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In this paper, recent developments in the energy and the corrected energy of the
corresponding distributions on a compact oriented Riemannian manifold are given.

1. Introduction

In [8], Chacón, Naveira and Weston introduced the energy E(V ) of a dis-
tribution. They studied the first and second variation of the energy and as
an application showed that the Hopf fibration S3 ↪→ S4n+3 −→ HPn is an
unstable critical point. The corresponding result in the case of the energy
of a vector field for the Hopf fibration S1 ↪→ S2n+1 −→ CPn is due to C.
M. Wood [19]. Wood showed that for n > 1, the critical point is unstable;
for n = 1 Brito [6] showed that this Hopf fibration is a minima.

Subsequently in [7], Chacón and Naveira introduced a corrected energy
D(V ) for a q-dimensional distribution on a Riemannian manifold (M, g)
and proved that D(V ) is ≥ the integral of the sum of the mixed sectional
curvatures associated to a compatible basis. As a single application they
showed that the Hopf fibration S3 ↪→ S4n+3 −→ HPn is a minimum of
D(V ).

In [3], we showed that this application can be greatly generalized to the
natural fibrations on 3-Sasakian manifolds and on normal complex contact
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metric manifolds.In [18], we considered as a further application of the results
of [8], the Boothby-Wang fibration of the Iwasawa manifold S1 × S1 ↪→
HC/Γ −→ C3/Γ. Making use of the complex contact structure on HC/Γ
we showed that this fibration is also unstable for the energy.

In [11], Gil-Medrano, González-Dávila and Vanhecke studied conditions un-
der which the energy of a distribution, viewed as a map into the Grassmann
bundle, is a harmonic map or minimal immersion.

2. Geometry of Distributions

Let (Mn, g) be a compact oriented Riemannian manifold with a q-
dimensional distribution or subbundle V and let H denote the orthogo-
nal complementary distribution of dimension p = n − q. Let {e1, . . . , en}
be a local orthonormal basis on Mn such that {e1, . . . , ep} span H and
{ep+1, . . . , en} span V and adopt the index conventions: 1 ≤ a, b ≤ n,
1 ≤ i, j ≤ p, p + 1 ≤ α, β ≤ n. The second fundamental form of the
horizontal distribution H in the direction eα and that of the vertical distri-
bution V in the direction ei are given respectively by hα

ij = −g(∇eieα, ej),
hi

αβ = −g(∇eαei, eβ). The mean curvature vectors of the horizontal and
vertical distributions are given respectively by

~HH =
n∑

α=p+1

(1
p

p∑

i=1

hα
ii

)
eα, ~HV =

p∑

i=1

(1
q

n∑
α=p+1

hi
αα

)
ei.

One can regard a distribution, such as V, as a section of the Grassmann
bundle, G(q, Mn), of oriented q-planes in the tangent spaces of Mn. The
geometry of this bundle was developed in [8]. We also view V as a map
ξ : Mn −→ G(q, Mn) where ξ(x) is a unit q-vector with respect to the
induced metric on

∧q(Mn), in particular ξ(x) = ep+1(x)∧· · ·∧en(x). Note
that we have chosen a local orthonormal basis; in [19], the variation of unit
vector fields is through unit vector fields and the variations of distributions
in [8] are through unit q-vectors. The norm of the covariant derivative of ξ

is given in terms of the second fundamental forms of H and V by
∑

a

||∇eaξ||2 =
∑

i,j,α

(hα
ij)

2 +
∑

i,α,β

(hi
αβ)2. (1)

The corrected energy of [7] is defined by

D(V ) =
∫

M

( ∑
a

||∇eaξ||2 + p(p− 2)|| ~HH||2 + q2|| ~HV ||2
)
dvol.
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We now define the energy of a distribution V as in [8] by

E(V ) =
1
2

∫

M

n∑
a=1

||∇ea
ξ||2dvol +

n

2
vol(M).

Denote by ∇∗∇ξ the rough Laplacian

∇∗∇ξ =
n∑

a=1

(−∇ea
∇ea

ξ +∇∇eaea
ξ).

The main results of [7] and [8] are summarized as follows

Theorem 2.1 If V is integrable, then

D(V ) ≥
∫

M

∑

i,α

ciαdvol

where ciα is the sectional curvature of the plane section spanned by ei ∈ H
and eα ∈ V.

Theorem 2.2 A distribution V is a critical point of the energy if and only
if ∇∗∇ξ is orthogonal to all tangent vectors of ξ in

∧q(Mn), i.e.,

∇∗∇ξ = ||∇ξ||2ξ +
∑

terms of typeH ∧H ∧ V ∧ · · · ∧ V.

If ξst is a variation of a critical point V through oriented distributions with
tangent fields

V =
∂ξst

∂s

∣∣∣
(s,t)=(0,0)

and W =
∂ξst

∂t

∣∣∣
(s,t)=(0,0)

,

then
∂2E(ξst)

∂s ∂t

∣∣∣
(0,0)

=
∫

M

(
g(∇∂s∇∂tξst|(0,0),∇∗∇ξ) + g(W,∇∗∇V )

)
dvol.

3. 3-Sasakian manifolds

By a contact manifold we mean a differentiable manifold M2n+1 together
with a 1-form η such that η∧ (dη)n 6= 0. It is well known that given η there
exists a unique vector field ξ, such that dη(ξ,X) = 0 and η(ξ) = 1; ξ is
called the characteristic vector field or Reeb vector field of the contact form
η.

A Riemannian metric g is an associated metric for a contact form η if, first
of all, η(X) = g(X, ξ) and secondly, there exists a field of endomorphisms φ
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such that φ2 = −I +η⊗ξ and dη(X, Y ) = g(X,φY ). We refer to (φ, ξ, η, g)
as a contact metric structure and to M2n+1 with such a structure as a
contact metric manifold.

An almost contact structure, (φ, ξ, η), consists of a field of endomorphisms
φ, a vector field ξ and a 1-form η such that φ2 = −I+η⊗ξ and η(ξ) = 1 and
an almost contact metric structure includes a Riemannian metric satisfying
the compatibility condition g(φX, φY ) = g(X,Y )− η(X)η(Y ).

The product M2n+1×R carries a natural almost complex structure defined
by

J
(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)

and the underlying almost contact structure is said to be normal if J is
integrable. The normality condition can be expressed as N = 0 where N is
defined by

N(X, Y ) = [φ, φ](X, Y ) + 2dη(X,Y )ξ,

[φ, φ] being the Nijenhuis tensor of φ.

A Sasakian manifold is a normal contact metric manifold. In terms of the
covariant derivative of φ with respect to the Levi-Civita connection, the
Sasakian condition is

(∇Xφ)Y = g(X, Y )ξ − η(Y )X.

As is well known, from this it is easily seen that

∇Xξ = −φX

and in turn that ξ is a Killing vector field, i.e. the contact metric structure is
K-contact. It is also well known that on a K-contact manifold the sectional
curvature of all plane sections containing ξ are equal to +1 (see e.g. [2], p.
92).

A manifold admitting three almost contact structures, (φα, ξα, ηα),
α = 1, 2, 3, satisfying

φγ = φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ .

ξγ = φαξβ = −φβξα, ηγ = ηα ◦ φβ = −ηβ ◦ φα

is said to have an almost contact 3-structure. Kuo [17] showed that given
such a structure there exists a Riemannian metric g compatible with each
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of the three almost contact structures giving us an almost contact metric 3-
structure (φα, ξα, ηα, g). If each of the three structures is Sasakian we have a
3-Sasakian structure. A remarkable result of Kashiwada [15] is that if each
of the three almost contact metric structures (φα, ξα, ηα, g) is a contact
metric structure, then the structure is a 3-Sasakian structure. There are
many 3-Sasakian manifolds aside from the sphere S4n+3 including several
homogeneous spaces; see e.g. [2] pp. 218-220 or the survey of Boyer and
Galicki [5].

Using ∇Xξα = −φαX one readily obtains on a 3-Sasakian manifold that
[ξα, ξβ ] = 2ξγ . Thus the distribution V determined by the tri-vector
ξ = ξα ∧ ξβ ∧ ξγ is integrable with totally geodesic leaves. The horizontal
distribution H is defined by ηα = 0, α = 1, 2, 3.

One of the main results of [3] is as follows.

Theorem 3.1 The vertical distribution V on a compact 3-Sasakian mani-
fold is a minima of the corrected energy D(V ).

4. Complex contact manifolds

A complex contact manifold is a complex manifold of odd complex dimen-
sion 2n+1 together with an open covering {U} by coordinate neighborhoods
such that

(1) On each U , there is a holomorphic 1-form θ with θ ∧ (dθ)n 6= 0.
(2) On U ∩U ′ 6= ∅ there is a non-vanishing holomorphic function f such

that θ′ = fθ.

The complex contact structure determines a non-integrable distribution H
by the equation θ = 0. A complex contact structure is given by a global
1-form if and only if its first Chern class vanishes [4]. On the other hand let
M be a Hermitian manifold with almost complex structure J , Hermitian
metric g and an open covering by coordinate neighborhoods {U}; M is
called a complex almost contact metric manifold if it satisfies the following
two conditions:

(1) In each U there exist 1-forms u and v = u ◦ J , with dual vector
fields U and V = −JU and (1, 1) tensor fields G and H = GJ such
that

H2 = G2 = −I + u⊗ U + v ⊗ V, GJ = −JG, GU = 0,

g(X, GY ) = −g(GX,Y ).
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(2) On U ∩ U ′ 6= ∅, we have

u′ = au− bv, v′ = bu + av, G′ = aG− bH, H ′ = bG + aH

where a and b are functions on U ∩ U ′ with a2 + b2 = 1.

Since u and v are dual to the vector fields U and V , we easily see from
the second condition that on U ∩ U ′, U ′ = aU − bV and V ′ = bU + aV .
Also since a2 + b2 = 1, U ′ ∧ V ′ = U ∧ V . Thus U and V determine a
global vertical distribution V by ξ = U ∧ V which is typically assumed to
be integrable.

A complex contact manifold admits a complex almost contact metric struc-
ture for which the local contact form θ is u− iv to within a non-vanishing
complex-valued function multiple and the local tensor fields G and H are
related to du and dv by

du(X,Y ) = g(X, GY )+(σ∧v)(X, Y ), dv(X,Y ) = g(X, HY )−(σ∧u)(X, Y )

where σ(X) = g(∇XU, V ), ∇ being the Levi-Civita connection of g (Ishi-
hara and Konishi [14], Foreman [9]). We refer to a complex contact metric
manifold with a complex almost contact metric structure satisfying these
conditions as a complex contact metric manifold.

Ishihara and Konishi [12], [13] introduced a notion of normality for complex
contact structures. Their notion is the vanishing of the two tensor fields S

and T given by

S(X,Y ) = [G,G](X,Y ) + 2g(X,GY )U − 2g(X, HY )V + 2(v(Y )HX

− v(X)HY ) + σ(GY )HX − σ(GX)HY

+ σ(X)GHY − σ(Y )GHX,

T (X,Y ) = [H,H](X, Y )− 2g(X, GY )U + 2g(X,HY )V + 2(u(Y )GX

− u(X)GY ) + σ(HX)GY − σ(HY )GX

+ σ(X)GHY − σ(Y )GHX.

However this notion is too strong; among its implications is that the under-
lying Hermitian manifold (M, g) is Kähler. Thus while indeed one of the
canonical examples of a complex contact manifold, the odd-dimensional
complex projective space, is normal in this sense, the complex Heisenberg
group, is not. In [16] B. Korkmaz generalized the notion of normality and
we adopt her definition here. A complex contact metric structure is said to
be normal if

S(X, Y ) = T (X, Y ) = 0, for every X, Y ∈ H
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S(U,X) = T (V, X) = 0, for every X.

Even though the definition appears to depend on the special nature of
U and V , it respects the change in overlaps, U ∩ U ′, and is therefore a
global notion. With this notion of normality both odd-dimensional complex
projective space and the complex Heisenberg group with their standard
complex contact metric structures are normal.

One important consequence of normality for us is that the sectional curva-
ture of a plane section spanned by a vector in V and a vector in H is equal
to +1 (cf. Korkmaz [16]). Another consequence of normality is that

∇XU = −GX + σ(X)V, ∇XV = −HX − σ(X)U. (2)

Another important result of [3] is the following.

Theorem 4.1 If M is a compact normal complex contact metric manifold,
then the vertical distribution is a minima of the corrected energy, i.e.

D(V ) =
∫

M

∑

i,α

ciαdvol.

5. Complex Heisenberg group and the Iwasawa manifold

The complex Heisenberg group is the closed subgroup HC of GL(3,C) given
by

HC =








1 z2 z3

0 1 z1

0 0 1




∣∣∣z1, z2, z3 ∈ C



∼= C3.

As we have seen, a complex contact manifold admits a complex contact
structure. Here HC ∼= C3 and θ = 1

2 (dz3− z2dz1) is global, so the structure
tensors may be taken globally.With J denoting the standard almost com-
plex structure on C3, we may give a complex almost contact structure to
HC as follows. Since θ is holomorphic, set θ = u − iv, v = u ◦ J ; also set
4 ∂

∂z3
= U + iV . Then, with respect to the metric g below,

u(X) = g(U,X), v(X) = g(V, X).
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Since we will work in real coordinates, G and H are given by

G =




0 0 1 0 0 0
0 0 0 −1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 x2 y2 0 0
0 0 y2 −x2 0 0




, H =




0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 −y2 x2 0 0
0 0 x2 y2 0 0




.

Moreover relative to the coordinates (x1, y1, x2, y2, x3, y3) the Hermitian
metric

g =
1
4




1 + x2
2 + y2

2 0 0 0 −x2 −y2

0 1 + x2
2 + y2

2 0 0 y2 −x2

0 0 1 0 0 0
0 0 0 1 0 0
−x2 y2 0 0 1 0
−y2 −x2 0 0 0 1




.

In addition {e1, e1∗ , e2, e2∗ , e3, e3∗} is an orthonormal basis where

e1 = 2(
∂

∂x1
+ x2

∂

∂x3
+ y2

∂

∂y3
), e1∗ = 2(

∂

∂y1
− y2

∂

∂x3
+ x2

∂

∂y3
),

e2 = 2
∂

∂x2
, e2∗ = 2

∂

∂y2
, e3 = U = 2

∂

∂x3
, e3∗ = −V = 2

∂

∂y3
. (3)

For the purpose of computation we give the Levi-Civita connection of g.
For the Lie algebra of the Lie group HC we have

[e1, e2] = −2e3, [e1, e2∗ ] = −2e3∗ , [e1∗ , e2] = −2e3∗ , [e1∗ , e2∗ ] = 2e3 (4)

and the other Lie brackets are zero.The non-zero covariant derivatives of
the basis elements are the following

∇e2e3 = ∇e2∗ e3∗ = −e1, ∇e2∗ e3 = −∇e2e3∗ = e1∗ ,

∇e1e3 = ∇e1∗ e3∗ = e2, ∇e1e3∗ = −∇e1∗ e3 = e2∗ ,

−∇e1e2 = ∇e1∗ e2∗ = e3, ∇e1e2∗ = ∇e1∗ e2 = −e3∗ .

In [16] (see also [2] p.203) B. Korkmaz computed the covariant derivatives
of G and H as

(∇X G)Y = g(X,Y )U−u(Y )X−g(X, JY )V −v(Y )JX+2v(X)GHY (5)

(∇X H)Y = g(X, Y )V −v(Y )X+g(X,JY )U+u(Y )JX−2u(X)GHY. (6)
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In [1] and [2] the following are also listed for the complex Heisenberg group

g(∇XU, V ) = 0, ∇XU = −GX, ∇XV = −HX (7)

Now let

Γ =








1 γ2 γ3

0 1 γ1

0 0 1




∣∣∣γk = mk + ink,mk, nk ∈ Z


 ;

Γ is a subgroup of HC ∼= C3 and the 1− form dz3 − z2dz1 is invariant
under the action on Γ. Hence the quotient HC/Γ is a compact complex
contact manifold with a global complex contact form. HC/Γ is known as the
Iwasawa manifold and it fibres over a complex torus C2/Γ with ξ = U ∧ V

giving the vertical distribution V. Moreover the integral submanifolds of V
are tori S1 × S1; this fibration is known as the Boothby-Wang fibration of
HC/Γ [10]. The Iwasawa manifold has no Kählerian structure, but it does
have an indefinite Kählerian structure and it has symplectic forms.

The main results of [18] are summarized as follows.

Theorem 5.1 The vertical distribution V of the complex contact structure
on the Iwasawa manifold is a critical point of the energy.

Theorem 5.2 The Boothby-Wang fibration S1×S1 ↪→ HC/Γ −→ C2/Γ is
an unstable critic point of the energy.
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