ON HOLOMORPHICALLY PROJECTIVE FLAT PARABOLICALLY-KÄHLERIAN SPACES *

MOHSEN SHIHA
Department of Mathematics, P.O. Box: 249, Teachers Coll., Abha, Kingdom of Saudi Arabia
E-mail: mohsen_sheha@yahoo.com
JOSEF MIKEŠ ${ }^{\dagger}$
Department of Algebra and Geometry, Fac. Sci., Palacky Univ., Tomkova 40, 77900 Olomouc, Czech Republic
E-mail: josef.mikes@upol.cz

We consider holomorphically projective mappings of parabolically-Kählerian spaces and define holomorphically projective flat parabolically-Kählerian spaces. We found the tensor characteristic of these spaces and obtained their metric tensors.

1. Introduction

Many authors studied holomorphically projective mappings of Kählerian spaces and their generalizations [1, 17]. Some facts from the theory of holomorphically projective mappings of parabolically-Kählerian spaces $K_{n}^{o(m)}$ were published in [2, 9]-[15].
A (pseudo-) Riemannian space $K_{n}^{o(m)}$ is said to be parabolically-Kählerian space if together with a metric tensor $g_{i j}(x)$ it possesses an affinor structure $F_{i}^{h}(x)$ of rank $m \geq 2$ satisfying the following relations
a) $\quad F_{\alpha}^{h} F_{i}^{\alpha}=0$,
b) $g_{i \alpha} F_{j}^{\alpha}+g_{j \alpha} F_{i}^{\alpha}=0$,
c) $\quad F_{i, j}^{h}=0$,

[^0]where the comma denotes the covariant derivation.

2. Holomorphically projective mappings of parabolically-Kählerian spaces

The following criteria from the papers [10, 13] hold for holomorphically projective mappings from a parabolically-Kählerian space $K_{n}^{o(m)}$ onto a parabolically-Kählerian space $\bar{K}_{n}^{o(m)}$.
An analytically planar curve of the parabolically-Kählerian space $K_{n}^{o(m)}$ is a curve defined by the equations $x^{h}=x^{h}(t)$ which tangent vector $\lambda^{h}=d x^{h} / d t$, being translated, remains in the area element formed by the tangent vector λ^{h} and its conjugate $\lambda^{\alpha} F_{\alpha}^{h}$, i.e., the conditions

$$
\frac{d \lambda^{h}}{d t}+\Gamma_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta}=\rho_{1}(t) \lambda^{h}+\rho_{2}(t) \lambda^{\alpha} F_{\alpha}^{h}
$$

are fulfilled. Here $\Gamma_{i j}^{h}$ is the Christoffel symbol and ρ_{1}, ρ_{2} are functions of the argument t.
The diffeomorphism f of $K_{n}^{o(m)}$ onto $\bar{K}_{n}^{o(m)}$ is a holomorphically projective mapping, if it transform all analytically planar curves of $K_{n}^{o(m)}$ into analytically planar curves of $\bar{K}_{n}^{o(m)}$.
Consider a concrete mapping $f: K_{n}^{o(m)} \longrightarrow \bar{K}_{n}^{o(m)}$, both spaces being referred to the general coordinate system x with respect to this mapping. This is a coordinate system where two corresponding points $M \in K_{n}^{o(m)}$ and $f(M) \in \bar{K}_{n}^{o(m)}$ have equal coordinates $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$; the corresponding geometric objects in $\bar{K}_{n}^{o(m)}$ will be marked with a bar. For example, $\Gamma_{i j}^{h}$ and $\bar{\Gamma}_{i j}^{h}$ are components of the Christoffel symbols on $K_{n}^{o(m)}$ and $\bar{K}_{n}^{o(m)}$, respectively.
Structures of $K_{n}^{o(m)}$ and $\bar{K}_{n}^{o(m)}$ are preserved under f, i.e. $\bar{F}_{i}^{h}(x)=$ $F_{i}^{h}(x)$. Among others, the structure F_{i}^{h} is covariantly constant, and $\bar{g}_{i \alpha} F_{j}^{\alpha}+\bar{g}_{j \alpha} F_{i}^{\alpha}=0$ holds.
It is proved in $[10,13]$ that a parabolically-Kählerian space $K_{n}^{o(m)}$ admits a holomorphically projective mapping f onto a parabolically-Kählerian space $\bar{K}_{n}^{o(m)}$ if and only if the following conditions (in the common coordinate system x) hold:

$$
\begin{equation*}
\bar{\Gamma}_{i j}^{h}(x)=\Gamma_{i j}^{h}(x)+\psi_{i} \delta_{j}^{h}+\psi_{j} \delta_{i}^{h}+\varphi_{i} F_{j}^{h}+\varphi_{j} F_{i}^{h} \tag{2}
\end{equation*}
$$

where φ_{i} is a covector, $\psi_{i}=\varphi_{\alpha} F_{i}^{\alpha}$, and $\psi_{i}(x)$ is a gradient, i.e. there is a function $\psi(x)$, such that $\psi_{i}(x)=\partial \psi(x) / \partial x^{i}$.

If $\varphi_{i} \not \equiv 0$ then a holomorphically projective mapping is called nontrivial; otherwise it is said to be trivial or affine.

Condition (2) is equivalent to

$$
\begin{equation*}
\bar{g}_{i j, k}=2 \psi_{k} \bar{g}_{i j}+\psi_{i} \bar{g}_{j k}+\psi_{j} \bar{g}_{i k}+\varphi_{i} \bar{g}_{j \alpha} F_{k}^{\alpha}+\varphi_{j} \bar{g}_{i \alpha} F_{k}^{\alpha} \tag{3}
\end{equation*}
$$

Under a holomorphically projective mapping $f: K_{n}^{o(m)} \longrightarrow \bar{K}_{n}^{o(m)}$, the following conditions hold:

$$
\begin{equation*}
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+\psi_{i j} \delta_{k}^{h}-\psi_{i k} \delta_{j}^{h}+\varphi_{i j} F_{k}^{h}-\varphi_{i k} F_{j}^{h}-\left(\varphi_{j k}-\varphi_{k j}\right) F_{i}^{h} \tag{4}
\end{equation*}
$$

where $R_{i j k}^{h}$ and $\bar{R}_{i j k}^{h}$ are Riemannian tensors of $K_{n}^{o(m)}$ and $\bar{K}_{n}^{o(m)}$,

$$
\begin{equation*}
\varphi_{i j}=\varphi_{i, j}-\psi_{i} \varphi_{j}-\varphi_{i} \psi_{j}, \quad \psi_{i j}=\varphi_{\alpha j} F_{i}^{\alpha} \quad\left(=\psi_{j i}=\psi_{i, j}-\psi_{i} \psi_{j}\right) \tag{5}
\end{equation*}
$$

3. Holomorphically projective flat parabolically-Kählerian space

A parabolically-Kählerian space $K_{n}^{o(m)}$ is said to be holomorphically projective flat, if it admits a holomorphically projective mapping onto a flat space, i.e. the space with the vanishing Riemannian tensor.
We have the following theorem.
Theorem 3.1 The parabolically-Kählerian space $K_{n}^{o(m)}$ is holomorphically projective flat if and only if the following conditions are true for the Riemannian tensor

$$
\begin{equation*}
R_{h i j k}=c\left(2 F_{h i} F_{j k}+F_{h j} F_{i k}-F_{h k} F_{i j}\right) \tag{6}
\end{equation*}
$$

where $c=$ const, $F_{i j}=g_{i \alpha} F_{j}^{\alpha}$.
Proof. Let a parabolically-Kählerian space $K_{n}^{o(m)}$ admit a holomorphically projective mapping onto a flat space $\bar{V}_{n}\left(\bar{R}_{i j k}^{h}=0\right)$, which should be a pa-rabolically-Kählerian space $\bar{K}_{n}^{o(m)}$ same.
If $\bar{R}_{i j k}^{h}=0$ then after omitting the index $h(4)$ takes the form

$$
\begin{equation*}
R_{h i j k}=-\psi_{i j} g_{k h}+\psi_{i k} g_{j h}-\varphi_{i j} F_{h k}+\varphi_{i k} F_{h j}+\left(\varphi_{j k}-\varphi_{k j}\right) F_{h i} \tag{7}
\end{equation*}
$$

Let us symmetrize (7) at indices h and i. Then, using the properties of the Riemannian tensor we get:

$$
\begin{aligned}
0= & -\psi_{i j} g_{k h}+\psi_{i k} g_{j h}-\varphi_{i j} F_{h k}+\varphi_{i k} F_{h j}-\psi_{h j} g_{k i} \\
& +\psi_{h k} g_{j i}-\varphi_{h j} F_{i k}+\varphi_{h k} F_{i j} .
\end{aligned}
$$

Analyzing of this formula, we obtain $\psi_{i j}=0$ and

$$
\begin{equation*}
\varphi_{i j}=c F_{i j} \tag{8}
\end{equation*}
$$

where c is a certain function. Thus (8) takes the form (6).
On the basis (5), formula (8) takes the form

$$
\begin{equation*}
\varphi_{i, j}=\psi_{i} \varphi_{j}+\varphi_{i} \psi_{j}+c F_{i j} \tag{9}
\end{equation*}
$$

The condition of integrability takes the form: $c_{, k} F_{i j}-c_{, j} F_{i k}=0$. From foregoing one it is implied, that $c_{, i}=0$ and $c=$ const.

So, we have shown that the Riemannian tensor at all holomorphically projective flat parabolically-Kählerian spaces $K_{n}^{o(m)}$ satisfies (6).
It is easy to check that any parabolically-Kählerian space $K_{n}^{o(m)}$, in which the Riemannian tensor satisfies (6), admits holomorphically projective mapping onto a flat space $\bar{K}_{n}^{o(m)}$.

Make sure that the system of equations (3) and (9) is completely integrable in this $K_{n}^{o(m)}$ and has the solution $\bar{g}_{i j}(x), \varphi_{i}(x)$ for any initial conditions

$$
\begin{equation*}
\bar{g}_{i j}\left(x_{o}\right)=\stackrel{o}{\bar{g}}_{i j} \quad \text { and } \quad \varphi_{i}\left(x_{o}\right)=\stackrel{o}{\varphi}_{i} \tag{10}
\end{equation*}
$$

for which $\operatorname{det}\left\|\stackrel{o}{\bar{g}}_{i j}\right\| \not \equiv 0, \quad \stackrel{o}{\bar{g}}_{i j}=\frac{o}{\bar{g}} j i \quad$ and $\quad \stackrel{o}{\bar{g}}_{i \alpha} F_{j}^{\alpha}\left(x_{o}\right)+\stackrel{o}{\bar{g}}_{j \alpha} F_{i}^{\alpha}\left(x_{o}\right)=0$.
Consequently, the space $K_{n}^{o(m)}$ admits a holomorphically projective mapping onto a space $\bar{K}_{n}^{o(m)}$ with the metric tensor $\bar{g}_{i j}(x)$ and the structure $F_{i}^{h}(x)$. Using (4) we can see, that $\bar{R}_{i j k}^{h}=0$, hence $\bar{K}_{n}^{o(m)}$ is a flat space. This completes the proof.

The direct analysis of (6) leads us to the following
Lemma 3.1 A holomorphically projective flat parabolically-Kählerian space $K_{n}^{o(m)}$ is a Ricci flat symmetric space, i.e. a Ricci tensor is vanishing and the Riemannian tensor is covariantly constant in this $K_{n}^{o(m)}$.

4. On isometries between holomorphically projective flat parabolically-Kählerian spaces

We denote $K_{n}^{o(m, c)}$ a holomorphically projective flat parabolically-Kählerian space, which determined by (6), and prove the following theorem.

Theorem 4.1 Two holomorphically projective flat parabolically-Kählerian spaces $K_{n}^{o(m, c)}$ and $\bar{K}_{n}^{o(\bar{m}, \bar{c})}$ are locally isometric if and only if $\bar{m}=m$, the metric signatures are coincident, and the constants c and \bar{c} have the same sign.

Proof. Let us consider the given spaces $K_{n}^{o(m, c)}$ and $\bar{K}_{n}^{o(\bar{m}, \bar{c})}$ which are related to the coordinate systems x and \bar{x} respectively. It is natural to consider the case, when the constants c and \bar{c} are not equal to zero.
We will search an isometric mapping $f: K_{n}^{o(m, c)} \longrightarrow \bar{K}_{n}^{o(\bar{m}, \bar{c})}$. As it is known, the mapping $f: \bar{x}^{h}=\bar{x}^{h}\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ is an isometric mapping if and only if

$$
\begin{equation*}
g_{i j}(x)=\bar{g}_{\alpha \beta}(\bar{x}(x)) \partial_{i} \bar{x}^{\alpha} \partial_{j} \bar{x}^{\beta} . \tag{11}
\end{equation*}
$$

Denote $\bar{x}_{i}^{h} \equiv \partial_{i} \bar{x}^{h}$. From (11) it follows that

$$
\begin{equation*}
\partial_{i} \bar{x}^{h}=\bar{x}_{i}^{h}, \quad \partial_{j} \bar{x}_{i}^{h}=\bar{\Gamma}_{\alpha \beta}^{h} \bar{x}_{i}^{\alpha} \bar{x}_{j}^{\beta}-\Gamma_{i j}^{\alpha} \bar{x}_{\alpha}^{h}, \tag{12}
\end{equation*}
$$

where $\Gamma_{i j}^{h}$ and $\bar{\Gamma}_{i j}^{h}$ are the Christoffel symbols of $K_{n}^{o(m, c)}$ and $\bar{K}_{n}^{o(\bar{m}, \bar{c})}$. The system (12) for the unknown functions $\bar{x}^{h}(x), \bar{x}_{i}^{h}(x)$ has a solution for initial conditions $\bar{x}^{h}\left(x_{o}\right)=\bar{x}_{o}^{h}$ and $\bar{x}_{i}^{h}\left(x_{o}\right)=y_{i}^{h}$, where the following properties are satisfied

$$
\begin{equation*}
\bar{g}_{\alpha \beta}\left(\bar{x}_{o}\right) y_{i}^{\alpha} y_{j}^{\beta}=g_{i j}\left(x_{o}\right), \quad F_{i}^{\alpha}\left(x_{o}\right) y_{\alpha}^{h}=\sqrt{\bar{c} / c} \bar{F}_{\alpha}^{h}\left(\bar{x}_{o}\right) y_{i}^{\alpha} \tag{13}
\end{equation*}
$$

where F_{i}^{h} and \bar{F}_{i}^{h} are the structures of $K_{n}^{o(m, c)}$ and $\bar{K}_{n}^{o(m, c)}$, respectively.
Initial conditions y_{i}^{h} from (13) exist if only if $\bar{m}=m$, the signatures of the metric g and \bar{g} are coincident, and the constants c and \bar{c} have the same sign. Conditions (13) follow from (11) and from an integrability condition of system (12): $\quad R_{h i j k}=\bar{R}_{\alpha \beta \gamma \delta} \bar{x}_{h}^{\alpha} \bar{x}_{i}^{\beta} \bar{x}_{j}^{\gamma} \bar{x}_{k}^{\delta}$.

5. Holomorphically projective mappings of holomorphically projective flat parabolically-Kählerian spaces

We can prove the next theorem in the similar way as Theorem 3.1.
Theorem 5.1 If the holomorphically projective flat parabolically-Kählerian space $K_{n}^{o(m, c)}$ admits a holomorphically projective mapping onto some para-bolically-Kählerian space $\bar{K}_{n}^{o(m)}$, then $\bar{K}_{n}^{o(m)}$ is a holomorphically projective flat parabolically-Kählerian space $\bar{K}_{n}^{o(m, \bar{c})}$ too.

In addition the next theorem holds
Theorem 5.2 Any holomorphically projective flat parabolically-Kählerian space $K_{n}^{o(m, c)}$ admits a nontrivial holomorphically projective mapping onto some holomorphically projective flat parabolically-Kählerian space $\bar{K}_{n}^{o(m, \bar{c})}$ with a given constant \bar{c} and a given signature of the metric $\bar{g}_{i j}$.

Proof. The availability of this theorem follows from the existence of the solutions $\bar{g}_{i j}(x)$ and $\varphi_{i}(x)$ of equations (3) and

$$
\varphi_{i, j}=\psi_{i} \varphi_{j}+\varphi_{i} \psi_{j}+c F_{i j}-\bar{c} \bar{F}_{i j}
$$

where $\bar{F}_{i j}=\bar{g}_{i \alpha} F_{j}^{\alpha}$, for any initial conditions (10) for which det $\left\|\frac{o}{\bar{g}_{i j}}\right\| \neq 0$, $\stackrel{o}{\bar{g}}_{i j}=\frac{o}{\bar{g}_{j i}} \quad$ and $\quad \stackrel{o}{\bar{g}}_{i \alpha} F_{j}^{\alpha}\left(x_{o}\right)+\stackrel{o}{\bar{g}}_{j \alpha} F_{i}^{\alpha}\left(x_{o}\right)=0$, in the space $K_{n}^{o(m, c)}$.

Theorem 5.3 Between any holomorphically projective flat parabolicallyKählerian spaces it is possible to establish a nontrivial holomorphically projective mapping.
Proof. Let us have two arbitrary holomorphically projective flat parabo-lically-Kählerian spaces $K_{n}^{o(m, c)}$ and $\bar{K}_{n}^{o(m, \bar{c})}$. By Theorem 5.2, there exists some space $\tilde{K}_{n}^{o(m, c)}$ with a signature of a metric of $\bar{K}_{n}^{o(m, \bar{c})}$, on which $K_{n}^{o(m, c)}$ admits nontrivial holomorphically projective mapping. By Theorem 4.1, the spaces $\bar{K}_{n}^{o(m, \bar{c})}$ and $\tilde{K}_{n}^{o(m, c)}$ are isometric, which prove the theorem.

6. Metric of holomorphically projective flat parabolically-Kählerian spaces

In a symmetric space its a metric tensor may be rebuilt in some Riemannian coordinate system $\left(y^{1}, y^{2}, \ldots y^{n}\right)$ at a point x_{o} by the known formulas [5]

$$
\begin{equation*}
g_{i j}=\stackrel{o}{g}_{i j}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{2 k+2}}{(2 k+2)!} m_{i}^{\sigma_{1}} m_{\sigma_{1}}^{\sigma_{2}} \cdots m_{\sigma_{k-1} j} \tag{14}
\end{equation*}
$$

where $m_{i j}=\stackrel{o}{R}{ }_{i \alpha j \beta} y^{\alpha} y^{\beta}, m_{j}^{i}=m_{i \alpha} \stackrel{o}{g}^{\alpha i}$ and $\stackrel{o}{g}_{i j}, \stackrel{o}{g}^{i j}$ and $\stackrel{o}{R}_{h i j k}$ are the components of the metric, its inverse and Riemannian tensors at the point x_{o}.

Taking into account the representation of Riemannian tensor (6) and properties of structures F_{i}^{h} the formulas (14) take the form:

$$
\begin{equation*}
g_{i j}=\stackrel{o}{g}_{i j}-c F_{i} F_{j} \tag{15}
\end{equation*}
$$

where $F_{i}=\stackrel{o}{F}_{i \alpha} y^{\alpha}, \stackrel{o}{F}_{i j}$ are the components of tensor $F_{i j}$ at x_{o}.
Note, that for a given point x_{o} of holomorphically projective flat parabo-lically-Kählerian space $K_{n}^{o(m, c)}$ the metric and structure tensors may be simultaneously reduced to the form:

$$
\stackrel{o}{g}_{i j}=\left(\begin{array}{ccc}
0 & 0 & b_{a b} \\
0 & \stackrel{*}{e} & 0 \\
b_{a b}^{T} & 0 & 0
\end{array}\right) \quad \text { and } \quad \stackrel{o}{F_{i}^{h}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
E_{m} & 0 & 0
\end{array}\right)
$$

where $b_{a b}^{T}$ is a transposed matrix $b_{a b}, a, b=\overline{1, m}, E_{m}$ is the identity matrix,
$b_{a b}=\left(\begin{array}{cccccc}0 & 1 & & & & \\ -1 & 0 & & & & 0 \\ & & 0 & 1 & & \\ & -1 & 0 & & & \\ & & & & \ddots & \\ & & & & & \\ 0 & & & & 0 & 1 \\ & & & & & \\ & & & & \\ & & & & & \\ e\end{array}\right) \quad$ and $\quad \stackrel{*}{e}=\left(\begin{array}{llll}e_{1} & & & 0 \\ & e_{2} & & \\ & & \ddots & \\ 0 & & & e_{n-2 m}\end{array}\right), e_{a}= \pm 1$.
Thus, we proved the following theorem.
Theorem 6.1 In the holomorphically projective flat parabolically-Kählerian space $K_{n}^{o(m, c)}$ there exists a coordinate system y in which the metric tensor has the form (15).

Not neglecting generality of reasons, on basic of theorem 4.1 we can consider $c=0, \pm 1$ that is, spaces $K_{n}^{o(m, 0)}, K_{n}^{o(m,+1)}$ and $K_{n}^{o(m,-1)}$.

References

1. D. V. Beklemishev, Differential geometry of spaces with an almost complex structure, (Russian), In: Itogi Nauki, Geometria, 1963, All-Union Institute for Scietific and Technical Information, Moscow, (1965), 165-212.
2. J. Mikeš, Holomorphically projective mappings and their generalizations, J. Math. Sci., New York, 89, 3 (1998), 1334-1353.
3. J. Mikeš and N. S. Sinyukov, On quasi planar mappings of affine-connected spaces, Sov. Math. 27, 1 (1983), 63-70.
4. T. Otsuki and Y. Tashiro, On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57-78.
5. A. Z. Petrov, New method in general relativity theory, Nauka, Moscow, 1966.
6. A. Z. Petrov, Simulation of physical fields, In: Gravitation and the Theory of Relativity, Vol. 4-5, Kazan' State Univ., Kazan, (1968), 7-21.
7. M. Prvanovic, Holomorphically projective transformations in a locally product space, Math. Balk. 1 (1971), 195-213.
8. M. Prvanovic, A note on holomorphically projective transformations of the Kähler spaces, Tensor, New Ser. 35 (1981), 99-104.
9. Zh. Radulovich, Holomorphically-projective mappings of parabolically-Kählerian spaces, Math. Montisnigri, Vol. VIII (1997), 159-184.
10. M. Shiha, On the theory of holomorphically-projective mappings parabolicallyKählerian spaces, Diff. Geometry and Its Appl. Proc. Conf. Opava. Silesian Univ., Opava, (1993), 157-160.
11. M. Shiha, Geodesic and holomorphically projective mappings of parabolicallyKählerian spaces, (Russian), PhD. Thesis, Moscow, (1994).
12. M. Shiha, Geodesic and holomorphically projective mappings of parabolicallyKählerian spaces, (Russian), Abstract of PhD. Thesis, Moscow, (1994).
13. M. Shiha and J. Mikeš, The holomorphically projective mappings of paraboli-cally-Kählerian spaces, (Russian), Dep. in UkrNIINTI, Kiev, No 1128-Uk91, 19p., (1991).
14. M. Shiha and J. Mikeš, On equidistant parabolically-Kählerian spaces, (Russian), Trudy Geom. Sem., 22 (1994), 97-107.
15. M. Shiha and J. Mikeš, On parabolically Sasakian and equidistant paraboli-cally-Kählerian spaces, (Russian), Dvizh. v obobshch. prostranstvach. Inter. Sci. Sb. Nauchn. Trudov, Penza (Russia), (1999), 190-198.
16. V. V. Vishnevsky, A. P. Shirokov, V. V. Shurigin, Spaces over Algebras, Kazan Univ. Press, Kazan, 1985.
17. K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford, 1965.

[^0]: * MSC 2000: 53B20, 53B30.

 Keywords: holomorphically projective flat space, holomorphically projective mapping, parabolically Kählerian space.
 This paper is dedicated to Professors Ivan Kolár and Oldr̆ich Kowalski in occasion of their 70-ties.
 \dagger Work supported by the Grant No 201/05/2707 of The Czech Science Foundation and by the Council of Czech Government MSM No 6198959214.

