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FIBRE BUNDLES OVER ORBITS OF STATES
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Abstract. We review topologic properties of orbits of states of von Neumann

algebras, starting with unitary orbits, and proceeding with more general sets
of states, namely vector states with symbol a spheric vector in a Hilbert C∗-
module of the algebra. This is done by considering natural bundles over these
sets, which enable one to relate their topologic properties to those of the unitary

groups of von Neumann algebras related to the original algebra and the state
involved. These views are applied to the topologic study of states, partial

isometries and projections of the hyperfinite II1 factor.

1. Introduction

In this paper we treat results contained in work done previously in [4], [5], [6]
and [1], and try to give a unified exposition of them. Some of the proofs are only
outlined. The main objects of this study are a von Neumann algebra, i.e. a ring of
bounded operators acting on a Hilbert space H , which is closed under the strong
operator topology, and a state of the algebra, that is, a positive functional of norm
one. Typical states are obtained by means of unit vectors in the Hilbert space: if
f ∈ H , with ‖f‖ = 1, then ωf(a) = (af, f) is a positive functional of norm 1 (for
a an operator in the von Neumann algebra). These are called vector states. We
shall consider more general types of vectors states, with symbols in a right Hilbert
C∗-module, rather than a Hilbert space.
Tools from homotopy theory have been used in operator algebras for quite some

time. Starting with N. H. Kuiper’s theorem [18], establishing the contractibility of
the unitary group of an infinite dimensional Hilbert space, following with further
generalizations, to properly infinite von Neumann algebras ([10], [8], [11]). Araki,
M. Smith and L. Smith considered the case when the von Neumann algebra is finite,
and in [8] showed for example that the π1 group of the unitary group of a II1 factor
is isomorphic to the additive group R. These results were later extended by Schröder
in [26]. Also some results appeared computing the homotopy type of the unitary
groups of certain classes of C∗-algebras ([15], [30]). The topology considered for the
unitary groups of the von Neumann algebras in these papers is the one induced by
the norm of the algebra. Only a few years ago Popa and Takesaki [24] studied the

2000 Mathematics Subject Classification. 46L30, 46L05, 46L10.

Key words and phrases. State space, C∗-module.

635



636 ESTEBAN ANDRUCHOW AND ALEJANDRO VARELA

homotopy theory of the unitary and automorphism groups of a factor in the weak
topologies of the algebra.
We shall establish here certain natural bundles, and use them to obtain topologic

information about our sets of states. Let us describe which are these sets.
First we shall consider unitary orbits. Let B be a von Neumann algebra, we

denote by UB the group of unitary operators of B, or shortly, the unitary group of
B. If ϕ is a state of B, and u ∈ UB, then ϕu given by ϕu(a) = ϕ(u∗au) is another
state of B. This gives an action of the group UB on the set of states. For simplicity
let us restrict to faithful states, i.e. states with the property that ϕ(a∗a) = 0 implies
a = 0, or equivalently states with support equal to the identity (in general, the
support will be a projection of the algebra). Let us denote by Uϕ = {ϕu : u ∈ UB}
the orbit of ϕ under this action, the unitary orbit of ϕ. The natural map over this
set Uϕ is

UB → Uϕ, u �→ ϕu.

The fibre over ϕ is the set of unitaries v satisfying that ϕ(v∗av) = ϕ(a) for all a ∈ B.
Or equivalently ϕ(va) = ϕ(av) for all a ∈ B. The set of operators b ∈ B verifying
that ϕ(ba) = ϕ(ab) is a von Neumann algebra, usually called the the centralizer
algebra of ϕ, and denoted by Bϕ. Then the fibre of this map over ϕ is UBϕ the
unitary group of Bϕ. So there is a natural bijection between Uϕ and the quotient
UB/UBϕ , by means of ϕu �→ [u], where [u] denotes the class of u in this quotient.
We shall endow Uϕ with the topology induced by this bijection, that is, we identify
these sets, where the homogeneous space UB/UBϕ is considered with the quotient
topology of the usual norm topology of B. The first fact is that with this topology,
the map UB → Uϕ is a fibre bundle. This bundle will be studied in section 2 of this
paper. The main result about it is that though the unitary group UB has non trivial
homotopy groups, Uϕ is simply —but in general not doubly— connected.
A right Hilbert C∗-module over B is a right B-module X with a B-valued inner

product 〈 , 〉, which is additive in both variables, and satisfying the following axioms:
〈x, x〉 is a positive operator of B,

〈x, x〉 = 0 implies x = 0,
〈x, y.a〉 = 〈x, y〉a,

and
〈x, y〉 = 〈y, x〉∗.

Moreover, these axioms imply that ‖x‖X = ‖〈x, x〉‖1/2 is a norm for X. We make
the assumption that X is complete with this norm. Since we are dealing with
von Neumann algebras, which are closed under a topology weaker than the norm
topology, we shall eventually further require that X behaves well with respect to
weak topologies. Namely we shall require that X is selfdual, which briefly means
that B-valued, B-module forms of X are of the form x �→ 〈y, x〉 for appropriate
y ∈ X.
There is an algebra of operators associated to such a module X, the set of opera-

tors t : X → X which are adjointable for the inner product, i.e. there exists another
operator s : X → X such that 〈tx, y〉 = 〈x, sy〉. Remarkably, adjointable operators



FIBRE BUNDLES OVER ORBITS OF STATES 637

are automatically B-linear and bounded, and the set of all adjointable operators,
denoted by LB(X), is a C∗-algebra. If moreover X is selfdual then LB(X) is a von
Neumann algebra. These are standard facts on C∗-modules, and can be found in
the original paper [21] by W. Paschke. Further references on this subject are [22],
[25] and [19].
A vector x ∈ X will be called spherical if 〈x, x〉 = 1, and we shall denote by

S1(X) the unit sphere of X, or the set of all spherical vectors. More generally if p is
a projection in B, Sp(X) denotes the set of x ∈ X such that 〈x, x〉 = p. Geometric
and topologic properties of these spheres and p-spheres were studied in [2] and [3].
Their homotopy groups can be computed in some cases, though not always, because
they include as particular cases the classical finite dimensional spheres. However,
if X is selfdual, the π1-group can be computed in terms of the type decomposition
of B [2].
If x ∈ Sp(X) and ϕ is a state with support p, then one obtains a state of LB(X),

called ϕx, by means of

ϕx(t) = ϕ(〈x, tx〉), t ∈ LB(X).

If X = B (with the inner product given by 〈x, y〉 = x∗y), then LB(X) identifies
with B. A unitary operator u ∈ UB is a spherical vector of this X, and clearly the
notation ϕu is consistent with the previous definition of this symbol. In other words,
this notion of vector state generalizes the unitary action considered above.
We shall denote by Oϕ the set of all vector states, with ϕ fixed and x varying in

Sp(X), where p is the support projection of ϕ. The natural map over this set is

Sp(X)→ Oϕ, x �→ ϕx,

which generalizes the previous map. Again, we endow Oϕ with the quotient topology
induced by this map (Sp(X) considered with the norm topology of X). This map is
considered in section 3. It is shown that the topology above is given by the following
metric

dϕ(ϕx0 , ϕy0) = inf{‖x− y‖ : x, y such that ϕx = ϕx0 , ϕy = ϕy0}.
Again, with these topologies this map is a fibre bundle, with fibre equal to the
unitary group of the centralizer of the state ϕ restricted to the reduced algebra pBp.
In section 4 we let ϕ vary over the set of all states with support p (with p fixed).

The set thus obtained is shown to be the set of all states of LB(X) with equivalent
supports. The natural map here is

(x, ϕ) �→ ϕx,

for x ∈ Sp(X) and ϕ a state of B with support p. If these two sets are considered
with the norm topology, the quotient topology induced on the set of modular vector
states ϕx is given by a metric d, given by d(Φ,Ψ) = ‖Φ−Ψ‖+‖ supp(Φ)−supp(Ψ)‖.
It is shown that the map above is a fibre bundle.
Apparently, this metric gives a topology which is much stronger that the norm

topology (of the dual of LB(X)). If one is interested in the set of states ϕx in the
norm topology, one is forced to consider a weaker topology for the sphere Sp(X).
This is done in sections 5 and 6. A well known faithful representation ([25], [21]) of
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LB(X) enables one to rewrite the map (x, ϕ) �→ ϕx as a map f �→ ωf for a set of
vectors f in this representation. The weak topology in Sp(X) is harder to handle,
but imposing conditions on the algebra B one obtains that this map is again a fibre
bundle.
These facts are applied in section 6, to prove that the set of states of (for example)

the hyperfinite II1 factor, with support equivalent to a fixed projection, has trivial
homotopy groups of all orders. It is also shown that the set of partial isometries of
this factor, with initial space fixed, in the ultraweak topology, has trivial homotopy
groups of all orders. Finally, it is shown, that unitary orbits of states of this algebra
are simply connected in the norm topology as well.
We include an application of these results in section 7. First we prove a statement

which in our opinion is of interest in itself, and follows as an easy consequence of
a result in section 5: the map which consists of taking the support projection of a
state is continuous, when restricted to states of a finite von Neumann algebra with a
priori equivalent supports, in the norm topology, with range in the set of projections
of the algebra, regarded with the strong operator topology. Then it is shown that
the support map in this setting defines a strong deformation retract. Therefore
applying the result of section 6, it follows that the set of projections of the class of
algebras considered there, has trivial homotopy groups for all orders n ≥ 1 (this set
is not connected).
If A is a von Neumann algebra and q ∈ A is a projection, Σq(A) denotes the set

of normal states of A with support equal to q, and PΣq(A) the set of normal states
with support equivalent to q.

2. Unitary orbits of faithful states

Throughout this section ϕ will denote a faithful normal (i.e. ultraweakly con-
tinuous) state of a von Neumann algebra B. As remarked above, if u is a unitary
element of B, then ϕu given by ϕu(a) = ϕ(u∗au), is also a faithful state. We de-
note Uϕ the unitary orbit of ϕ, i.e. Uϕ = {ϕu : u ∈ UB}. The set of unitaries
of this action which leave ϕ fixed is the unitary group of the centralizer Bϕ of ϕ,
Bϕ = {b ∈ B : ϕ(ab) = ϕ(ba) for all A ∈ B}. Thus the orbit Uϕ identifies with the
homogeneous space UB/UBϕ . We will consider on Uϕ the topology induced by this
identification, where both UB and UBϕ are considered with the norm topology of B.
In other words, we endow Uϕ with the quotient topology given by the map

πϕ : UB → Uϕ, πϕ(u) = ϕu.

Now, as Uϕ is a set of bounded functionals of B, there is another natural topology
on it, namely the norm topology of the dual B∗.
There is yet a third norm-induced topology on Uϕ. Recall that a conditional

expectation between C∗-algebras A ⊂ B is a norm 1 projection E : B → A, which
automatically preserves adjoints, positive operators, and is A-linear. E is said to
be faithful if E(b∗b) = 0 implies b = 0, and normal when it is continuous for the
ultraweak topology. By the modular theory of states in von Neumann algebras,
given a faithful normal state such as ϕ, there exists a unique faithful and normal
conditional expectation Eϕ : B → Bϕ which is ϕ-invariant, ϕ ◦ Eϕ = ϕ. Using Eϕ
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one can define a new norm in B, which is the Bϕ − C∗-Hilbert module norm, given
by the inner product

〈b, c〉 = Eϕ(b∗c).

This modular norm is therefore ‖b‖Eϕ = ‖Eϕ(b∗b)‖1/2. The usual norm and this
latter norm are equivalent in B if and only if the index of the expectation Eϕ is
finite. An expectation E : B → A is said to be of finite index ([16], [23]) if there
exists a positive number κ such that E − κI is a positive mapping in B. It is a
strong condition, particularly for expectations onto state centralizers such as Eϕ. It
forces that the algebra B must be finite, and if it is a factor, then the state ϕ must
be of the form ϕ(b) = τ (ha), where τ is the unique trace of the finite factor and h
is a positive operator with finite spectrum (see [4]).
On the other hand, both norms clearly coincide in Bϕ. We are interested in the

topologies they induce in the quotient UB/UBϕ . The following results clarify the
relationship between these three topologies: norm of the dual, usual norm quotient
and modular norm quotient.

Lemma 2.1. Let E : B → A ⊂ B be a faithful conditional expectation of infinite
index. Then the norm of B and the norm ‖ ‖E induced by E define topologies in
UB/UA which are not equivalent.

Proof. Since the index of E is infinite ([9], [14]), there exist elements an ∈ B with
0 ≤ an ≤ 1, ‖an‖ = 1 and E(an) → 0 as n tends to infinity. It is straightforward
to verify that the distance d(an,A) = inf{‖an − b‖ : b ∈ A} does not tend to zero
with n. Let un ∈ UB be unitaries such that 1− an = un+u∗

n

2
. Then

‖un − 1‖2E = ‖2−E(un + u∗n)‖ = 2‖E(an)‖ → 0.

Therefore the sequence of the classes of the elements un tends to the class of 1 in
the modular topology. We claim that [un] does not tend to [1] in the usual topology
(induced by the norm of B). Suppose not. Then there exist unitaries vn ∈ UA such
that unvn → 1. Then

‖un − v∗n‖2 = ‖(un − v∗n)(u∗n − vn)‖ = ‖2− unvn − v∗nu∗n‖ → 0.

This implies that d(un,A)→ 0, and therefore d(an,A)→ 0, a contradiction. �

Proposition 2.2. The usual norm quotient and the modular norm quotient topolo-
gies coincide in Uϕ if and only if the index of Eϕ is finite.

The following inequalities show the order that prevails between the three topolo-
gies:

Proposition 2.3. Let u and w be unitaries in B, then
(1) ‖ϕu − ϕw‖ ≤ 2‖u−w‖E ≤ 2‖u−w‖.
Proof. The second inequality is obvious, because Eϕ is contractive. In order to
prove the first note that for any x ∈ B,

|ϕ(u∗xu)− ϕ(w∗xw)| ≤ |ϕ(u∗x(u−w))|+ |ϕ((u∗ −w∗)xw)|.
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Note that if v is unitary, by the Cauchy-Schwarz inequality we have that |ϕ(zv)| ≤
ϕ(zz∗)1/2 and |ϕ(v∗z)| ≤ ϕ(z∗z)1/2. Applying these inequalities we obtain
|ϕ(u∗x(u−w))| ≤ ϕ((u∗ −w∗)x∗x(u− v))1/2 = ϕ ◦ Eϕ((u∗ − w∗)x∗x(u− v))1/2,
and

|ϕ((u∗ − w∗)xw)| ≤ ϕ ◦ Eϕ((u∗ −w∗)xx∗(u− w))1/2.
Note that (u∗ − w∗)x∗x(u − v) ≤ ‖x‖2(u∗ − w∗)(u − v), and analogously for the
other term. Thus we obtain

|ϕ(u∗xu)− ϕ(w∗xw)| ≤ 2‖x‖ ϕ ◦ Eϕ((u∗ −w∗)(u− v))1/2

≤ 2‖x‖ ‖Eϕ((u∗ −w∗)(u − v))‖1/2.
�

These inequalities also show that the inclusion Uϕ ↪→ B∗ is continuous, when
Uϕ is considered both with the usual norm quotient or the modular norm quotient
topologies. We will return to the dual norm topology in section 6.
For the remaining of the section we shall consider the features of these two topolo-

gies separately. For the usual norm quotient topology, perhaps the most remarkable
fact is that Uϕ is simply connected. Let us establish this fact. To do so our main
tool will be the map

πϕ : UB → Uϕ, πϕ(u) = ϕu.

First we check that it is a fibre bundle. The following fact is perhaps well known,
the reference we know for it is [7].

Proposition 2.4. Let A ⊂ B be complex Banach algebras with the same unit, such
that A is complemented in B. Denote by GA , GB the groups of invertible elements
of A and B. Then the quotient map

GB → GB/GA

has continuous local cross sections.

In our setting, Bϕ is complemented in B, because we have the projection Eϕ.
Starting with continuous local cross sections for quotient of invertible groups it is
not difficult to obtain unitary cross sections for the quotient of unitary groups: it
suffices to restrict to the unitary quotient, and to compose the cross section on the
invertible group of B with the map which consists in taking the unitary part in the
polar decomposition (the unitary on the left hand side), which is continuous on the
group of invertibles.
It follows that the homogeneous space UB/UBϕ has continuous local cross sections,

and therefore πϕ is a fibre bundle. Once this fact is clear, we use the tail of the
homotopy exact sequence of this bundle to prove that π1(Uϕ) is trivial. That π0(Uϕ)
is trivial follows from the fact that the unitary group of a von Neumann algebra is
connected. One has

. . . π1(UBϕ , 1)→ π1(UB, 1)
π∗

ϕ→ π1(Uϕ, ϕ)→ 0.
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A von Neumann algebra has a type decomposition, one can find projections pf ,pi
in the centre of B such that pf + pi = 1, pfB is a finite von Neumann algebra
(with unit pf) and piB is properly infinite (with unit pi). These projections factor
the algebras, B = pfB ⊕ piB, the states, ψ = ψf + ψi where ψf (x) = ψ(pfx) and
ψi(x) = ψ(pix), and the centralizer algebras Bϕ = (pfB)ϕf ⊕ (piB)ϕi . In other
words, this projections enable one to consider the properly infinite and the finite
case separately. One can further decompose the algebra, for our purposes it will
suffice to proceed with the finite part, which splits into the type I part and the type
II1 part. The type I part further decomposes in the the type In parts, 1 ≤ n <∞.
Let us state the result, with an outline of the proof.

Theorem 2.5. Let ϕ be a faithful and normal state on a von Neumann algebra B.
Then the unitary orbit Uϕ with the norm quotient topology is simply connected.

Proof. By the above remark, we may proceed by cases.
(1) If B is properly infinite, it was proved by Breuer in [10] that UB is con-

tractible in the norm topology. It follows that π1(Uϕ, ϕ) = 0.
(2) If B is of type II1, then Bϕ is finite, but may have type I and/or type II

parts. To deal with this situation, we need the following lemma, which can
be found in [3]. It is based on the fact [13] that if p ∈ B is a projection, the
map

UB → {upu∗ : u ∈ UB}, u �→ upu∗

is a fibre bundle, with fibre equal to the unitary group of the commutant
{p}′ ∩ B.
Lemma 2.6. Let B be a von Neumann algebra and p a projection. Then
the unitary orbit {upu∗ : u ∈ UB} of p is simply connected.
Note that the unitary group of the commutant {upu∗ : u ∈ UB} can

be identified with the product UpBp × U(1−p)B(1−p). In our case, we have
projections pI and pII in the centre of Bϕ (which may be bigger than the
centre of B) with pI + pII = 1, pIBϕ of type I and pIIBϕ of type II.
Therefore

UB/ (UpIBpI × UpIIBpII )

is simply connected. The inclusion UBϕ ⊂ UB can be factorized

UBϕ = UpIBϕ × UPIIBϕ ⊂ UpIBpI × UpIIBpII ⊂ UB.

In the inclusion UpIBϕ ⊂ UpIBpI , pIBϕ is of type I and pIBpI is of type II1.
Analogously, the inclusion UpIIBϕ ⊂ UpIIBpII involves type II1 algebras.
Therefore it suffices to prove the result when Bϕ is either of type II1 or of
type I.
(a) If both B and Bϕ are of type II1, their π1 groups are isomorphic,

as additive groups, to the sets of selfadjoint elements of their centres
(see [15], [26]). Moreover, it can be shown using the arguments of
these papers cited, that the morphism i∗ : π1(UBϕ , 1) → π1(UB , 1)
induced by the inclusion map i : UBϕ ↪→ UB at the π1 level, under that
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identification, becomes the restriction of the center valued trace τ of B
to Z(Bϕ),

τ |Z(Bϕ) : Z(Bϕ)→ Z(B).
Here Z(A) denotes the centre of A. This morphism is clearly onto,
because Z(Bϕ) contains Z(B). It follows that π1(Uϕ, ϕ) = 0.

(b) If B is of type II1 and Bϕ is of type I (and finite), let pn be the
projections in the centre of Bϕ decomposing it in its In types, n <
∞. Since Bϕ is of type I ([26], [15]), π1(UBϕ , 1) identifies with the
additive group of selfadjoint elements in the centre of Bϕ which have
their spectrum contained in Z. Here the inclusion map i : UBϕ ↪→ UB
again induces the morphism i∗ at the π1 level which identifies with the
restriction of the center valued trace τ of B, to the set of selfadjoint
elements in the centre of Bϕ with integer spectrum. We must also show
here that this morphism is onto. Pick c ∈ Z(B), and put cn = cpn.
Suppose that for each n we can find a projection qn in the centre of
pnBϕ (equal to pnZ(Bϕ)), such that τ (qn) = cn. Then the element
r =

∑
n qn would be a selfadjoint element in the centre of Bϕ with

integer spectrum, satisfying τ (r) = c. This in turn would mean that i∗

is onto, and therefore π1(Uϕ, ϕ) would be trivial. This remark implies
that it suffices to prove our statement when Bϕ is of type In. Let us
make this assumption, and let e be an abelian projection in Bϕ with
τ (e) = 1/n. Again pick 0 ≤ c ≤ 1 in Z(B). Now eBe is of type II1 , and
the restriction of ϕ to eBe has centralizer equal to the commutative
algebra eBϕe. Suppose now that we have proven our result for the
case when Bϕ is commutative. Then there would exist a projection
q ∈ Z(eBϕe) = eZ(Bϕ) such that

τ (q) = ec,

where here τ denotes the center valued trace of eBe. Taking trace
in the above inequality yields (1/n)τ (q) = (1/n)c, and the statement
follows. Therefore it suffices to prove the result in the case when Bϕ is
commutative. Since it is the centralizer of a state, it must be maximal
commutative inside B, and it is generated by a single positive operator
h, essentially satisfying ϕ = τ (h). Here a straightforward spectral
theoretic argument shows our result (see [5] for the details).

(3) Finally, it remains to check the case when B is of type I and finite. A similar
argument as above enables one to reduce to the case when B is of type In.
But in this case the result is apparent, elements in π1(UB, 1) are of finite
sums

∑
imipi with mi integers and pi mutually orthogonal projections in

Z(B). Since Z(B) ⊂ Z(Bϕ), the mentioned restriction of the centre valued
trace is surjective.

�

Let us now consider the modular norm quotient topology in Uϕ, i.e. the topology
on the quotient UB/UBϕ induced by the modular norm ‖a‖Eϕ = ‖Eϕ(a∗a)‖1/2 on B.
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We shall make use of the Jones basic extension (see for example [9]) of the conditional
expectation Eϕ. In our case this means the following. Let Hϕ be the GNS Hilbert
space of ϕ, i.e. the completion of the pre-Hilbert space B with the scalar product
〈a, b〉ϕ = 〈a, b〉 = ϕ(b∗a). It is easy to see that the linear map Eϕ : B → Bϕ ⊂ B
is bounded in the norm of Hϕ, and therefore extends to a selfadjoint projection in
B(Hϕ), denoted by eϕ (usually called the Jones projection of Eϕ), whose range is
the closure of Bϕ in Hϕ. Denote by B1 the von Neumann subalgebra of B(Hϕ)
generated by B and eϕ. Among the properties of this construction, we shall need
the following:

(1) eϕaeϕ = Eϕ(a)eϕ, a ∈ B. In particular, eϕ commutes with Bϕ.
(2) B ∩ {eϕ}′ = Bϕ.
(3) The map x �→ xeϕ is a *-isomorphism between Bϕ and Bϕeϕ.

The first pleasant fact about this topology is that it enables one to represent the
space Uϕ as a set of operators in B1. Consider the following map:

Uϕ → UB(eϕ) = {ueϕu∗ : u ∈ B}, ϕu �→ ueϕu
∗.

Strictly speaking, UB(eϕ) is not the unitary orbit of a projection, because the pro-
jection eϕ does not belong to B (with the exception of the trivial case when B = Bϕ,
i.e. ϕ is a trace and Uϕ reduces to a point). First note that this map is well defined:
if ueϕu∗ = weϕw∗ for w, u ∈ UB, then w∗u commutes with eϕ, which by the second
property cited above implies that w∗u ∈ Bϕ, which means that ϕu = ϕw.
This map is continuous, if UB(eϕ) ⊂ B1 ⊂ B(Hϕ) is considered with the norm

topology [4]. Moreover, it is a homeomorphism. Indeed, if ueϕu∗ is close (in norm)
to eϕ, then also u∗eϕu is close to eϕ. Using the properties of the basic extension,
this implies that both Eϕ(u)Eϕ(u∗) and Eϕ(u∗)Eϕ(u) are close to 1, and therefore
Eϕ(u∗) is invertible. Let µ(g) be the continuous map consisting of taking the unitary
part of the invertible element g ∈ B, g = µ(g)|g| (explicitly, µ(g) = g(g∗g)−1/2).
Then µ(Eϕ(u∗)) is a unitary in Bϕ, and uµ(Eϕ(u∗)) is close to 1 in the norm ‖ ‖Eϕ,

‖uµ(Eϕ(u∗)) − 1‖2Eϕ
= ‖2− Eϕ(u)µ(Eϕ(u∗)) − µ(Eϕ(u))Eϕ(u)‖.

Note that

Eϕ(u)µ(Eϕ(u∗)) = Eϕ(u)Eϕ(u∗)[Eϕ(u)Eϕ(u∗)]−1/2 = (Eϕ(u)Eϕ(u∗))1/2,

which is close to 1 because Eϕ(u)Eϕ(u∗) is close to 1. The other term inside the
norm is dealt in a similar way. This implies not only that the map ϕu �→ ueϕu

∗

is a homeomorphism, but also that the assignment ueϕu∗ �→ uµ(Eϕ(u∗)), which is
continuous and well defined on a neighbourhood of eϕ in B1, defines a continuous
local cross section for

UB → Uϕ � UB(eϕ), u �→ ϕu ∼ ueϕu∗

when UB is considered with the modular norm ‖ ‖Eϕ and Uϕ with the quotient of
this topology.
However, by [5] UB ⊂ B1 is a submanifold, or equivalently, the map above has

local cross sections which are continuous in the norm topology of UB, if and only if
the index of Eϕ is finite.
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It is easy to see that Uϕ is closed (in B∗) when regarded with the usual norm
quotient topology. This may not be true in the modular norm quotient topology. In
the closure of Uϕ with this topology, there come up states of the form ϕx, ϕx(a) =
〈x, xa〉, where 〈 , 〉 denotes the Bϕ-valued inner product of the completion of the
pre-Hilbert C∗-module B. Namely, the elements x are limits of unitaries in B, in
the modular norm ‖ ‖Eϕ . These elements are spherical elements: if un → x in the
norm ‖ ‖Eϕ , then

1 = Eϕ(unu∗n) = 〈un, un〉 → 〈x, x〉.
This motivates the generalization considered in the next section.

3. Orbits of states under spherical elements

Let B be a von Neumann algebra, X a right C∗-module over B which is selfdual,
and LB(X) the von Neumann algebra of adjointable operators of X. All states
considered will supposed to be normal. If p ∈ B is a projection, denote by Sp(X) =
{x ∈ X : 〈x, x〉 = p} the p-sphere of X. We shall study the states of LB(X) which
are vector states in the modular sense. That is, for a state ϕ of B and a vector
x ∈ Sp(X), we consider the state ϕx with density x, given by

ϕx(t) = ϕ(〈x, t(x)〉), t ∈ LB(X).

If x, y ∈ X, let θx,y ∈ LB(X) be the “rank one” operator given by θx,y(z) =
x〈y, z〉. If 〈x, x〉 = p then the operator θx,x = ex is a selfadjoint projection, and all
projections arising in this manner, from vectors in Sp(X), are mutually (Murray-
von Neumann) equivalent. It turns out that these modular vector states as we shall
subsequently call them, are precisely the states of LB(X) with support of rank one,
i.e. equal to one of these projections ex.
In this section we will consider the following generalization of the unitary orbit

of ϕ:
Oϕ = {ϕx : x ∈ Sp(X)}

for ϕ a fixed state in B, with support projection supp(ϕ) = p. We denote by Σp(B)
the set of states of B with support p.
Let us state some elementary facts about modular vector states ([5]):

Proposition 3.1. Let ψ, ϕ ∈ Σp(B), x, y ∈ Sp(X). Then
(a) ϕx = ψx if and only if ϕ = ψ.
(b) ϕx = ψy if and only if ψ = ϕ ◦Ad(u), with y = xu and u ∈ UpBp.
(c) ϕx = ϕy if and only if y = xv, for v a unitary element in Bϕp .

Proof. Let us start with (a): ϕ(b) = ϕx(θxb,x) = ψx(θxb,x) = ψ(b).
To prove (b), suppose that ϕx = ψy. Then they have the same support, i.e.

ex = ey, which implies that there exists a unitary element u ∈ UpBp such that
y = xu (see [3]). Then

ϕx(t) = ψy(t) = ψ(〈xu, t(xu)〉) = ψ(u∗〈x, t(x)〉u) = [ψ ◦Ad(u∗)]x(t).
Using part (a), this implies that ϕ = ψ ◦Ad(u∗), or ψ = ϕ ◦Ad(u).
To prove (c), use (b), and note that the unitary element u ∈ UpBp satisfies

ϕ = ϕ ◦Ad(u), i.e. u ∈ Bϕp . �
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Our main tool here will be the natural map

σ : Sp(X)→ Oϕ, σ(x) = ϕx.

Let us consider the following natural metric in Oϕ:

dϕ(ϕx, ϕy) = inf{‖x′ − y′‖ : x′, y′ ∈ Sp(X), ϕx′ = ϕx, ϕy′ = ϕy}
It is clear that this metric induces the same topology as the quotient topology given
by the map σ, also, that in view of 3.1 it can be computed as follows:

dϕ(ϕx, ϕy) = inf{‖x− yv‖ : v unitary in Bϕp }.
First note that this is indeed a metric. For instance, if dϕ(ϕx, ϕy) = 0, then

there exist unitaries vn in Bϕp such that ‖x − yvn‖ → 0, i.e. yvn → x in Sp(X).
In particular yvn is a Cauchy sequence, and therefore vn is a Cauchy sequence,
converging to a unitary v in Bϕp . Then x = yv and ϕx = ϕy. The other properties
follow similarly.
With this metric, Oϕ is homeomorphic to the quotient Sp(X)/UBϕ

p
. The following

result implies that the inclusion Oϕ ⊂ B∗ is continuous.

Lemma 3.2. If x, y ∈ Sp(X), then ‖ϕx − ϕy‖ ≤ 2‖x− y‖. In particular
‖ϕx − ϕy‖ ≤ 2dϕ(ϕx, ϕy)

where the norm ‖ ‖ of the functionals denotes the usual norm of the conjugate space
LB(X)∗.

Proof. If t ∈ LB(X), then |ϕx(t)− ϕy(t)| ≤ |ϕ(〈x, t(x− y)〉|+ |ϕ(〈x− y, ty〉)|. Now
by the Cauchy-Schwarz inequality ‖〈x, t(x− y)〉‖ ≤ ‖t‖ ‖x− y‖, and ‖〈x− y, ty〉‖ ≤
‖x− y‖ ‖t‖. Then ‖ϕx(t) − ϕy(t)‖ ≤ 2‖t‖ ‖x− y‖, and the result follows. �

Recall that for a normal state ϕ with support p there exists a conditional expec-
tation Eϕ : pBp→ Bϕp .
Theorem 3.3. The map σ : Sp(X) → Oϕ, σ(x) = ϕx is a locally trivial fibre
bundle. The fibre of this bundle is the unitary group UBϕ

p
of Bϕp .

We give an outline of the proof. It suffices to construct continuous local cross
sections for σ at every point ϕx0 , x0 ∈ Sp(X). Suppose that dϕ(ϕx, ϕx0) < r < 1,
and let us adjust r. There exists a unitary operator v ∈ UBϕ such that ‖xv− x0‖ <
r < 1. In particular,

‖p− 〈xv, x0〉‖ = ‖〈x0, x0〉 − 〈xv, x0〉‖ = ‖〈x0 − xv, x0〉 ≤ ‖x0 − xv‖ < 1
and therefore 〈xv, x0〉 is invertible in the algebra pBp (with unit p). Therefore one
can find r such that also Eϕ(〈xv, x0〉) is invertible. Let us put

ηx0(ϕx) = xµ(Eϕ(〈xv, x0〉)),
defined on the ball {ϕx : dϕ(ϕx, ϕx0) < r}, where as before, µ denotes the unitary
part in the polar decomposition. Then all it remains is to verify that this map ηx0

does the job: it is well defined, continuous, and is a cross section for σ.
We shall need the following fact, which is straightforward to verify.
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Lemma 3.4. Suppose that one has the following commutative diagram

E
π1−−−→ X

↘ π2




� p

Y,

where E,X, Y are topological spaces, π1, π2 are fibrations and p is continuous and
surjective. Then p is also a fibration.

Denote by E = E(LB(X)) the set of projections of LB(X). In general, the space of
projections of a von Neumann algebra is a differentiable submanifold of the algebra,
whose components are the unitary orbits of single projections [13]. Let Ee ⊂ E
denote the set of projections which are Murray-von Neumann equivalent to e ∈ E .
It is clear that Ee, being a union of connected components of E , is also a submanifold
of LB(X). There is another natural map associated to Oϕ,

Oϕ → Ee, ϕx �→ ex,

where e is any projection of the form ex0 for some x0 ∈ Sp(X) (they are all equiva-
lent). Since ex = supp(ϕx), we shall call this map supp. In general, taking support
of positive functionals does not define a continuous map. However it is continuous
in this context, i.e. restricted to the set Oϕ with the metric dϕ. Indeed, as seen
before, convergence of ϕxn → ϕx in this metric implies the existence of unitaries vn
of Bϕp ⊂ pBp such that xnvn → x in Sp(X). This implies that exnvn = exn → ex.
Moreover, one has

Theorem 3.5. The map supp : Oϕ → Ee is a fibration with fibre UpBp/UBϕ
p
. One

has the following commutative diagram of fibre bundles

Sp(X) ρ−−−→ Oϕ

↘ σ




� supp

Ee.
This is a consequence of 3.4, and the fact that Sp(X) → Ee is a fibre bundle [3].
One can use the homotopy exact sequences of these bundles to relate the homo-

topy groups of Oϕ, Sp(X), Ee, UpBp, UBϕ
p
and UpBp/UBϕ

p
. There are many results

concerning the homotopy groups of the unitary group of a von Neumann algebra,
the survey by Schröder [27] is an excellent reference to these. The homotopy groups
of Sp(X) where considered in [2], [3]. Finally, the set Uϕ was considered in the
previous section. The sequences are:

. . . πn(UBϕ
p
, p)→ πn(Sp(X), x0)

σ∗→ πn(Oϕ, ϕx0)→ πn−1(UBϕ
p
, p)→ . . .

where x0 is a fixed element in Sp(X), and

. . . πn(UpBp/UBϕ
p
, [p])→ πn(Oϕ, ϕx0)

supp∗→ πn(E , ex0)→ πn−1(UpBp/UBϕ
p
, [p])→ . . .

with ϕ a fixed state in Σp(B).
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In [3] it was shown that if B is finite von Neumann algebra, then Sp(X) is con-
nected. It follows that if B is finite, then Oϕ is connected as well. Let us cite some
conclusions which follow from direct observation of the above sequences:

(1)
π1(Oϕ, ϕx) � π1(Ee, ex).

If moreover Xp is selfdual (as a pBp-module), then π1(Oϕ, ϕx) = 0. For
the first assertion we use the fact proved in the previous section, that Uϕ =
UB/UBϕ is simply connected. For the second, we use [3] that unitary orbits
of projections of a von Neumann algebra are simply connected.

(2) If Xp is selfdual, then for any x0 ∈ Sp(X) fixed and any closed continuous
path x(t) ∈ Sp(X), with x(0) = x(1) = x0, there exists a path of unitaries
v(t) in Bϕp , with v(0) = v(1) = p, such that x(t) is homotopic to x0v(t).
This is because the inclusion map i : UBϕ

p
↪→ Sp(X) given by v �→ x0v is

onto at the π1 level.
(3) Suppose that Xp is selfdual and pBp is properly infinite, then for n ≥ 1

πn(Oϕ, ϕx) � πn−1(UBϕ
p
, p).

(4) The same conclusion follows if Xp is selfdual, pBp is of type II1 and LB(X)
is properly infinite. This is the case if for example pBp is a II1 factor and
Xp is not finitely generated.

These last two follow from the fact that if one has either of the two conditions, then
Sp(X) is contractible ([3]). A consequence from these is that (in both situations)
π1(Oϕ) is trivial. But π2(Oϕ) may not, because Bϕp is a finite von Neumann algebra
([26], [15]), which can have non trivial π1 group.

4. Modular vector states

The set we consider in this section is the union of the orbitsOϕ, with ϕ ranging in
the set Σp(B) of normal states with support p, and p fixed. It was remarked before
that these states are characterized as states of LB(X) with support equivalent to
ex, for any x ∈ Sp(X). Recall that if A is a von Neumann algebra and q ∈ A is a
projection, PΣq(A) denotes the set of normal states with support equivalent to q.
Our set is then PΣe(LB(X)), with e = ex as above. We continue in the fashion of
relating our sets with other spaces already studied. The natural map to study here
is

Sp(X) ×Σp(B)→ PΣe(LB(X)), (x, ϕ) �→ ϕx.

Let us endow PΣe(LB(X)) with the quotient topology given by this map, where
Sp(X) is considered with the norm topology ofX, and Σp(B) with the norm topology
of B∗. We shall find a metric which induces this topology. First note that the unitary
group UpBp acts both on Sp(X) (via the right action of the moduleX) and on Σp(B)
(by inner conjugation, u.ϕ = ϕu, the action introduced in section 1). Consider the
diagonal action of UpBp on the product of both spaces. It is easy to see, using 3.4,
that the set PΣe(LB(X)) is the quotient of Sp(X)×Σp(B) by this diagonal action.
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Proposition 4.1. The metric d in PΣe(LB(X)) given by

d(Φ,Ψ) = ‖Φ−Ψ‖+ ‖ supp(Φ) − supp(Ψ)‖
induces the same topology as the quotient topology described above.

We omit the proof, which can be found in [6]. If LB(X) is not finite dimensional,
this metric is stronger than the norm metric. It is not hard to find examples. On the
other hand, if LB(X) is finite dimensional, it can be proved that taking the support
is continuous when one restricts to states with equivalent support. We shall return
to this question of continuity of the support under certain conditions.
Note that the inclusion (PΣe(LB(X)), d) ⊂ LB(X)∗ is continuous.
At this point it will be convenient to give a name to the map (x, ϕ) �→ ϕx.

Theorem 4.2. The map ℘1 : Sp(X) × Σp(B) → PΣe(LB(X)), ℘1(x, ϕ) = ϕx is a
principal fibre bundle with fibre UpBp.

We give an outline of the proof. We shall use here the projective bundle studied
in [3],

ρ : Sp(X) → Ee, ρ(x) = ex
which is a principal fibre bundle also with fibre UpBp. To prove our statement it
suffices to exhibit a local cross section around a generic base point ϕx. We claim that
there is a neighborhood of ϕx such that elements ψy in this neighborhood satisfy
that 〈y, x〉 is invertible. Indeed, if d(ϕx, ψy) < r, then ‖ex − ey‖ < r. If we choose
r small enough so that ey lies in the ball around ex in which a local cross section of
ρ(x) = ex is defined, then there exists a unitary u in pBp such that ‖x− yu‖ < 1.
Note that

‖p− 〈yu, x〉‖ = ‖〈x− yu, x〉‖ ≤ ‖x− yu‖ < 1.
Then 〈yu, x〉 = u∗〈y, x〉 is invertible in pBp, and therefore also 〈y, x〉. In this neigh-
borhood put

s(ψy) = (yµ(〈y, x〉), ψ ◦Ad(µ(〈y, x〉)),
where µ denotes the unitary part in the polar decomposition of invertible elements
in pBp as before, and Ad(v)(x) = vxv∗. The proof finishes by showing that s is well
defined, is a local cross section and is continuous.
Now we have seen that

PΣe(LB(X)) � Sp(X) × Σp(B)/(x, ϕ) ∼ (xu, ϕu).
There arise two more natural maps, namely

℘2 : Sp(X) × Σp(B) / (x, ϕ) ∼ (xu, ϕu)→ Sp(X)/x ∼ xu , ℘2([(x, ϕ)]) = [x]

with fibre Σp(B), and
℘3 : Sp(X) × Σp(B) / (x, ϕ) ∼ (xu, ϕu)→ Σp(B)/ϕ ∼ ϕu , ℘3([(x, ϕ)]) = [ϕ]

with fibre Sp(X).
We will see that ℘2 is a fibre bundle, but that ℘3, which is far more interesting, is

not. To see this, consider the case when X = B is a finite algebra, and p = 1. Here
LB(B) = B and PΣe(LB(X)) consists of the states of B with support equivalent to 1
(note that x ∈ S1(X) verifies x∗x = 1, i.e. x ∈ UB, and ex = 1). That is, PΣe(B) is
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the set of faithful states of B (= Σ1(B) in our notation). It follows that ℘3 is just
the quotient map

Σ1(B)→ Σ1(B)/UB .

Take B = Mn(C) (n < ∞). Then the quotient map above is not a weak fibration.
Indeed, both sets Σ1(Mn(C)) and Σ1(Mn(C))/UMn(C) are convex metric spaces. The
latter can be identified, using the density matrices, as the n-tuples of eigenvalues
(λ1, ..., λn) arranged in decreasing order and normalized such that

∑
λk = 1, with

the 61 distance. If this quotient map were a weak fibration, then the fibre would
have trivial homotopy groups of all orders. This is clearly not the case, since the
fibre is the unitary group U(n) of Mn(C).
We focus on the other map ℘2. First note that the quotient Sp(X)/x ∼ xu is

homeomorphic to Ee (recall the bundle ρ). The map can be written in the following
fashion

℘2 : PΣe(LB(X)) → Ee, ℘2(ϕx) = ex.

Recall that supp(ϕx) = ex, so that this map could also have been named supp.
The next result shows that taking support, under the current circumstances, is a
fibration:

Theorem 4.3. The map ℘2 : PΣe(LB(X)) → Ee, given by ℘2(ϕx) = ex is a
fibration with fibre Σp(B).
Consider the diagram

Sp(X) × Σp(B) ℘1−−−→ PΣe(LB(X))

↘ π




� ℘2

Ee,
where π is given by p(x, ϕ) = ex. Clearly π is a fibre bundle, because it is the
composition of the projective bundle x �→ ex with the projection (x, ϕ) �→ x. The
map ℘1 was shown to be a fibration. It follows from 3.4 that ℘2 is a fibration.
As in the previous section, let us write down the homotopy exact sequences of

these fibrations:

. . . πn (UpBp, p)→ πn(Sp(X) × Σp(B), (x0, ϕ))
(℘1)∗→ πn(PΣe(LB(X)), ϕx0 )

→ πn−1(UpBp, p)→ . . .

and

. . . πn(Σp(B), ϕ)→ πn(PΣe(LB(X)), ϕx0 )
(℘2)∗→ πn(Ee, e)→ πn−1(Σp(B), ϕ) . . .

First note that Σp(B) is convex, therefore Sp(X)×Σp(B) has the same homotopy
type as Sp(X), and

π∗(PΣe(LB(X)) = π∗(Ee).
Also note that if pBp is finite (i.e. p is finite in B) then PΣe(LB(X)) is connected.
Let us state now two consequences, which again follow from direct inspection of

the above sequences:
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(1) If pBp is properly infinite, then for n ≥ 0

πn(PΣe(LB(X)), ϕx) = 0.

It would be interesting to know if in such circumstances PΣe(LB(X)) is
contractible.

(2) In general, one has

π1(PΣe(LB(X)), ϕx) = 0.

Finally let us remark that the natural inclusion (Oϕ, dϕ) → (PΣe(LB(X)), d) is
continuous (recall that taking support is continuous in Oϕ). However the identity
mapping (Oϕ, dϕ)→ (Oϕ, d) is not (in general) a homeomorphism ([6]).

5. Purification of PΣe(LB(X))

One may argue not without reason that the metric d induces on PΣe(LB(X)) a
topology which is weird, or at least too strong. However, note that this topology is
forced on us if we consider the sets Sp(X) and Σp(B) with their norm topologies. If
one is interested in the set PΣe(LB(X)) with, for example, its usual norm topology,
as a subset of the dual space of LB(X), then one must weaken the topologies on
Sp(X) or Σp(B). We choose to do the first thing: we will consider (again) B a von
Neumann algebra and X a selfdual module, which is then a conjugate space [21].
We shall endow Sp(X) ⊂ X with the relative w∗-topology.
First we shall recall a faithful representation ρ of LB(X) as operators in a Hilbert

space H, on which all the modular vector states ϕx will become genuine vector
states, that is, on which one can find unit vectors f ∈ H which implement ϕx.
This representation was introduced and studied in the seminal papers by M. Rieffel
[25] and W. Paschke [21] on Hilbert C∗-modules over non commutative operator
algebras.
Let us pick what is called a standard representation for B on a Hilbert space H .

A standard representation has many remarkable properties. Among them, there is
a cone P ⊂ H , called the standard positive cone, such that every normal positive
functional of B is implemented by a unique vector in this cone.
Consider the algebraic tensor product X ⊗H , and on this vector space consider

the positive semidefinite form given by [x⊗ ξ, y ⊗ η] = (ξ, 〈x, y〉η). Denote by Z =
{z ∈ X ⊗H : [z, z] = 0}, and let H be the Hilbert space obtained as the completion
of the pre-Hilbert space X⊗H/Z with the positive definite form induced by [ , ] on
the quotient. The representation ρ : LB(X) → B(H) is given by ρ(t)(x ⊗ ξ + Z) =
t(x)⊗ ξ + Z.
Let us state without proof the basic properties which make this representation

useful to our study. Let us denote

A(X) = {x⊗ ξ + Z : x ∈ Sp(X), ξ implements a state in Σp(B)}.

Proposition 5.1. Let B ⊂ B(H) be a finite algebra in standard form, and P ⊂ H
the positive standard cone.
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(1) Let ξ ∈ P be the unique unit vector implementing ϕ (ϕ(a) = ωξ(a) =
(aξ, ξ)), then the state ϕx is implemented by the vector x⊗ ξ + Z, namely

ϕx(t) = ωx⊗ξ+Z(ρ(t)) = [ρ(t)(x ⊗ ξ), x⊗ ξ], t ∈ LB(X).

(2) Let x, y ∈ Sp(X) and ξ, η ∈ P, where ξ and η implement states in B with
support p. Then the elementary tensors x ⊗ ξ and y ⊗ η induce the same
element in A(X) (i.e. x⊗ ξ − y ⊗ η ∈ Z) only if x = y and ξ = η. In other
words, there is a bijection

Sp(X) ×Σp(B) ↔ A(X), (x, ϕ)→ x⊗ ξ + Z.
The proofs follow straightforward from the definitions and the basic properties

of the standard representation.
In order to simplify the exposition, we shall restrict to the case p = 1. This in

fact will mean no restriction, because Sp(X) is the unit sphere of the pBp-module
Xp. But with this simplification, unit vectors implement states with support p = 1
if and only if they are cyclic and separating for B (the algebra pBp would have
appeared anyway).
This proposition enables one to replace the map

℘1 : S1(X) ×Σ1(B)→ PΣe(LB(X)), ℘1(x, ϕ) = ϕx

with the map
ω : A(X) → ΩA(X), ω(x⊗ ξ + Z) = ωx⊗ξ+Z ,

where ωx⊗ξ+Z is the vector state induced by x ⊗ ξ + Z ∈ H, restricted to the von
Neumann algebra ρ(LB(X)), and ΩA(X) is the set of all ωf for f ∈ A(X). In what
follows we simplify the notation: ρ(LB(X)) will be identified with LB(X), and the
vectors x⊗ ξ+Z will be denoted by x⊗ ξ. There is no ambiguity with this respect,
because as shown above, there is only one such representative x ⊗ ξ in each coset
x⊗ ξ + Z.
This standpoint enables one to study the set PΣe(LB(X)) ∼ ΩA(X) with the

norm topology of the dual of LB(X), while still having the map ℘1 ∼ ω to be a
fibration, however this latter under strong assumptions on the algebra B. It is for
us an interesting problem if the map ω can be a fibration for a broader family of
algebras.
The set A(X) ⊂ H comes equipped with the Hilbert space norm topology. Much

of the rest of this section is devoted to establish that:
(1) When such election is done, the bijection A(X) ↔ S1(X) × Σ1(B) induces

on this set the product topology of the w∗-topology of S1(X) ⊂ X times
the norm topology of Σ1(B) ⊂ B∗.

(2) The quotient topology induced in ΩA(X) by the Hilbert space norm in A(X)
and the map ω is the norm topology of LB(X)∗.

Certain facts have to be established in the way. Recall that the other main feature
of the standard representation of a von Neumann algebra, other than the positive
cone P, is the antiunitary operator J : H → H leaving the cone P fixed. Let us
first examine the fibre of ω (which is a copy of UB) in this context.
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Proposition 5.2. Given a fixed element x⊗ ξ ∈ A(X), the fibre ω−1(ωx⊗ξ) is the
set {xu⊗ u∗Ju∗Jξ : u ∈ UB} which is in one to one correspondence with UB. The
relative topology induced on UB by this bijection is the strong operator topology.

The proof is straightforward.
Since A(X) ∼ S1(X) × Σ1(B), the sphere S1(X) and the set Σ1(B) of faithful

states of B lie inside A(X). Let us make explicit these inclusions, and their induced
topologies. Pick a fixed element x0 ∈ S1(X) and ξ0 ∈ P unit, cyclic and separating,
inducing the state ϕ0. The following maps are one to one:

S1(X) → {x⊗ ξ0 : x ∈ S1(X)} ⊂ A(X), x �→ x⊗ ξ0,
and

Σ1(B)→ {x0 ⊗ ξ : ξ ∈ P unit, cyclic and separating},
ϕ �→ x0 ⊗ ξ,

where ξ is the vector in the cone associated to ϕ.
The first bijection endows S1(X) with the relative topology induced from H,

which is given by the following: a net xα converges to x if and only if ϕ0(〈xα −
x, xα − x〉) → 0, if and only if |xα − x| → 0 in the strong operator topology of
B ⊂ B(H). The sphere S1(X) ⊂ X is closed in this topology.
The second bijection is a homeomorphism when Σ1(B) is regarded with the norm

topology and {x0 ⊗ ξ : ξ ∈ P unit, cyclic and separating} ⊂ H is regarded with the
Hilbert space norm of H.
Remark 5.3. Since X is selfdual, it is a conjugate space [21]. The result above
shows that the topology of S1(X) induced by the Hilbert space norm of H coincides
with the w∗ topology of X ⊃ S1(X). Indeed, it was shown in [21] that a net xα → x
in the w∗ topology if and only if ϕ(〈xα, y〉) → ϕ(〈x, y〉) for all y ∈ X, ϕ ∈ B+

∗ . This
clearly implies that ϕ(〈xα−x, xα−x〉)→ 0, which is the topology considered above
(here the fact 〈x, x〉 = 〈xα, xα〉 = 1 is crucial). Conversely

ϕ(〈xα − x, y〉) ≤ ϕ(〈xα − x, xα − x〉)1/2ϕ(〈y, y〉)1/2

yields the other implication.

We have examined the topologies induced on S1(X) and Σ1(B) by the described
inclusions on A(X). We have seen also that A(X) ∼ S1(X) × Σ1(B). These facts
alone however do not imply that A(X) is homeomorphic to S1(X) × Σ1(B) in the
product topology (of the w∗ topology and the norm topology respectively). The
next result states that this is the case.

Theorem 5.4. The bijection

S1(X) × Σ1(B) → A(X), (x, ϕ) �→ x⊗ ξ
is a homeomorphism when S1(X) × Σ1(B) is endowed with the product topology of
the w∗ topology of S1(X) and the norm topology of Σ1(B).
We omit the proof (see [6]).
Note that since Σ1(B) is convex, this implies that the set A(X) ⊂ H is homo-

topically equivalent to the sphere S1(X) in the w∗ topology.
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Now we focus on the set of states ΩA(X) (∼ PΣe(LB(X))) and the map ω.
ΩA(X) ⊂ LB(X)∗ can be endowed with two topologies, the norm topology of the
dual space LB(X)∗ and the quotient norm given by ω. As said before, this two
coincide, a fact which will be useful when trying to find fibration properties for this
map. In general, a map of the form f �→ ωf |A defined on a certain set of vectors
f of a Hilbert space on which A acts will define a (quotient) topology stronger
than the topology given by the norm of the functionals. Recall Bures metric [12]
for states, which is a metric giving a topology equivalent to the norm topology
and, roughly speaking, is defined as the infimum of the distances between vectors
inducing the states measured, taken over all possible representations on which the
states measured are vector states.

Theorem 5.5. The quotient and the norm topology coincide in ΩA(X).

The proof is elementary but rather long (see [6]).
In order to see if this map is a fibration, we shall look for local cross sections. A

powerful tool to state the existence of cross sections is Michael’s theory of continuous
selections [20]. A remarkable example of the use of this theory in the context of
operator algebras is the paper by S. Popa and M. Takesaki [24], which will be widely
used in this paper. To invoke Michael’s theorem one must check first that the set
function ωz⊗ξ �→ ω−1(ωz⊗ξ) which assigns to each point in the base space the fibre
over it, is lower semicontinuous [20].
In our context lower semicontinuity means that for any r > 0, and x⊗ ξ ∈ A(X)

the set {ωy⊗η : ‖y⊗Ju∗η−x⊗ ξ‖ < r for some u ∈ UB} is open in ΩA(X). In other
words, for a state ωy⊗η close to ωx⊗ξ one should find an element y ⊗ Ju∗η in the
fibre of ωy⊗η at distance less than r to the fibre of ωx⊗ξ. The theorem above states
that this is granted for our map ω. Indeed, two states in ΩA(X) are close in this
quotient topology if and only if there are elements in their fibres which are close
in A(X).
The next result uses the proof of the crucial lemma 3 of the paper by S. Popa

and M. Takesaki [24]. They consider separable von Neumann factors admitting a
one parameter group of automorphism which scales the trace. This means that
there is a one parameter group {θs : s ∈ R} of automorphisms of B ⊗ B(K) (K a
separable Hilbert space) such that τ ◦ θs = e−sτ , s ∈ R, with τ a faithful normal
trace of B⊗B(K). This condition on B is strong, but there are remarkable examples
fulfilling it, most notably the hyperfinite II1-factor R0.

Theorem 5.6. If B is a separable factor of type II1 such that the tensor product
B ⊗ B(K) (K a separable Hilbert space) admits a one parameter automorphism
group, then the map

ω : A(X) → ΩA(X), ω(x⊗ ξ) = ωx⊗ξ

admits a (global) continuous cross section when ΩA(X) is endowed with the norm
topology of LB(X)∗.

Proof. In this case, since B is finite, UB is complete in the strong (= strong∗)
operator topology [29]. Moreover, Popa and Takesaki proved in [24] that it admits
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a geodesic structure in the sense of Michael [20]. It has been already remarked that
the set function ωx⊗ξ �→ {xu ⊗ u∗Ju∗Jξ : u ∈ UB} is lower semicontinuous in the
norm topology. Therefore theorem 5.4 of [20] applies, and ω has a continuous cross
section. �

Corollary 5.7. If B is a II1 factor satisfying the conditions of 5.6, then for all
n ≥ 0, x ∈ S1(X), ϕ = ωξ ∈ Σ1(B),

πn(ΩA(X), ωx⊗ξ) = πn(S1(X), x),

where ΩA(X) is considered with the norm topology, and S1(X) with the w∗ topology.

Proof. In [24] it was proven that the unitary group UB of such a factor is contractible
in the ultra strong operator topology, and therefore also in the strong operator
topology. The statement follows using the above result, recalling that the fibre of
the fibration <℘1 is UB with this topology. �

6. States of the hyperfinite II1 factor

Wewill apply the results of the previous section to obtain our main result, namely,
that the set PΣp(R) ⊂ R∗ of states of R, a factor satisfying the hypothesis of
5.6, having support equivalent to a given projection p, considered with the norm
topology, has trivial homotopy groups of all orders.
To do so, we must first construct the appropriate module X. If R is a von

Neumann factor satisfying 5.6, and p ∈ R is a proper projection, put X = Rp
and B = pRp. B is also factor which verifies the hypothesis of 5.6. Note that
〈X,X〉 = span{px∗yp : x, y ∈ Rp} = pRp = B in this case. Therefore by 2.2 of
[22], {θx,y : x, y ∈ X} spans an ultraweakly dense two sided ideal of LB(X). On the
other hand, it is clear that R ⊂ LB(X) as left multipliers, and also that θx,y ∈ R,
for x, y ∈ X = Rp. Indeed, θx,y(z) = x〈y, z〉 = xpy∗z, i.e. left multiplication by
xpy∗ ∈ R. Therefore LB(X) = R. In particular, if x ∈ S1(X), ex = θx,x = xpx∗

which is equivalent to px∗xp = 〈x, x〉 = p in LB(X). The set PΣe(B) = ΩA(X)

equals then the set of states of R with support (unitarily) equivalent to p. Note
that this set is (arcwise) connected in the norm topology. Indeed, if B is finite,
S1(X) is connected. Using the map ℘1 of section 4, it follows that any two points
in PΣe(B) can be joined with a path (in PΣe(B)) continuous in the d-topology, and
therefore also in the norm topology.
Applying 5.6 in this situation implies the following:

Lemma 6.1. Let R be a factor as in 5.6, and p ∈ R an arbitrary projection. The
set of states of R with support equivalent to p considered with the norm topology has
the same homotopy groups as the set

Sp(R) = {v ∈ R : v∗v = p} ⊂ R
of partial isometries of R with initial space p, regarded with the (relative) ultraweak
topology.

Proof. In this case S1(X) clearly equals Sp(R) above, and the topology is the w∗

(i.e.) ultraweak topology of R. If p = 0 the statement is trivial. If p = 1 it follows
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from the strong operator contractibility of UR for such R proved in [24]. The case
of a proper projection follows from 5.6 and the above remark. �

If p = 0, 1, then Sp(R) is contractible (if p = 1, Sp(R) = UR). A natural question
would be if Sp(R) is contractible for proper p ∈ R.
We need the following elementary fact:

Lemma 6.2. Let M ⊂ B(H) be a finite von Neumann algebra, and let an ∈ M
such that ‖an‖ ≤ 1 and a∗nan tends to 1 in the strong operator topology. Then there
exist unitaries un inM such that un − an converges strongly to zero.

Proof. Consider the polar decomposition an = un|an|, where un can be chosen
unitaries because M is finite. Note that |an| → 1 strongly. Indeed, since ‖an‖ ≤
1, a∗nan ≤ (a∗nan)1/2. Therefore, for any unit vector ξ ∈ H , 1 ≥ (|an|ξ, ξ) ≥
(a∗nanξ, ξ)→ 1. Therefore

‖(an − un)ξ‖2 = ‖un(|an| − 1)ξ‖2 ≤ ‖|an|ξ − ξ‖2 = 1 + (a∗nanξ, ξ)− 2(|an|ξ, ξ),
which tends to zero. �

In [3] it was proven that for a fixed x0 ∈ S1(X) the map πx0 : ULB(X) → S1(X)
given by πx0(U) = U(x0) is onto when B is finite. In that paper it was considered
with the norm topologies. Here we shall regard it with the weak topologies and in
the particular case at hand, namely X = Rp and B = pRp with R as above. Then,
choosing x0 = p ∈ S1(X) = Sp(R), the mapping πp is

πp : UR → Sp(R), πp(u) = up.

Theorem 6.3. If R is a factor satisfying the hypothesis of 5.6, then the map πp
above is a trivial principal bundle, when UR is regarded with the strong operator
topology and Sp(R) is regarded with the ultraweak topology. The fibre is (home-
omorphic to) the unitary group of qRq, where q = 1 − p, again with the strong
operator topology.

Proof. The key of the argument is again Lemma 3 of [24]. In that result it is shown
that the homogeneous space UR/UM admits a global continuous cross section, where
M ⊂ R are factors satisfying the hypothesis of 5.6, and their unitary groups are
endowed with the strong operator topology. In our situation, the fibre of πp (over p)
is the set {u ∈ UR : up = p} = {qwq + p : qwq ∈ UqRq} = UqRq × {p}. The fibre is
not the unitary group of a subfactor with the same unit, nevertheless the argument
carries on anyway. Therefore in order to prove our result it suffices to show that in
Sp(R) the ultraweak topology (equal to the weak operator topology) coincides with
the quotient topology induced by the map πp. In other words, that the bijection

UR/UqRq × {p} → Sp(R), [u] �→ up

is a homeomorphism in the mentioned topologies. It is clearly continuous. It suffices
to check continuity of the inverse at the point p. Suppose that uα is a net of unitaries
in UR such that uαp converges weakly to p. Then we claim that there are unitaries
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qwαq in qRq such that qwαq + p− uα converges strongly to zero, which would end
the proof. This amounts to saying that there exists unitaries qwαq verifying that

Re((qwαq + p)ξ, uαξ)→ ‖ξ‖2

for all ξ ∈ H . Now since uαp→ p, one has uαpξ → pξ, the former limit is equivalent
to the following

Re(qwαqξ, uαqξ)→ ‖qξ‖2.
Again, uαp → p strongly (and the fact that R is finite), imply that quαp, puαq,
qu∗αp and pu∗αq all converge to zero strongly. Using that uα are unitaries, these
facts imply that qu∗αquαq → q strongly. Using the lemma above, for the algebra
M = qRq, and aα = quαq, it follows that there exist unitaries qwαq in qRq such
that qwαq−quαq converges to zero strongly. Since puαq also tends to zero, it follows
that

qwαq − uαq = qwαq − quαq − puαq → 0
strongly. Clearly this last limit proves our claim. �

Our main result then follows easily

Theorem 6.4. Let R be a factor satisfying the hypothesis of 5.6, and let p be a
projection in R. Then both Sp(R) with the ultraweak topology, and the set PΣp(B)
of normal states of R with support equivalent to p with the norm topology, have
trivial homotopy groups of all orders.

Proof. By the above theorem, Sp(R) has trivial homotopy groups, since it is the
base space of a fibration with contractible space and contractible fibre. The same
consequence holds for the set of normal states with support equivalent to p, using 6.1.

�

We can restrict the fibration ω to obtain information about the unitary orbit Uϕ
of section 2, but this time with the norm topology.

Remark 6.5. Let B be a factor satisfying the condition of 5.6. Consider now the
restriction of the fibration ω : A(X) → ΩA(X) to the subset {ωx⊗ξ0 : x ∈ S1(X)} ⊂
ΩA(X), for a fixed unit, cyclic and separating vector ξ0 i.e.

{x⊗ ξ0 : x ∈ S1(X)} � S1(X) → {ωx⊗ξ0 : x ∈ S1(X)}, x⊗ ξ0 �→ ωx⊗ξ0 ,

which is again a fibration with the relative topologies. Note that the latter set is
in one to one correspondence with Oϕ of section 3, where ϕ = ωξ0 . Therefore one
recovers the map σ : S1(X)→ Oϕ, σ(x) = ϕx = ωx⊗ξ0 of section 2, now considered
with the w∗ topology for S1(X) and the norm topology for Oϕ. It follows that this
map is a fibration, with fibre equal to URϕ with the strong operator topology.

One can consider this fibration σ in the particular case X = B = R, for R as
above, to obtain the following:

Corollary 6.6. Let ϕ be a faithful normal state of a factor R as in 5.6. Then the
map

πϕ : UR → Uϕ = {ϕu : u ∈ UR}, πϕ(u) = ϕu
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is a fibration when the unitary group UR is considered with the strong operator
topology and the unitary orbit Uϕ of ϕ is considered with the norm topology. The
fibre is the unitary group URϕ of the centralizer of ϕ also with the strong operator
topology. Moreover, for n ≥ 0 one has

πn+1(Uϕ, ϕ) = πn(URϕ , 1),

where URϕ is regarded with the strong operator topology.

Proof. It was noted in section 2 that when X = B is a finite von Neumann algebra,
then S1(X) is UB and Oϕ is the unitary orbit of ϕ. S1(X) = UB is endowed with
the ultraweak topology, which coincides in UB with the strong operator topology.
The rest of the corollary follows using that in this case πϕ = σ is (the restriction) of
a fibration, and again [24] that for such factors R the unitary group is contractible
in the strong operator topology. �

When n = 0, since URϕ is connected, one obtains that Uϕ is simply connected in
the norm topology as well.

7. Continuity of the support

Finally, let us address again the question of continuity of the support. As re-
marked before, taking support of a positive functional does not define a continuous
map, no matter how weak the topologies involved, even in the finite dimensional
setting. However one can check that if the algebra is finite dimensional, taking
support is continuous if one restricts to the set of functionals which have a priori
equivalent supports.
We shall obtain, as a consequence of theorem 5.5, that if B is finite, then the map

PΣp(B) → Ep(B), ψ �→ supp(ψ)

is continuous when PΣp(B) is considered with the norm topology and Ep with the
strong operator topology.
Put A = pBp and X = Bp, where we make the assumption that B is finite. A

state ψ ∈ PΣp(B) is of the form ψ̃v for v ∈ S1(X) = Sp(B) and ψ̃ ∈ Σp(A). That
is ψ(x) = ψ̃(v∗xv) for an appropriate partial isometry v of B with initial space p
and final space supp(ψ). Suppose that ϕn → ϕ in norm, and let vn, v ∈ S1(X)
and ϕ̃n, ϕ̃ ∈ Σp(A) such that ϕn = ϕ̃nvn

and ϕ = ϕ̃v. Theorem 5.5 implies the
existence of unitaries un ∈ UA such that ϕ̃nun

→ ϕ̃ in norm and vnun → v in
the ultraweak topology of B, and therefore also in the strong operator topology.
Note that the support of ϕn = ϕ̃nvn

is the final projection vnv∗n, and analogously
supp(ϕ) = vv∗. Since B is finite, vnun → v implies u∗nv

∗
n → v∗. The product is

strong operator continuous when the operators involved have their norms uniformly
bounded. Therefore

supp(ϕn) = vnv∗n = vnun(vnun)
∗ → vv∗ = supp(ϕ)

in the strong operator topology. We have proved the following:
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Corollary 7.1. Let B be a finite von Neumann algebra. Then the map
supp : PΣp(B)→ Ep

is continuous when PΣp(B) is considered with the norm topology and Ep with the
strong operator topology.

Fix a faithful and normal tracial state τ on B. For q ∈ E , denote by τq the
state given by τq(x) = τ (qx)/τ (q). Note that if q ∈ Ep then τ (q) = τ (p). Let
Tp = {τq : q ∈ Ep}.
Theorem 7.2. The map Ep → PΣp(B), q �→ τq is a continuous cross section for the
support map, when Ep is considered with the strong operator topology, and PΣp(B)
with the norm topology. The set Ep is homeomorphic to the image Tp of this section
(with the norm topology). Moreover, Tp is a strong deformation retract of PΣp(B).
Proof. It is clear that the support of τq is q, therefore this map is a cross section.
Let us see that it is continuous. Let pn converge strongly to q in Ep. Suppose B
represented in a Hilbert space H in such a way that τ is given by a (tracial) vector
ν . For instance, take H = L2(B, τ ). Then

|τ (pna) − τ (qa)| = |〈(pn − q)aν, ν〉| = |〈aν, (pn − q)ν〉| ≤ ‖a‖ ‖(pn − q)ν‖.
Dividing by the common trace of all these projections, one obtains that τpn → τq
in norm. It remains to prove the converse, that if τpn → τq in norm for pn, q ∈ Ep,
then pn → q strongly. Since H = L2(B, τ ) is a standard form for B, convergence
in norm of the positive functionals τpn means convergence in H of their densities
pnν . It follows that pnν → qν . Let a′ be an element in the commutant of B. Then
a′pnν = pna′ν → qa′ν . Therefore pn converges to q in a dense subset of H , namely
{a′ν : a′ ∈ B′}. Since pn, q have norm 1, it follows that pn → q strongly.
Consider the continuous map Ft(Φ) given by

Ft(Φ) = t τsupp(Φ) + (1− t)Φ,
for Φ ∈ PΣp(A) and t ∈ [0, 1]. Then F0 = Id, F1 is a retraction onto the image
of the cross section of supp (that is, essentially F1 = supp), and for all t ∈ [0, 1],
Ft(τq) = τq . �

An immediate corollary of this fact is the following:

Corollary 7.3. Let R be a factor satisfying the hypothesis of 5.6, then the set Ep of
projections of R which are equivalent to p, has trivial homotopy groups of all orders
n ≥ 0, in the strong operator topology.
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