Figure 2. Neighbourhoods of a point in the relative topology of the Euclidean metric
on Enneper’s minimal surface

of semimetrics, then the sup–topology, denoted by
∨

dn is semimetrizable,

and given by the semimetric

d =

∞
∑

n=0

1

2n

dn

1 + dn
; (2.1)

if the collection is finite, then d =
∑

dn may be used instead.

Let X be a set, (Y, T ) be a topological space and f : X → Y be a

map. Then w(X, f) =
∨

{f−1(O) : O ∈ T } is a topology for X, called the

weak topology by f . The map f : (X,w(X, f)) → (Y, T ) is continuous and

w(X, f) is the weakest topology on X for which this is true. If Σ(Y ) is a

subbase for T , then Σ = {f−1(G) : G ∈ Σ(Y )} is a subbase for w(X, f). If

the topology of Y is metrizable and given by the metric d, we may use the

concept of the weak topology by f to define a semimetric δ on X by

δ = d ◦ f, (2.2)

which is a metric whenever f is one–to–one. A neighbourhood Uδ(x0, r) of

a point x0 with respect to the weak topology by f is thus given by

Uδ(x0, r) = {x ∈ X : δ(x, x0) < r} = {x ∈ X : d(f(x), g(f0)) < r}.

More generally, let X be a set, Ψ be a collection of topological spaces,

and for each Y ∈ Ψ, we assume given one or more functions f : X → Y . Let

the collection of all these functions be denoted by Φ. Then the topology
∨

{w(X, f) : f ∈ Φ} is called the weak topology by Φ, and denoted by
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w(X,Φ). Each f ∈ Φ is continuous on (X,w(X,Φ)) and w(X,Φ) is the

weakest topology on X such that this is true. If Σ(Y ) is a subbase for the

topology of Y for each Y ∈ Ψ, then

Σ = {f−1(G) : f ∈ Φ, f : X → Y, G ∈ Σ(Y )}

generates w(X,Φ). The weak topology by a sequence (fn) of maps from a

set X to a collection of semimetric spaces is semimetrizable.

The product topology for a product of topological spaces simply is the

weak topology by the family of all projections from the product to the

factors.

Example 2.1 Let B = IN0 and An = ( |C, | · |) for all n ∈ IN0 where | · |

is the absolute value on the set |C of complex numbers. Then the product

ω = |CIN0 is the set of all complex sequences x = (xk)∞k=0. Its product

topology is given by the semimetric

d(x, y) =

∞
∑

k=0

1

2k

|xk − yk|

1 + |xk − yk|
for all x, y ∈ ω. (2.3)

If we define the sum and the multiplication by a scalar in a natural way by

x+ y = (xk + yk)∞k=0 and λx = (λxk)∞k=0 (x, y ∈ ω;λ ∈ |C),

then (ω, d) is a Fréchet space, that is a complete linear metric space, and

convergence in (ω, d) and coordinatewise convergence are equivalent; this

means x(n) → x (n → ∞) if and only if x
(n)
k → xk (n → ∞) for every k

(Theorem 4.1.1, p. 54, [20]).

3. Some Metrizable Linear Topological Spaces

Here we consider certain sets of sequences with a metrizable linear topology

and their dual spaces. Their common property is that they are continuously

embedded in the Fréchet space (ω, d) of Example 2.1.

We recall that a paranorm is a real function g defined on a linear

space, and satisfying the following conditions for all vectors x and y

P.1 g(0) = 0

P.2 g(x) ≥ 0

P.3 g(−x) = g(x)

P.4 g(x+ y) ≤ g(x) + g(y) (triangle inequality)

P.5 If (λn) is a sequence of scalars with λn → λ and (xn) is a

sequence of vectors with g(xn −x) → 0, then g(λnxn −λx) → 0

(continuity of multiplication)
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A paranorm g for which g(x) = 0 implies x = 0 is called total. The semi-

metric d of a linear semimetric space comes from a paranorm g, that is

d(x, y) = g(x − y), and the metric of a linear metric space comes from a

total paranorm.

We write `∞, c, c0 and φ, and bs, cs and `1 for the sets of all bounded,

convergent, null and finite sequences, and for the sets of all bounded, conver-

gent, and absolutely convergent series, and `p = {x ∈ ω :
∑∞

k=0|xk|
p <∞}

for 0 < p < ∞. As usual, e and e(n) (n ∈ IN0) are the sequences with

ek = 1 for all k, and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n. Given a sequence

x = (xk)∞k=0 ∈ ω and m ∈ IN0, we write x[m] =
∑m

n=0 xke
(k) for the m–

section of x.

An FK space X is a Fréchet subspace of ω which has continuous coordi-

nates Pn : X → |C (n = 0, 1, . . . ) where Pn(x) = xn. An FK space X ⊃ φ is

said to have AK, if x = limm→∞ x[m] for every sequence x = (xk)∞k=0 ∈ X.

A BK space is a normed FK space.

The following remark is for the benefit of the interested reader who may

not be too familiar with the concept of FK and BK spaces.

Remark 3.1 (a) The letters F , B and K in FK and BK space stand

for Fréchet, Banach and Koordinate, the German word for coordinate; AK

stands for Abschnittskonvergenz, German for sectional convergence.

(b) The concept of an FK space is fairly general. An example of a Fréchet

sequence space which is not an FK space can be found in [20], Problem

11.3.3, p. 205 and Example 7.5.6, p. 113.

(c) The importance of FK and BK spaces in the theory of matrix transfor-

mations comes from the fact that matrix mappings between FK spaces are

continuous ([21], Corollary 11.3.5, p. 204 or [21], Theorem 4.2.8, p. 57).

(d) The FK topology of an FK space is unique; more precisely, if X and

Y are BK spaces with X ⊂ Y , then the topology of X is stronger than

that of Y , and they are equal if and only if X is a closed subspace of Y .

This means there is at most one way to make a subspace of ω into an FK

space ([21], Corollary 4.2.4, p. 56).

(e) Every Fréchet space with a Schauder basis is congruent to an FK space

([21], Corollary 11.4.1, p. 208).

Example 3.1 (a) The space (ω, d) with the metric in (2.3) is a locally

convex FK space with AK; φ has no Fréchet topology ([21], 4.0.2, 4.0.5,

p. 51).

(b) Let p = (pk)∞k=0 be a positive bounded sequence with H = supk pk. We
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put M = max{1, H}. Then the sets

`(p) =

{

x ∈ ω :
∞
∑

k=0

|xk|
pk <∞

}

and c0(p) =

{

x ∈ ω : lim
k→∞

|xk|
pk = 0

}

are FK spaces with AK with respect to their natural metrics d(p) and d0,(p)

that come from the total paranorms

g(p)(x) =

(

∞
∑

k=0

|xk|
pk

)1/M

and g0,(p)(x) =

(

sup
k

|xk|
pk

)1/M

([9], Theorem 1, [10], p. 318, and [12], Theorem 2). In

`∞(p) = {x ∈ ω : supk |xk|
pk <∞} and

c(p) = {x ∈ ω : x− `e ∈ c0(p) for some ` ∈ |C },

g0,(p) is a paranorm only in the trivial case infk pk > 0, when `∞(p) = `∞
and c(p) = c ([19], Theorem 9). FK metrics for `∞(p) and c(p) using the

concepts of co–echelon spaces and the inductive limit topology were given

in [2].

(c) The spaces `p for 1 ≤ p < ∞ are BK spaces with ‖x‖p =

(
∑∞

k=0|xk|
p)1/p, and p-normed FK spaces for 0 < p < 1 with ‖x‖ =

∑∞
k=0|xk|

p in which case the corresponding topology is not localy comvex;

c0, c and `∞ are BK spaces with ‖x‖∞ = supk |xk|, `p and c0 have AK,

and c and c0 are closed subspaces of `∞.

If X is a linear metric space, the set of all continuous linear functionals

on X is denoted by X ′; if X is a normed space, we write X∗ for X ′ with

the norm ‖f‖ = supx∈BX
|f(x)| (f ∈ X ′) where BX denotes the closed unit

ball in X.

If x and y are sequences, and X and Y are subsets of ω, then we write

xy = (xkyk)∞k=0, x
−1 ∗ Y = {a ∈ ω : ax ∈ X} and

M(X,Y ) =
⋂

x∈X

x−1 ∗ Y = {a ∈ ω : ax ∈ Y for all x ∈ X}

for the multiplier space of X and Y . We use the notations xα = x−1 ∗ `1,

xβ = x−1 ∗ cs and xγ = x−1 ∗ bs, and Xα = M(X, `1), X
β = M(X, cs) and

Xγ = M(X, bs) for the α–, β– and γ–duals of X.

Obviously we have Xα ⊂ Xβ ⊂ Xγ . Also the following result holds.

Proposition 3.1 (a) If X ⊃ φ is an FK space with AK then Xβ = Xγ

([21], Theorem 7.2.7 (iii), 106).

(b) Let X and Y be subsets of ω. If † denotes any of the symbols α, β or

γ, then ([21], Theorem 7.2.2, p. 105 and [7], Lemma 2)
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(i) X ⊂ X††, (ii) X† = X†††, (iii) X ⊂ Y implies Y † ⊂ X†.

If I is an arbitrary index set and X = {Xι : ι ∈ I} is a family of subsets of

Xι of ω, then

(iv) (
⋃

ι∈I Xι)
† =

⋂

ι∈I X
†
ι .

The following well–known result shows the close relation between the

β– and continuous dual of an FK space.

Proposition 3.2 ([21], Theorem 7.2.9, p. 107) Let X ⊃ φ be an FK

space. Then Xβ ⊂ X ′ in the sense that each sequence a ∈ Xβ can be used

to represent a function fa ∈ X ′ with fa(x) =
∑∞

k=0akxk for all x ∈ X, and

the map T : Xβ → X ′ with T (a) = fa is linear and one–to–one. If X has

AK, then T is an isomorphism.

The boundedness of the sequence p is not needed in Part (a) of the next

example.

Example 3.2 (a) We have `(p)β = `∞(p) for 0 < pk ≤ 1 ([19], Theorem

7), and for pk > 1 and qk = pk/(pk − 1),

`(p)β = M(p) =
⋃

N>1

{

a ∈ ω :

∞
∑

k=0

∣

∣

∣

ak

N

∣

∣

∣

qk

<∞

}

([11], Theorem 1);

for all positive sequences ([11], Theorem 6, [7], Theorem 1 and [8], Theorem

2)

c0(p)
β = M0(p) =

⋃

N>1

{

a ∈ ω :
∞
∑

k=0

|ak|N
−1/pk <∞

}

,

c(p)β = c0(p) ∩ cs and

`∞(p)β = M∞ =
⋂

N>1

{

a ∈ ω :
∞
∑

k=0

|ak|N
1/pk <∞

}

.

(b) If 1 < infk pk ≤ pk ≤ supk <∞ and `(q) has its natural topology given

by the total paranorm

g(p)(a) =

(

∞
∑

k=0

|ak|
qk

)1/Q

(a ∈ `(q)), where Q = sup
k
qk,

then `(p)∗ and `(q) are linearly homeomorphic ([11], Theorem 4).

The classical special cases of the previous example are well known.

Example 3.3 We have `βp = `∞ for 0 < p ≤ 1, `βp = `q for 1 < p <∞ and

q = p/(p − 1), cβ0 = cβ = `β∞ = `1, ω
β = φ and φβ = ω. Furthermore, `∗p
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(0 < p < ∞) and c∗0 are norm isomorphic to their β–duals, and f ∈ c∗ if

and only if

f(x) = χ lim
k→∞

xk +
∞
∑

k=0

akxk where a ∈ `1 and

χ = χ(f) = f(e) −
∞
∑

k=0

f(e(k)), and ‖f‖ = | lim
k→∞

xk| + ‖a‖1

([20], Examples 6.4.2, 6.4.3 and 6.4.4, p. 91). Finally `∗∞ is not isomorphic

to any sequence space ([20], Example 6.4.8, p. 93).

Given any infinite matrix A = (ank)∞n,k=0 of complex numbers and any

sequence x, we write An for the sequence in the n–th row of A, An(x) =
∑∞

k=0akxk (n = 0, 1, . . . ) and A(x) = (An(x))∞n=0. If X is a subset of ω

then XA = {x ∈ ω : A(x) ∈ X} denotes the matrix domain of A in X.

Finally (X,Y ) = {A : XA ⊂ Y } is the class of all matrices that map X

into Y , that is A ∈ (X,Y ) if and only if An ∈ Xβ for all n, and A(x) ∈ Y

for all x ∈ X.

An infinite matrix T = (tnk)∞n,k=0 is called a triangle, if tnn 6= 0 for all

n and tnk = 0 for k > n.

The following result is well known

Proposition 3.3 ([21], Theorem 4.3.12, p. 63) Let (X, d) be an FK space,

T be a triangle and Y = XT . Then (Y, dT ) is an FK space with

dT (y, y ′ ) = d(T (y), T (y ′ )) for all y, y ′ ∈ Y . (3.1)

Remark 3.2 We observe that the metric dT in (3.1) yields the weak topol-

ogy w(Y,LT ) by LT : XT → X on Y = XT , where LT (y) = T (y) for all

y ∈ Y .

Now we confine ourselves to the special case where T = ∆ with ∆nn =

1, ∆n,n−1 = −1 and ∆n,k = 0 (otherwise) for n = 0, 1, . . . ; we use the

convention that any term with a negative subscript is equal to zero.

Theorem 3.1 Let X ⊃ φ be an FK space with AK, and the matrix E =

(enk)∞n,k=0 be defined by enk = 0 for 0 ≤ k ≤ n − 1 and enk = 0 for k ≥ n

(n = 0, 1, . . . ). Then (X∆)β if and only if a ∈ (Xβ)E and W ∈ (X, c0)

where W is the matrix with

wnk =







∞
∑

j=n

aj (0 ≤ k ≤ n)

0 (k > n)
for n = 0, 1, . . . .
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Furthermore, if a ∈ (X∆)β, then

∞
∑

k=0

akyk =

∞
∑

k=0

Ek(a)∆k(y) for all y ∈ X∆. (3.2)

Remark 3.3 The statement of Theorem 3.1 also holds for X = `∞.

Now we apply Theorem 3.1 and Remark 3.3. We write bv(p) = (`(p))∆
and c0(p)(∆) = (c0(p))∆.

Example 3.4 Let p be a bounded positive sequence.

(a) If pk ≤ 1 for all k, then (bv(p))β = cs; if 1 > pk and qk = pk/(pk − 1)

for all k, then a ∈ (bv(p))β if and only if there is an integer N > 1 such

that

∞
∑

k=0

∣

∣

∣

∣

∣

∣

1

N

∞
∑

j=k

aj

∣

∣

∣

∣

∣

∣

qk

<∞ and sup
n

n
∑

k=0

∣

∣

∣

∣

∣

∣

1

N

∞
∑

j=n

aj

∣

∣

∣

∣

∣

∣

qk

<∞. (3.3)

(b) We have a ∈ (c0(p)(∆))β if and only if there is an integer N > 1 such

that

∞
∑

k=0

∣

∣

∣

∣

∣

∣

∞
∑

j=k

aj

∣

∣

∣

∣

∣

∣

N−1/pk <∞ and sup
n

n
∑

k=0

∣

∣

∣

∣

∣

∣

∞
∑

j=n

aj

∣

∣

∣

∣

∣

∣

N−1/pk <∞. (3.4)

Proof. (a) First let pk ≤ 1 for all k. Then bv(p) ⊂ bv = bv(e), and so

(bv(p))β ⊃ bvβ = cs by Proposition 3.1 (b) (iii) and [21], Theorem 7.3.5

(iii), p. 110. Furthermore, it follows from Theorem 3.1, that if a ∈ (bv(p))β ,

then R exists, and so a ∈ cs.

Now let pk > 1 for all k. Then, by Theorem 3.1, a ∈ (bv(p))β if and only

if R = E(a) ∈ `(p)β and W ∈ (`(p), c0). We obtain from Example 3.1

(a), that R ∈ `(p)β if and only if the first condition in (3.3) is satisfied.

Also W ∈ (`(p), c0) if and only if ([8], Theorem 1 and [21], 8.3.6, p. 123)

supn

∑∞
k=0|wnk|

qkN−qk = supn

∑n
k=0(|Rn|/N)qk < ∞ for some N > 1,

which is the second condition in (3.3), and

lim
n→∞

wnk = 0 for all k (3.5)

which is redundant, since Rn → 0 (n→ ∞).

(b) Now a ∈ (c0(p)(∆))β if and only if R ∈ c0(p)
β and W ∈ (c0(p), c0).

We obtain from Example 3.1 (a), that R ∈ c0(p)
β if and only if the first

condition in (3.4) is satisfied. Furthermore, W ∈ (c0(p), c0) by [7], Corollary

2 and [21], 8.3.6, p. 123 if and only if supn

∑∞
k=0|wnk|N

−1/pk <∞ for some
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N > 1, which is the second condition in (3.3), and (3.5) holds which again

is redundant.

Now we write bvp = (`p)∆ for p > 1, q = p/(p− 1), and c0(∆) = (c0)∆
and `∞(∆) = (`∞)∆.

Example 3.5 (a) If p > 1, then a ∈ bvβ
p if and only if R ∈ `q and

(nRn)∞n=0 ∈ `∞.

(b) We have a ∈ (c0(∆))β if and only if R ∈ `1 and (nRn)∞n=0 ∈ `∞.

(c) We have a ∈ (`∞(∆))β if and only if R ∈ `1 and (nRn)∞n=0 ∈ c0

Proof. Parts (a) and (b) are immediate consequences of (3.3) and (3.4).

(c) We have a ∈ (`∞(∆))β by Remark 3.3 if and only if R ∈ `β∞ = `1, by

Example 3.3, andW ∈ (`∞, c0). NowW ∈ (`∞, c0) by [21], Theorems 1.7.18

and 1.7.19, pp. 15–17 if and only if limn→∞

∑∞
k=0|wnk| = limn→∞ n|Rn| =

0 for all k, which is the second condition.

4. Some Neighbourhoods

We consider IR n for given n ∈ IN as a subset of ω (Example 2.1) by iden-

tifying every point X = (x1, x2, · · · , xn) ∈ IRn with the real sequence

x = (xk)∞k=1 ∈ ω where xk = 0 for all k > n, and introduce on IRn any of

the metrics of Section 3.

We denote by Bd(r,X0) = {X ∈ IRn : d(X,X0) < r} the open ball

in (IRn, d) of radius r > 0 with its centre in X0, and consider the cases

n = 2 and n = 3 for the graphical representation of neighbourhoods by the

boundaries ∂Bd(X0) of Bd(r,X0).

4.1. Neighbourhoods in IR2

The boundaries ∂Bd(r,X0) of Bd(r,X0) in IR 2 are given by the zeros of a

real–valued function of two variables. Although our software provides an

algorithm for this ([3, 4, 13]), it is more convenient and less time consuming

if we can find a parametric representation for ∂Bd(r,X0). For instance, this

can be achieved for the metrics d of Example 2.1 and d(p) of Example 3.1

(b).

Example 4.1 (a) We consider IR 2 with the metric d of Example 2.1 (left

in Figure 3), that is

d(X,Y ) =
|x1 − y1|

2(1 + |x1 − y1|)
+

|x2 − y2|

4(1 + |x2 − y2|)
. (4.1)
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Let X0 ∈ IR 2 with the position vector ~x0, and r < 1/4. Then

~x(t) =

{

2r sgn(cos t) cos2 t

1 − 2r cos2 t
,
4r sgn(sin t) sin2 t

1 − 4r sin2 t

}

+ ~x0 (t ∈ (0, 2π))

is a parametric representation for ∂Bd(r,X0) which is not differentiable for

t = π/2, π, 3π/2. The factors 1/2k in the definition of the metric d for ω

were introduced to ensure the convergence of the series; in fact they may be

replaced by the terms of any positive convergent series. In the finite case,

we may choose the factors to be equal to one, and consider the metric

d̃(X,Y ) =
|x1 − y1|

1 + |x1 − y1|
+

|x2 − y2|

1 + |x2 − y2|
(4.2)

and

~x(t) =

{

r sgn(cos t) cos2 t

1 − r cos2 t
,
r sgn(sin t) sin2 t

1 − r sin2 t

}

+ ~x0 (t ∈ (0, 2π)).

is a parametric representation for ∂Bd(p)
(r,X0) (right in Figure 3).

Figure 3. Boundaries of neigbourhoods in the metrics of (4.1) and (4.2) left: ∂Bd(r, 0);

right: ∂B
d̃
(r, X0) for r = n/30 (n = 0, 1, . . . , 6).

(b) Now we consider the metric d(p) of Example 3.1 (b). Then

~x(t) = {φ1(t), φ2(t)} + ~x0 (t ∈ (0, 2π))
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with

φ1(t) = rM/p1 | cos t|2/p1sgn(cos t) (4.3)

and

φ2(t) = rM/p2 | sin t|2/p2sgn(sin t) (4.4)

is a parametric representation for ∂Bd(p)
(r,X0) (Figure 4).

Figure 4. left: ∂Bd(p)
(1, X0) for p1 = 1/(n + 1) and p2 = n + 1 (n = 1, 2 . . . , 5) right:

∂Bd(p)
(1, X0) for p = 1/4 + (n + 1)/4 (n = 0, 1, . . . , 7) and p = n − 5 (n = 8, 9, . . . , 12)

(c) Now we represent neighbourhoods in the metric d(p)◦∆ of bv(p) and

their dual neighbourhoods in the metric d ∗
(p)◦∆ of (bv(p))β (Example 3.3).

(d) Finally, we represent neighbourhoods in the metric

d =
d(p1)

1 + d(p2)
+

d(p1)

1 + d(p2)
((2.1); Figure 6).

Now we represent neighbourhoods in some weak topologies. Again, it is

useful to obtain, if possible, parametric representations for the boundaries

of the neighbourhood. Let d be a metric for IR 2 that comes from a paranorm

g, Y0 ∈ IR 2 and ∂Bd(r, Y0) ⊂ IR 2 be given by a parametric representation

~y(t) = {φ1(t), φ2(t)} (t ∈ I) where I ⊂ IR is an interval. Then we have

Y ∈ ∂Bd(r, Y0) if and only if d ((φ1(t), φ2(t)), Y0) = r for some t ∈ I.
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Figure 5. ∂Bd(p)◦∆
(1, X0) and ∂B ∗

d(p)◦∆
(1, X0) for p1 = 1+4/(n+1) and p2 = 1/(4(n+

1)) (n = 0, 1, 2, 3)

Figure 6. ∂Bd(p)
(r, X0) for r = n/10 (n = 1, 2, . . . , 9), p1 = (1, 2) and p2 = (5, 4) and

the metric d of Example 4.1 (d)

We assume that S ⊂ IR 2 is a domain, and f : S → IR 2 is bijective with

inverse h : IR 2 → S. Then the boundary ∂Bδ(r,X0) of the weak neigh-

bourhood Bδ(r,X0) of X0 ∈ S in the metric δ of (2.1) of the weak topology
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w(S, f) has a parametric representation

~x(t) = h(Φ(t) + f(X0)) (t ∈ T ) where Φ = (φ1, φ2),

since X ∈ ∂Bδ(r,X0) if and only if

δ(X,X0) = d (f(h(Φ(t) + f(X0)), f(X0))

= d (Φ(t) + f(X0), f(X0)) = g(Φ(t)) = r.

Example 4.2 (a) Weak neighbourhoods in the unit circle C1

We use the function f : C1 = {X = (x, y) ∈ IR 2 : x2 + y2 < 1} → IR 2 with

f(x, y) =

(

x

1 −
√

x2 + y2
,

y

1 −
√

x2 + y2

)

(4.5)

to introduce the weak topology w(C1, f) on C1. The inverse function h :

IR 2 → C1 of f is given by

h(x, y) =

(

x

1 +
√

x2 + y2
,

y

1 +
√

x2 + y2

)

.

We consider the metric d(p) of Example 3.1 (b) on IR 2, and write Φ =

(φ1, φ2) where φ1 and φ2 are the functions in (4.3) and (4.4), and Ψ =

Φ + f(X0) = (ψ1, ψ2) for X0 ∈ C1. Then the boundary ∂Bδ(p)
(r,X0) =

∂Bd(p)◦f (r,X0) is given by a parametric representation ~x(t) = {h1(t), h2(t)}

(t ∈ (0, 2π)) with

hk(t) = hk(Ψ(t)) =
ψk(t)

1 +
√

(ψ1(t))2 + (ψ2(t))2
(k = 1, 2).

(b) Weak neighbourhoods in the square [ − 1, 1]
2

We use the functions f, f̃ : [ − 1, 1]
2 → IR 2 with

f(x, y) =
(

tan
(xπ

2

)

, tan
(yπ

2

))

and f̃(x, y) =

(

x

1 − |x|
,

y

1 − |y|

)

to introduce the metrics δ(p) = d(p) ◦ f and δ̃ = d(p) ◦ f̃ in the square

[ − 1, 1]
2
.

4.2. Neighbourhoods in IR 3

Here we consider the case when the boundaries ∂Bd(r,X0) of the neigh-

bourhoods in IR 3 are given by a parametric representation, as in the case

of the metric d(p) of Example 3.1 (b). Then the principles of Subsection
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Figure 7. Weak neighbourhoods ∂Bδ(p)
(r, X0) in the unit circle by the function f of

(4.5) for p = (7/4, 3/4) and corresponding neighbourhoods ∂Bd(p)
(r, X0) in IR 2

Figure 8. Weak neigbourhoods ∂Bδ(p)
(r, X0) in [−1, 1]2 and corresponding neighbour-

hoods ∂Bd(p)
(r, X0) in IR2 for p = (3, 1/8)

4.1 can easily be extended and applied to the graphical representation of

neighbourhoods in IR 3.

We consider the metric d(p) of Example 3.1 (b). Then

~x((u1, u2)) = {φ1((u
1, u2)), φ2((u

1, u2)), φ3((u
1, u2)) } + ~x0
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Figure 9. Weak neigbourhoods ∂B
δ̃(p)

(r, X0) in [−1, 1]2 and corresponding neighbour-

hoods ∂Bd(p)
(r, X0) in IR2 for p = (3/4, 3/4)

((u1, u2) ∈ (−π/2, π/2) × (0, 2π)) with

φ1((u
1, u2)) = rM/p1 sgn(cosu2)(cosu1| cosu2|)2/p1 ,

φ2((u
1, u2)) = rM/p2 sgn(sinu2)(cosu1| sinu2|)2/p2 , and

φ3((u
1, u2)) = rM/p3 sgn(sinu1)| sinu1|2/p3

is a parametric representation for ∂Bd(p)
(r,X0) which is not differentiable

for u2 = π/2, π, 3π/2 (Figure 10).

Figure 10. ∂Bd(p)
(1, 0) for left: p = (1/2, 2, 1/4) and right: p = (1/4, 5, 1)
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Figure 11. left: ∂Bd(p)
(1, 0) for p = (3/2, 2, 3); right: its dual

Figure 12. left: ∂Bdp
(1, 0) in IR 3; right: ∂Bdp◦f (1, 0) in (0,∞)3 with f = (log, log, log),

for p = 5/2
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Figure 13. left: ∂Bdp◦f (1, 0) in (0,∞)2×IR with f = (log, log, id); right: f̃(∂Bd2
(1, 0))

with f̃ = (sinh, tan, id), for p = 2
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17. E. Malkowsky and V. Rakočević, On matrix domains of triangles, under
communication
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