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This paper at first considers the basic equivalence principles (Weak EP, Einstein
EP and Strong EP), and further are presented some recent results about time
dependent gravitational potential in the universe. Its consequences fit with the
observations: Hubble red shift, change of the orbital period of the binary pulsars
and anomaly acceleration of the spacecraft Pioneer 10 and 11. Section 3 considers
the following experiment. A shielded laboratory is freely falling toward the Earth
and assume that in the shielded laboratory there are two bodies which are moving
under the mutual gravitation. Calculated is the quotient Θ2 : Θ1 according to the
observer from the shielded laboratory of two successive orbital periods. Using the
results about the time dependent gravitational potential, which are experimentally
confirmed by the binary pulsars, Θ2 : Θ1 6= 1. It violates the SEP, because
according to SEP Θ2 : Θ1 = 1. The reason for this deviation from the General
Relativity is explained. The last section considers a radial motion of a particle
in a weak spherical gravitational field. Although in a short time interval the
acceleration is almost a constant, it is shown that the GR equations are not close
to the special relativity equations for motion under a constant force.

1. Equivalence principles and basic problems

The basic assumption in the General Relativity (GR) is the Weak Equiv-
alence Principle (WEP), which states that if an uncharged test body is
placed at an initial event in the space-time and given an initial velocity
there, then its subsequent trajectory will be independent of its internal
structure and composition. This principle requires too little, so every grav-
itational theory satisfies it. The first precise experiments of verification of
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WEP were done by Eötvös in 1922. Much more precise experiments were
done later, and the best precision is achieved at Princeton (Roll, Krotkov
and Dicke, 1964) and Moscow (Braginsky and Panov, 1972). These are
laboratory tests, such that the relevant differences are in the test-body
compositions. According to this principle the relevant test-body differences
are their fractional nuclear-binding differences, their neutron-to-proton ra-
tios, their atomic charges and so on. According to some recent experiments
there is a slight deviation from the WEP. A University of Washington lab-
oratory EP experiment [2] is designed to simulate the compositional differ-
ences of the Earth and Moon. That test of relative acceleration yields to
(1.0 ± 1.4) × 10−13, where systematic and random uncertainties are com-
bined. Further, according to some recent results in Standard Model in the
Particle Physics that contain new macroscopic-range quantum fields predict
quantum exchange forces that will generically violate the WEP. Indeed, the
particles couple to generalized ”charges” rather than the mass/energy as in
the gravity theory [3, 4].

Einstein in 1916 accepted in GR a stronger principle known as Einstein
Equivalence Principle (EEP) [14]. This principle states that: (i) WEP is
valid, (ii) the outcome of any local nongravitational test experiment is in-
dependent of the velocity of the (freely falling) apparatus, (iii) the outcome
of any local nongravitational test experiment is independent of where and
when in the universe it is performed. Local nongravitational test experi-
ment means experiment (i) performed in any freely falling laboratory that
is shielded and it is sufficiently small that inhomogeneities in the external
fields can be ignored in the considered small volume, and (ii) in which self-
gravitational effects are negligible. The EEP is the basic principle in the
GR, because it implies that gravity must satisfy the postulates of Metric
Theories of Gravity, i.e. (i) space-time is endowed with a metric g, (ii)
the world lines of test bodies are geodesics of that metric, and (iii) in local
freely falling frames, called local Lorentz frames, the nongravitational laws
of physics are those of Special Relativity. Indeed, at each space-time point
P we choose a freely falling coordinate system of arbitrary velocity, such
that the metric at P can be reduced to Minkowskian, i.e. δij (assuming
imaginary time coordinate x4 = ict). If we choose two such systems, then
the Jacobi matrix will be a Lorentz transformation at P. At each point we
can choose systems such as

gij(P ) = δij ,
∂gij

∂xk
(P ) = 0.

Considering the space-time as a manifold endowed with metric, the well
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known techniques from the Riemannian geometry can be applied there.

The following questions appear. The previous consideration is correct from
mathematical viewpoint, but from physical viewpoint only some special
coordinates make sense. If we choose a coordinate system which is ”conve-
nient” for P, then it may not be ”convenient” for the neighboring points.
For example, in an inertial system with coordinates yi we choose a rotating
system with coordinates xi according to the observer who rotates. Ac-
cepting any curvilinear system xi = xi(y1, y2, y3, y4), i = 1, 2, 3, 4 which
corresponds to the observer who rotates, the geodesic lines which corre-
spond according to x1, x2, x3, x4 are just straight lines according to the
inertial system. But any such coordinate system is not physically conve-
nient for the observer who rotates, because it is impossible for the Jacobi
matrix J = ∂(x1,x2,x3,x4)

∂(y1,y2,y3,y4) to be a Lorentz transformation at each point as it
is expected, because there is no gravitational field. Indeed, if J would be a
Lorentz transformation everywhere, then the functional dependence must
be a linear transformation and hence the Jacobi matrix must be a matrix
with constant elements, which is a contradiction. A satisfactory solution of
this problem was recently published [13].

We have a similar situation in case of the gravitational fields. The assump-
tion that we deal with a 4-dimensional manifold, a priori means that there
exists functional dependence between any two coordinate systems when
they have joint interior points. This yields that the coordinate systems are
not physically convenient, although the metric yields to the correct geodesic
lines. Any such chosen coordinate system can only approximately give the
physical reality, like the rotating system in an inertial frame. Hence it
is natural to expect that the chosen mathematical apparatus in the GR
gives satisfactory results according to the first post-Newtonian approxima-
tion (1PN). We shall see in the next sections how we can introduce new
equations of motion which are ”physically convenient”.

The used mathematical apparatus is very convenient for calculation of the
curvatures. So it is natural that the GR gives excellent result about the
gravitational radiation. Also the metric proportions are convenient for the
GR. This means that the GR explains the phenomena about gravitational
red shift and the Shapiro time delay very well.

At the end of this section we shall consider the strong equivalence principle
(SEP) [14]. In order to make stronger distinction among the metric theories
of gravitation, introduced is the following SEP. It states that: (i) WEP is
valid for self gravitating bodies as well as for the test bodies (GWEP), (ii)
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the outcome of any local test experiment is independent of the velocity of
the (freely falling) apparatus, and (iii) the outcome of any local test exper-
iment is independent of where and when in the universe it is performed.
The GR is the unique gravitational theory which satisfies the SEP. In many
gravitational theories appears the Nordtvedt effect about the Earth-Moon
system, but in GR it does not appear. Indeed, this effect appears if the
Earth and the Moon are accelerated toward the Sun with different acceler-
ations. Any difference in those accelerations due to a failure of the distance
Earth-Moon with the 29.53 days synodic period. The unexplained variation
between the observation and the GR prediction of the distance Earth-Moon
has amplitude of about 5.7 mm. This deviation from GR currently is con-
sidered as a violation of the SEP (i), which means that the gravitational
and inertial masses are different. On the other hand, according to some
recent results [13], the variation between the theoretical prediction and the
observation has amplitude of about 0.28 mm. Notice that the standard
deviation for the observed deviation of the distance Earth-Moon is about
4.1 mm. The mentioned paper [13] assumes that SEP (i) is true, but uses
that the masses of the Earth and Moon are different, which is unimportant
for the GR. Thus this explanation associates that SEP (i) is true, i.e. the
gravitational and inertial masses are equal.

In section 3 we shall consider quite different experiment about the SEP.
First we shall present in the next section the theory about the time depen-
dent gravitational potential [9, 10].

In this paper we accept the well known metric from the general relativity,
but shall not use it for equations of motion via a metric connection. It
means that we accept the same explanation of the redshift and Shapiro
time delay effects, just as the General Relativity. Moreover, these two
experiments confirm the metric up to c−2. The equations of motion via
the new method were recently developed [11, 13, 12]. The other relativistic
effects are explained in different ways. In this paper we shall use only the
simple case when the metric (or the gravitational potential) depends on the
time only. For this aim it is sufficient to know the metric components up
to c−2.

2. Time dependent gravitational potential

An idea about a linear (or almost linear) change of the gravitational po-
tential in the universe was recently developed [9]. This change of the grav-
itational potential is apart from the change of the gravitational potential
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near the massive bodies. It is assumed that the sign of the gravitational
potential V is such that the gravitational potential V is larger near the
massive bodies. Under this choice of the sign of the gravitational potential
V , if a light signal starts from a star with a frequency ν0, then according
to the general relativity after time t its frequency will be

ν = ν0

(
1 +

t

c2

∂V

∂t

)
.

Specially, on a distance R = ct its frequency will be

ν = ν0

(
1 +

R

c3

∂V

∂t

)
.

On the other side, according to the Hubble law, this frequency is

ν = ν0

(
1− RH

c

)
,

where H is the Hubble constant, H ≈ 60 − 70 km/s/Mpc. According to
the last two equalities, we obtain that

∂V

∂t
= −c2H ≈ −2× 103 cm2

s3
. (2.1)

Hence by accepting this linear change given by (2.1), the first and the most
simple application is the explanation of the Hubble red shift. According
to this, the distant galaxies do not move with enormous velocities, as it is
currently accepted, but the main reason is the linear change of the gravi-
tational potential, while the Doppler effect has a minor role. The reason of
this change of the gravitational potential is probably caused by the change
of the density of the dark energy. The following question is open: Is the
value of H independent from the position and the time in the universe?

A question of great importance is how this effect influences the planetary
orbits and orbital periods? This question is well studied [9, 10], and we
give a brief view.

Let us denote by X,Y, Z, T the coordinates according to an observer where
there is no time dependent gravitational potential. It is analogous as the
gravitational theories use an observer far from the massive bodies, where
the gravitation disappears. Since we assume that the time gravitational po-
tential is present everywhere in the universe, such an observer practically
does not exist, but however, we may adopt its existence. More precisely,
dX, dY , dZ, and dT are the infinitesimal increments in the space-time coor-
dinates at a considered point where there is a time dependent gravitational
potential, according to the observer where the time dependent gravitational
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potential is absent. After norming these 1-forms according to the known
metric from the GR we obtain the next 1-forms

wx =
(
1 +

V

c2

)−1

dX =
(
1 + tH

)
dX, (2.2)

wy =
(
1 +

V

c2

)−1

dY =
(
1 + tH

)
dY, (2.3)

wz =
(
1 +

V

c2

)−1

dZ =
(
1 + tH

)
dZ, (2.4)

wt =
(
1− V

c2

)−1

dT =
(
1− tH

)
dT, (2.5)

Since the right sides of (2.2), (2.3), and (2.4) are not total differentials, the
equations dx = wx, dy = wy, dz = wz, and dt = wt are not solvable with
respect to x, y, z, i.e. x, y, and z, are not functions of X, Y , Z, and T in
general case. Only t is a function of T and we assume that t = T = 0 at a
chosen moment. If we consider a chosen curve in the X, Y, Z, T space-time,
then it corresponds to unique curve in the x, y, z, t space-time. Thus we
agree to call x, y, z, and t ”normed coordinates”, although dx, dy, dz, and
dt is only an orthonormal tetrade. Thus along a chosen curve, instead of
(2.2-5) we can write

dx =
(
1 + tH

)
dX, (2.2′)

dy =
(
1 + tH

)
dY, (2.3′)

dz =
(
1 + tH

)
dZ, (2.4′)

dt =
(
1− tH

)
dT, (2.5′)

and operate using the differential calculus. The equations (2.2′), (2.3′),
and (2.4′) are not equalities between 1-form, but equalities along a chosen
curve. The previously described model is still not well studied from the
viewpoint of the differential geometry and it is an interesting subject for a
future research.

Now the Hubble red shift is explained directly from (2.5′). It is sufficient to
assume that (2.2′), (2.3′), (2.4′), and (2.5′) are satisfied, and then it is not
necessary to speak about the time dependent gravitational potential. The
coefficients 1 + tH and 1 − tH probably should be exponential functions
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of tH, but neglecting H2 and smaller quantities we accept these linear
functions. The coefficient 1 + tH can be replaced by 1 + TH, neglecting
the terms of order H2.

From (2.2′), (2.3′), (2.4′), and (2.5′) we obtain
(dX

dT
,
dY

dT
,
dZ

dT

)
=

(dx

dt
,
dy

dt
,
dz

dt

)
(1− 2tH) (2.6)

and by differentiating this equality by T we have
(d2X

dT 2
,
d2Y

dT 2
,
d2Z

dT 2

)
=

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− 3tH

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− 2H

(dX

dT
,
dY

dT
,
dZ

dT

)
=

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− 3tH

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− 2H

(dx

dt
,
dy

dt
,
dz

dt

)
. (2.7)

Since we neglect the attraction forces and assume that there is no angular
velocity, we assume axiomatically that in normed coordinates x, y, z, t there
is no acceleration caused by the time dependent gravitational potential, i.e.
we can put there H = 0. Thus, according to X,Y, Z, T coordinates there is
an additional slight acceleration

−3tH
(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− 2

(
H

dX

dT
,H

dY

dT
,H

dZ

dT

)
.

Since x, y, z, t are not functions of X, Y, Z, T , in order to see the influence
of the constant H to the planetary orbits, we are looking for a functional
dependence of the form

x = (1 + λtH)X̄, y = (1 + λtH)Ȳ ,

z = (1 + λtH)Z̄, dt = (1− µtH)dT̄ , (2.8)

λ = const. and µ = const., which yields to the same equality (2.7). Namely,
we want to simulate the equation (2.7) via change of coordinates classically.
As a consequence from (2.8) it is

(d2X̄

dT̄ 2
,
d2Ȳ

dT̄ 2
,
d2Z̄

dT̄ 2

)
=

(1− (λ + 2µ)TH)
(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− (2λ + µ)H

(dX̄

dT̄
,
dȲ

dT̄
,
dZ̄

dT̄

)
=

(1− (λ + 2µ)TH)
(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
− (2λ + µ)H

(dx

dt
,
dy

dt
,
dz

dt

)
. (2.9)
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Thus, comparing the right sides of (2.7) and (2.9) we obtain λ = 1
3 , µ = 4

3 .
According to (2.8) it is proved [9] that there is no perihelion precession
caused by the time dependent gravitational potential. Moreover, neglecting
the relativistic corrections of the planetary orbits, it is shown [9] that the
planetary orbits are not axially symmetric and the angle from the perihelion
to the aphelion is π− λHΘ

√
1−e2

eπ = π− HΘ
√

1−e2

3eπ , while the angle from the
aphelion to the perihelion is π + λHΘ

√
1−e2

eπ = π + HΘ
√

1−e2

3eπ , where Θ is the
orbital period and e is the eccentricity of the orbit. Notice that these angles
are observed according to the observer where there is no time dependent
gravitational potential. From (2.8) it follows that the quotient Θ2 : Θ1 of
two consecutive orbital periods is equal to 1 + µΘH = 1 + 4

3ΘH. This
shows that each next orbit has a prolonged period for a factor 1 + 4

3ΘH.
But our time Θ is also prolonged for a factor 1 + ΘH according to (2.5′).
Thus we measure that each next orbit is prolonged for the factor

Θ2 : Θ1 =
1 + 4

3ΘH

1 + ΘH
= 1 +

1
3
ΘH. (2.10)

Formula (2.10) can be applied also for the orbital period for arbitrary double
stars [10]. From (2.10) we obtain

Ṗb =
1
3
PbH, (2.11)

where Pb is the orbital period of the double stars. Formula (2.11) is tested
for the binary pulsars B1885+09 [5] and B1534+12 [7, 8], which have very
stable timings, and the results are satisfactory. Indeed, formula (2.11)
together with the influence of decay of the orbital period caused by the
gravitational radiation and a non-gravitational influence of kinematic na-
ture in the galaxy, yield together to the measured value of Ṗb [9, 10]. Note
that if we neglect the influence from the universe (2.11), then the change of
the orbital period caused by the gravitational radiation would not fit with
the experiments.

According to the previous discussion it also follows that the distance
measured via laser equipment to any object moving freely on an or-
bit, for example the distance Earth-Moon, increases by the coefficient
1 + (1 − λ)HT = 1 + 2

3HT . The previous papers [9, 10] give explana-
tion of the so called Pioneer anomaly, for the frequency shift in navigation
of the spacecrafts Pioneer 10 and Pioneer 11 [1]. Notice that this deviation
is explained [9, 10] to be basically induced by the change of the veloc-
ity (2.6) and the Doppler effect, but not from the acceleration (2.7). The
increasing of the orbital period of the Moon, the distance to the Moon
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and the change of the average Earth’s angular velocity are also considered
[10]. These quantities depend on tidal dissipation and also on the time
dependent gravitational potential. Including the influence from the time
dependent gravitational potential, the discrepancies among the previous
three changes become much smaller [10].

3. Is the SEP valid or not?

Now we are ready to consider the following experiment. Assume that there
is a freely falling shielded laboratory toward the Earth and we consider a
very short time interval when the shielded laboratory has velocity close to
v toward the Earth. Then

− dV

c2dt
=

GM

R2c2

dR

dt
= −GMv

R2c2
= const.,

where R is the radius of the Earth, and M is its mass. Now the previous
constant has the same role as the Hubble constant H in the previous section.
Indeed, it is sufficient to take velocity v = −2 cm/s, i.e. 2 cm/s away from
the Earth, and then the Earth’s gravitational potential in the shielded
laboratory changes just as in the universe.
Assume that in the shielded laboratory we have a gravitational body with
small radius and a particle orbiting around it, such that the orbital plane is
parallel to the ground. We assume that the orbital period Pb = Θ is much
smaller than the considered time interval, while the velocity of the shielded
laboratory is close to v. Now according to the results in the previous
section, the quotient between two successive orbital periods observed far
from gravitation (or from the Earth) is equal to Θ2 : Θ1 = 1 − 4

3
GMvPb

R2c2 .
On the other hand, according to the same observer after time Pb = Θ the
time seems to be slower for the quotient 1− GMvPb

R2c2 . Hence according to the
observer from the shielded laboratory, the quotient between two successive
orbital periods is observed to be

Θ2 : Θ1 =
1− 4

3
GMvPb

R2c2

1− GMvPb

R2c2

= 1− 1
3

GMvPb

R2c2
,

and hence

Ṗb = −GMvPb

3R2c2
. (3.1)

Notice that according to the observer far from gravitation (or from the
Earth) appears an effect from the special relativity, such that both expres-
sions 1− 4

3
GMvPb

R2c2 and 1− GMvPb

R2c2 should be multiplied by the same factor,
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but their quotient and (3.1) remain unchanged. The argument that Ṗb 6= 0
is a result of the fact that x, y, and z are nonholonomy coordinates.

More generally, we shall show now that the change of the orbital period
and the change of the orbital distance depend only on the PPN parameter
γ, which has value 1. Indeed, instead of the equations (2.2′ − 5′) we have
the equations

dx =
(
1− γt

GMv

R2c2

)
dX, (3.2)

dy =
(
1− γt

GMv

R2c2

)
dY, (3.3)

dz =
(
1− γt

GMv

R2c2

)
dZ, (3.4)

dt =
(
1 + kt

GMv

R2c2

)
dT, (3.5)

where k = const. and γ is the PPN parameter. We assume that GMv
R2c2 is

extremely small, such that during a very short orbital period, the value of
GMv
R2c2 is almost a constant. Now analogously to (2.6) and (2.7) we obtain

(dX

dT
,
dY

dT
,
dZ

dT

)
=

(dx

dt
,
dy

dt
,
dz

dt

)(
1 + (k + γ)t

GMv

R2c2

)
(3.6)

and
(d2X

dT 2
,
d2Y

dT 2
,
d2Z

dT 2

)
=

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
+

(2k + γ)t
GMv

R2c2

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
+ (k + γ)

GMv

R2c2

(dx

dt
,
dy

dt
,
dz

dt

)
. (3.7)

Analogously to (2.8) we consider an adopted transformation

x =
(
1− λt

GMv

R2c2

)
X̄, y =

(
1− λt

GMv

R2c2

)
Ȳ ,

z =
(
1− λt

GMv

R2c2

)
Z̄, dt =

(
1 + µt

GMv

R2c2

)
dT̄ , (3.8)

where λ = const. and µ = const. From (3.8) we obtain
(d2X̄

dT̄ 2
,
d2Ȳ

dT̄ 2
,
d2Z̄

dT̄ 2

)
=

(
1 + (λ + 2µ)T

GMv

R2c2

)(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
+

(2λ + µ)
GMv

R2c2

(dx

dt
,
dy

dt
,
dz

dt

)
. (3.9)
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Hence, comparing (3.7) and (3.9) we obtain the system

2k + γ = λ + 2µ, k + γ = 2λ + µ,

whose solution is λ = γ
3 and µ = k + γ

3 . Finally, analogous to (2.10) and
(2.11) we obtain

Θ2 : Θ1 =
1− (k + γ

3 )ΘGMv
R2c2

1− kΘGMv
R2c2

= 1− γ

3
Θ

GMv

R2c2
, (3.10)

Ṗb = −γ

3
Pb

GMv

R2c2
, (3.11)

and the distance r between two bodies measured from the shielded labora-
tory changes according to the formula

δr = −r(γ − λ)T
GMv

R2c2
= −2γ

3
rT

GMv

R2c2
. (3.12)

Notice that both gravitational effects Ṗb and δr depend only on γ, but do
not depend on the coefficient k.

On the other hand, according to the SEP (ii) the considered gravitational
experiment (measuring the quotient between two successive orbital periods
according to the observer from the shielded laboratory) should not depend
on the velocity v of the shielded laboratory, and hence

Ṗb = 0. (3.13)

Hence the SEP is not valid. But notice that the SEP is deduced in GR
which considers only a set of coordinate systems that cover 4-dimensional
space-time manifold, with assumption of functional dependence between
any two coordinate systems with non-empty intersection. This viewpoint
for dealing with coordinate systems do not correspond to their appearances
in the physical reality. Since the formula (3.1) in case of binary pulsars is
confirmed (section 2), we conclude that it is necessary to consider differen-
tial 1-forms (2.2-5) instead of functional dependencies. Indeed, according
to the GR the transformation of the coordinates of the observer far from
gravitation and to the coordinates to the observer in the shielded laboratory
is given by the functional dependencies

x = X
(
1− GM

c2(R− 1
2

GM
R2 t2)

)
,

y = Y
(
1− GM

c2(R− 1
2

GM
R2 t2)

)
,
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z = Z
(
1− GM

c2(R− 1
2

GM
R2 t2)

)
,

dt = dT
(
1 +

GM

c2(R− 1
2

GM
R2 t2)

)
.

The last equality can be integrated and written in the form t = f(T ). Now
according to the coordinates X, Y, Z, T due to the observer in the shielded
laboratory Ṗb = 0, and this is the reason that according to GR the SEP is
valid, although we saw previously that SEP (ii) is not valid.

At the end we explain how the previous problem with the coordinate sys-
tems in GR can be overcome at the first post-Newtonian approximation
(1PN), in case of gravitation of a spherical body with mass M . First let us
consider a normalization of the 1-forms dX, dY , dZ, and dT . Analogously
to (2.2′ − 5′) we have

dx = µ−1dX, (3.14a)

dy = µ−1dY, (3.14b)

dz = µ−1dZ, (3.14c)

dt = µdT, (3.14d)

where µ = 1 + GM
rc2 . A direct consequence of the previous equations yields

to
(d2X

dT 2
,
d2Y

dT 2
,
d2Z

dT 2

)
=

2
µ

dµ

dT

(dX

dT
,
dY

dT
,
dZ

dT

)
+ 3µ2

(d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
. (3.15)

The problem about motion of a particle with a zero mass will be solved af-
ter determination of the acceleration

(
d2x
dt2 , d2y

dt2 , d2z
dt2

)
in normed coordinates.

This acceleration can be obtained via a connection [11, 12, 13], which is non-
linear, and preserves the Minkowskian flat metric. It depends on the fields
of 3-vector of acceleration (ax, ay, az) and angular velocity (wx, wy, wz),
and do not depend on the nature of the source of these 3-vector fields. In-
deed, it is irrelevant whether (ax, ay, az) is caused by gravitation or it is a
centrifugal acceleration or any other inertial force. Using this connection
[12] are obtained the same results as in GR for the deflection of the light
near the Sun, the perihelion (periastron) shift of a planetary orbit (binary
pulsar’s orbit), the frame-dragging effect of inertia and the geodetic pre-
cession. Thus these four effects should be considered as quasi-gravitational
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effects, and they are closer to the Special Relativity. On the other side, the
effects like the gravitational red shift, Shapiro time delay, the gravitational
radiation and the results from section 2 are purely gravitational because
for their derivation are used the equations (3.14) or (3.15) or the curvature
tensors in case of gravitational radiation.

4. An anomaly in the radial motion of a particle in a
spherical gravitational field

While in the previous section we considered an anomaly in the GR caused by
consideration of the functional dependence between different coordinates,
in this section the analogous anomaly will appear by using the metric con-
nection for the geodesic lines in the curved space-time.

If a particle moves with a large velocity radially in the gravitational field,
then the functional dependence between its velocity and the distance to the
center of the Earth is given by the following formula [6]

√
1− 2GM

rc2√
1− v2

c2

= C (= const.), (4.1)

where v = dr
dt

(
1− 2GM

rc2

)−1

. Multiplying this equality with m0c
2, we obtain

the energy in the following form

Ekin

√
1− v2

c2
= const.

but not in the classical form Ekin + Epot = const. If we consider a weak
gravitational field, i.e. GM

rc2 << 1, then (4.1) can be written as

1√
1− v2

c2

= C
GM

rc2
+ C,

and by differentiating

d

dt

1√
1− v2

c2

= C
GM

c2

d

dt

1
r
,

d

dt

1√
1− v2

c2

= C
a

c2

dr

dt
, (4.2)

where a = −GM
r2 is the acceleration toward the Earth.
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In short time interval the acceleration a can be considered to be almost a
constant, and it is natural to expect according to the EP that the motion
given by (4.1), i.e. (4.2) is just the same as a motion in Special Relativity
under a constant acceleration a. Such motion depends only on the constant
acceleration a and the initial value of v. But, on the other hand, the
equation (4.2) depends on the constant C which is related to the motion in
the gravitational field, and it has no role for the Special Relativity motion
under a constant force. This anomaly of the GR equations of motion show
that they are not close to the special relativity as it is natural to expect.
Finally notice that the analogous equations presented in the mentioned
paper [12] do not have such anomaly considered in normed coordinates.
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13. K. Trenčevski and V. Balan, Shrinking of rotational configurations and asso-
ciated inertial forces, Journal of the Calcuta Mathematical Society 1 No. 3
& 4 (2005), 165–180.

14. M. C. Will, Theory and Experiment in Gravitational Physics, Cambridge
University Press, 1993.

15. M. C. Will, The confrontation between general relativity and experiment, Liv-
ing Rev. Rel. 4 (2001), eprint: gr-qc/0103036.

16. J. G. Williams, S. G. Turyshev, and D. H. Boggs, Progress in Lunar laser
ranging tests of relativistic gravity, Phys. Rev. Lett. (to appear), eprint: gr-
qc/0411113.

17. J. G. Williams, S. G. Turyshev, and T. W. Murphy, Jr., Improving LLR tests
of gravitational relativity, Int. J. Mod. Phys. D 13 (2004), 567–582, eprint:
gr-qc/0311021.


