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Abstract. Let H be a Hilbert space, L(H) the algebra of all bounded linear

operators on H and 〈 , 〉A : H×H → C the bounded sesquilinear form induced
by a selfadjoint A ∈ L(H), 〈ξ, η〉A = 〈Aξ, η〉, ξ, η ∈ H. Given T ∈ L(H), T is

A-selfadjoint if AT = T ∗A. If S ⊆ H is a closed subspace, we study the set of
A-selfadjoint projections onto S,

P(A,S) = {Q ∈ L(H) : Q2 = Q , R(Q) = S , AQ = Q∗A}
for different choices of A, mainly under the hypothesis that A ≥ 0. In this

paper we study the close relationship between the existence and properties of
A-selfadjoint projections onto S and the shorted operator (also called Schur

complement) A/S of A to S and the S-compression AS = A − A/S .

1. Introduction

Let H be a Hilbert space, S a closed subspace of H and A a bounded linear
positive (semidefinite) operator on H. The pair (A,S) is said to be compatible if
there exists a bounded linear (not necessarily selfadjoint) projection Q which maps
H onto S such that AQ is selfadjoint. Thus, if

P(A,S) = {Q ∈ L(H) : Q2 = Q, R(Q) = S, AQ = Q∗A},
then (A,S) is compatible if and only if P(A,S) is not empty. In a recent paper
[7] the authors introduced and studied this notion (see also Hassi and Nordström
[13]). In particular it was shown that there exists a strong relationship between
compatibility, the projections of P(A,S) and the shorted operator A/S of Krein [15]
and Anderson-Trapp [2].
This paper is devoted to refine several results of [7], providing new formulae and

properties of the so called minimal projection PA,S of P(A,S), and new charac-
terization of compatible pairs, in order to apply them to shorted operators and
compressions.
Observe that the elements of P(A,S) are selfadjoint for the sesquilinear form

defined by A. Therefore, the usual best approximation properties of selfadjoint
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projections can be extended to the elements of P(A,S). Let us mention the fol-
lowing application of the notion of compatibility and A-selfadjoint projections to
approximation theory.
Given two Hilbert spaces H and H1, T ∈ L(H,H1), S a closed subspace of H

and ξ ∈ H, an abstract spline or a (T,S)-spline interpolant to ξ is any element of
the set

sp(T,S, ξ) = {η ∈ ξ + S : ‖Tη‖ = min
σ∈S
‖T (ξ + σ)‖}.

It turns out that, if A = T ∗T , then (A,S) is compatible if and only if sp(T,S, ξ) is
not empty for any ξ ∈ H and, in that case, sp(T,S, ξ) = {(1 −Q)ξ : Q ∈ P(A,S)}
for any ξ ∈ H \ S. Moreover, the vector of sp(T,S, ξ) with minimal norm is exactly
(1 − PA,S)ξ, where PA,S is a distinguished element of P(A,S) defined in section 4
which is called the minimal projection. See [8] for proofs of these and related facts.
The notion of shorted operator of A to S, introduced by M. G. Krein [15] as part

of the theory of extensions of Hermitian operators, was later rediscovered by W. N.
Anderson and G. E. Trapp [1], [2], who applied it in electrical network theory.
In finite dimensional spaces, the shorted operator is one of the various manifes-

tations of the Schur complement of a matrix. Given a block matrix

A =
(
B C
D E

)
,

with B invertible, then E − DB−1C is the Schur complement of B in A. This
definition is due to E. Haynsworth [14], but it has appeared in several disguised
forms since the beginning of the theory of matrices. The reader is referred to the
nice surveys by R. W. Cottle [6] and D. Carlson [5] for many properties and appli-
cations. The notion was generalized in several directions. In particular, T. Ando
[3] introduced, simultaneously with a generalization of the Schur complement, the
concept of S-compression AS of an operator A in the case of a finite dimensional
space. In Ando’s definition, if S is a subspace of H and A is an operator on H of

the form A =
(
B C
D E

)
, with B invertible on S, then

A/S =
(
0 0
0 E −DB−1C

)
and AS =

(
B C
D DB−1C

)
.

W. N. Anderson [1] showed that if A =
(
B C
C∗ D

)
is a n×n positive semidefinite

matrix and B is a square k × k submatrix, then the operator

A/S =
(
0 0
0 E −DB†C

)
,

where B† is the Moore-Penrose pseudoinverse of B and S the subspace of Cn gen-
erated by the fist k canonical vectors, has the following interpretation in electrical
network theory: if A is the impedance matrix of a resistive n-port network, then
A/S is the impedance matrix of the network obtained by shorting the first k ports.
He proved that

A/S = max{X ∈ C
n×n : 0 ≤ X ≤ A and R(X) ⊆ S⊥}
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and used this property to extend the notion to Hilbert space positive operators:

Definition 1.1. Let A ∈ L(H)+ and let S ⊆ H be a closed subspace. Then
1. The shorted operator of A by S is defined by

A/S = max{X ∈ L(H)+ : X ≤ A and R(X) ⊆ S⊥}
where the maximum is taken for the natural order relation in L(H)+ (see [2]).

2. The S-compression AS of A is defined as AS = A −A/S .

The following general properties about the range and kernel of A/S and AS are
proved in section 2:

1. kerA+ S ⊆ kerA/S ⊆ A−1/2( A1/2(S) ).
2. kerA/S = kerA + S if and only if A1/2(S) is closed in R(A).
3. A(S) ⊆ R(AS) ⊆ A(S) and both inclusions may be strict.
4. kerAS = A−1(S⊥) = A(S)⊥.

The following list contains some of the results of the paper relating the compatibility
of the pair (A,S) with the properties of A/S and AS :

1. If (A,S) is compatible, and E ∈ P(A,S), then
AS = AE and A/S = A(1− E).

2. (A,S) is compatible if and only if A/S = min{R∗AR : R2 = R, kerR = S}
(see 5.1).

3. (A,S) is compatible if and only if
kerA/S = S + kerA and R(A/S ) ⊆ R(A).

In this case, R(A/S ) = R(A) ∩ S⊥ (see 5.4).
4. (A,S) is compatible if and only if R(AS) = A(S) (see 5.5).
5. R(A/S ) ⊆ R(A) if and only if the pair (A, kerA/S ) is compatible (see 5.2).
Section 2 contains some properties of shorted operators and compressions we

shall use later. In section 3 we present several results about A-selfadjoint operators
and compatibility, for A a positive (semidefinite) operator. In section 4 we define
and show formulas and properties of the minimal projection PA,S of P(A,S). In
section 5 we get the mentioned characterizations of compatibility for a pair (A,S),
in terms of the properties of shorted operators and compressions. Section 6 contains
some examples.

2. Preliminaries

In this paper H denotes a Hilbert space, L(H) is the algebra of all linear bounded
operators on H, L(H)+ is the subset of L(H) of all (selfadjoint) positive operators,
GL(H) is the group of all invertible operators in L(H) and GL(H)+ = GL(H) ∩
L(H)+ (positive invertible operators). For every C ∈ L(H) its range is denoted by
R(C) and its nullspace by kerC. Denote by Q (resp., P) the set of all projections
(resp., selfadjoint projections) in L(H):
Q = Q(L(H)) = {Q ∈ L(H) : Q2 = Q} , P = P(L(H)) = {P ∈ Q : P = P ∗}.



610 G. CORACH, A. MAESTRIPIERI AND D. STOJANOFF

The nonselfadjoint elements of Q will be called oblique projections.
Along this note we use the fact that every P ∈ P induces a representation of

elements of L(H) by 2× 2 matrices: if T ∈ L(H) decomposes as
T = PTP + PT (1− P ) + (1 − P )TP + (1− P )T (1− P ),

then T is represented by the matrix
(
T1 T2
T3 T4

)
, where for example T1 = PTP ,

which is alternatively viewed as an element of L(H) or L(P (H)). Under this repre-
sentation P can be identified with(

IP(H) 0
0 0

)
=
(
1 0
0 0

)
and all idempotents Q with the same range as P have the form

Q =
(
1 x
0 0

)
for some x ∈ L(kerP,R(P )).
Now we state the well known criterium due to Douglas [11] about ranges and

factorizations of operators:

Theorem 2.1. Let A,B ∈ L(H). Then the following conditions are equivalent:
1. R(B) ⊆ R(A).
2. There exists a positive number λ such that BB∗ ≤ λAA∗.
3. There exists D ∈ L(H) such that B = AD.

Moreover, the operator D is unique if it satisfies the conditions

B = AD , kerD = kerB and R(D) ⊆ R(A∗).

In this case ‖D‖2 = inf{λ : BB∗ ≤ λAA∗} and A is called the reduced solution of
the equation AX = B.

We state the following elementary result because we shall use it several times in
this paper.

Lemma 2.2. Ler A ∈ L(H)+. Then
1. kerA = kerA1/2.
2. R(A) ⊆ R(A1/2) ⊆ R(A).
3. If R(A) is not closed then R(A) is properly included in R(A1/2).

Proof. Item 1 and 2 are easy to see. If R(A) = R(A1/2) and ξ ∈ (kerA)⊥, then
there exists ρ ∈ (kerA)⊥ such that A1/2ξ = Aρ. Therefore A1/2ρ = ξ and R(A1/2)
is closed. Clearly this implies that R(A) is also closed. �

Shorted operator and compressions.

2.3. As before, let P ∈ P be the orthogonal projection onto the closed subspace
S ⊆ H. The classical notion of Schur complement of a matrix (see [6] and [5] for
concise surveys on the subject) has been extended to positive Hilbert space operators
by M. G. Krein [15] and, later and independently, by W. N. Anderson and G. E.
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Trapp [2] defining what is called the shorted operator : if A ∈ L(H)+ then there
exists

A/S = max{X ∈ L(H)+ : X ≤ A and R(X) ⊆ S⊥}
where the maximum is taken for the natural order relation in L(H)+ (see [2]). A/S

is called the shorted operator of A to S⊥. Σ : P × L(H)+ → L(H)+ , (P,A) �→ A/S .
Next we collect some results of Anderson-Trapp and E. L. Pekarev [19] which are
relevant in this paper.

Theorem 2.4. Let A ∈ L(H)+ with matrix representation A =
(
a b
b∗ c

)
.

1. R(b) ⊆ R(a1/2) and if d ∈ L(S⊥,S) is the RS of the equation a1/2 x = b then

A/S =
(
0 0
0 c− d∗d

)

2. If M = A1/2(S) and PM is the orthogonal projection onto M then

A/S = A
1/2(1− PM)A1/2.

3. A/S is the infimum of the set {R∗AR : R ∈ Q, kerR = S }; in general, the
infimum is not attained.

4. R(A) ∩ S⊥ ⊆ R(A/S ) ⊆ R(A1/2
/S
) = R(A1/2) ∩ S⊥; in general, the inclusions

are strict.

The reader is referred to [2] and [19] for proofs of these facts.

Corollary 2.5. Let A ∈ L(H)+. Then

1. kerA+ S ⊆ ker(A/S ) = A
−1/2

(A1/2 (S) ).
2. kerA/S = kerA + S if and only if A

1/2
(S) is closed in R(A

1/2
).

Proof.

1. By Theorem 2.4, if M = A1/2 (S), then A/S = A
1/2(1 − PM)A1/2. Hence

both kerA and S are included in kerA/S . On the other hand,

kerA/S = kerA
1/2(1− PM)A1/2 = ker(1− PM)A1/2 = A

−1/2
(M).

2. It is clear that A
1/2
(S) is closed in R(A1/2

) if and only if M∩ R(A1/2) =
A

1/2
(S) if and only if A−1/2

(M) = A−1/2
(A

1/2
(S)) = kerA+ S.

�

Definition 2.6. Let A ∈ L(H)+, P ∈ P and S = R(P ). The positive operator

AS := A −A/S

will be called the S-compression of A.

Remark 2.7. Let A ∈ L(H)+ , P ∈ P and S = R(P ). Using Theorem 2.4 and
Proposition 5.1, one can easily deduce the following properties of AS :

1. (AS)/S = 0.
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2. If A =
(
a b
b∗ c

)
and d is the reduced solution of the equation a1/2x = b,

then

AS =
(
a b
b∗ d∗d

)
=
(
a1/2 0
d∗ 0

)(
a1/2 d
0 0

)
.

3. AS = A1/2PMA1/2, whereM = A1/2(S).
4. kerAS = A−1(S⊥). Indeed, sinceM⊥ = A−1/2(S⊥), then

kerAS = kerPMA
1/2
= A−1/2(M⊥) = A−1/2(A−1/2(S⊥)) = A−1(S⊥).

5. A(S) ⊆ R(AS) ⊆ A(S) and the inclusions may be strict. Indeed,
A(S) = AS(S) ⊆ R(AS) ⊆ (kerAS)⊥ = (A−1(S⊥))⊥ = A(S).

See Example 6.9 in order to see an example of strict inclusions.

3. A-selfadjoint projections and compatibility

Throughout, S is a closed subspace of H and P is the orthogonal projection
onto S. As we said in the introduction, we consider a bounded sesquilinear form
〈 , 〉A : H×H → C determined by a positive operator A ∈ L(H): 〈ξ, η〉A = 〈Aξ, η〉,
ξ, η ∈ H. This form induces the notion of A-orthogonality. For example, easy
computations show that the A-orthogonal of S is

S⊥A := {ξ : 〈Aξ, η〉 = 0 ∀η ∈ S } = A−1(S⊥) = A(S)⊥.
Given T ∈ L(H), an operator W ∈ L(H) is called an A-adjoint of T if

〈Tξ, η〉A = 〈ξ,Wη〉A, ξ, η ∈ H,
or, which is the same, if T ∗A = AW . Therefore, the existence of an A-adjoint W of
T is equivalent to R(T ∗A) ⊆ R(A). In particular, if Q ∈ Q, then the existence of
an A-adjoint of Q is also equivalent to

(1) R(A) = R(A) ∩ kerQ∗ ⊕ R(A) ∩R(Q∗) = R(A) ∩ (kerQ)⊥ ⊕R(A) ∩R(Q)⊥.
Observe that T may have no A-adjoint, only one or many of them. We shall not
deal in this paper with the general problem of existence and uniqueness of A-adjoint
operators. Instead, we shall study the existence and uniqueness of A-selfadjoint
projections, i.e., Q ∈ Q such that AQ = Q∗A. Among them, we are interested in
those whose range is exactly S. Thus, the main goal of the paper is the study of
the set

P(A,S) = {Q ∈ Q : R(Q) = S, AQ = Q∗A}
for different choices of A.
We shall state all the results for positive operators, though some of them are still

true in a more general case. For general results on A-selfadjoint operators the reader
is referred to the papers by Lax [16] and Dieudonné [10]; a recent paper by Hassi
and Nordström [13] contains many interesting results on A-selfadjoint projections.
The following lemma gives equivalent conditions for a projection to be A- selfad-

joint. Observe that they are similar to those for a selfadjoint projection.
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Lemma 3.1. Let A ∈ L(H)+ and Q ∈ Q. Then the following conditions are
equivalent:

1. Q is A-selfadjoint.
2. kerQ ⊆ R(Q)⊥A.
3. Q is an A-contraction, i.e. 〈Qξ,Qξ〉A ≤ 〈ξ, ξ〉A ξ ∈ H.

Proof. 1 ↔ 2: If Q ∈ P(A,S) and ξ, η ∈ H, then
(2) 〈Aη,Qξ〉 = 〈Q∗Aη, ξ〉 = 〈AQη, ξ〉 = 〈Qη,Aξ〉,
so kerQ ⊆ A−1(S⊥). The converse can be proved in a similar way.

1 ↔ 3: First observe that condition 3 is equivalent to Q∗AQ ≤ A. Now suppose
that Q∗AQ ≤ A. Then, by Theorem 2.1, the reduced solution D of the equation
A1/2X = Q∗A1/2 satisfies ‖D‖ ≤ 1. We shall see that D2 = D. Indeed, note that
AD2 = Q∗A1/2D = (Q∗)2A1/2 = Q∗A1/2. Also

kerQ∗A1/2 = kerD ⊆ kerD2 ⊆ kerAD2 = kerQ∗A1/2

and R(D2) ⊆ R(D) ⊆ R(A∗). Thus, D2 is a reduced solution of AX = Q∗A1/2

and, by uniqueness, D2 = D. Since ‖D‖ = 1, it must be D∗ = D. Since Q∗A =
A1/2DA1/2, we conclude that Q∗A = AQ. Conversely, note that AQ = Q∗AQ ≥ 0
and, if E = 1 −Q, then also AE = E∗AE. Therefore, A = A(Q + E) = Q∗AQ +
E∗AE ≥ Q∗AQ. �
Throughout, we use the matrix representation determined by P . Given A ∈

L(H)+, A =
(
a b
b∗ c

)
, where a = PAP , b = PA(I−P ) and c = (I −P )A(I−P ).

Definition 3.2. Let A ∈ L(H)+ and S ⊆ H a closed subspace. The pair (A,S) is
said to be compatible if there exists an A-selfadjoint projection with range S, i.e. if
P(A,S) is not empty.

Now, we state equivalent conditions to compatibility, in terms of the matrix repre-

sentation given by P . Let A ∈ L(H)+ with matrix representation A =
(
a b
b∗ c

)
.

Proposition 3.3. Given A ∈ L(H)+, the following conditions are equivalent:
1. The pair (A,S) is compatible.
2. R(PA) = R(PAP ) or equivalently R(b) ⊆ R(a).
3. The equation ax = b admits a solution.

Proof. 2 ↔ 3: Apply Theorem 2.1.
1 ↔ 3: Recall that a = PAP and b = PA(1 − P ). If Y is a solution to

(PAP )X = PA(1 − P ), consider y = PY (1 − P ) and Q =
(
1 y
0 0

)
. Easy

computations shows that Q ∈ P(A,S). Conversely if Q ∈ P(A,S) , Q =
(
1 q
0 0

)
then writing the equality AQ = Q∗A in matrix form, we get that q is a solution to
ax = b. �
Remark 3.4. Let A ∈ L(H)+ , P ∈ P with R(P ) = S. Then,
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1. If R(PAP ) is closed, the pair (A,S) is compatible. Indeed, if A =
(
a b
b∗ c

)
then, by Theorem 2.4, R(b) ⊆ R(a1/2). But if R(PAP ) is closed, R(a1/2) =
R(a). Then, by Proposition 3.3, the pair (A,S) is compatible. In particular:

2. If dimH <∞ then every pair (A,S) is compatible.
3. If dimS <∞ then (A,S) is compatible.
4. If A ∈ GL(H)+ , then R(PAP ) = S, so that (A,S) is compatible. In this
case, the unique projection PA,S onto S which is A-selfadjoint, is determined
(see [4]) by the formulae

(3) PA,S = P (1 + P − A−1PA)−1 =

(
PAP + (1− P )A(1− P )

)−1

PA.

Example 3.5. Let A ∈ L(H)+ and consider

M =
(

A A1/2

A1/2 I

)
=
(
A1/2 0
I 0

)(
A1/2 I
0 0

)
∈ L(H⊕H)+ .

If S = H ⊕ {0}, then, by Lemma 2.2, the pair (M,S) is compatible if and only if
R(A) is closed.

Now we give equivalent conditions to compatibility, in this case in terms of sub-
spaces.

Proposition 3.6. Given A ∈ L(H)+, the following conditions are equivalent:
1. The pair (A,S) is compatible.
2. S + S⊥A = H.
3. R(A1/2) = A1/2(S) ⊕ (A1/2(S)⊥ ∩R(A1/2)).
4. If M = A1/2(S), then R(PMA1/2) ⊆ R(A1/2P ).

Proof. 1 ↔ 2: follows from Lemma 3.1 with R(Q) = S.
2 ↔ 3: If H = S + S⊥A then applying A1/2 to both sides of the equality we get

that A1/2(H) = A1/2(S) + A1/2(A−1(S⊥)) or R(A1/2) = A1/2(S) + A−1/2(S⊥) ∩
R(A1/2) = A1/2(S) ⊕ A1/2(S)⊥ ∩ R(A1/2). Conversely, from R(A1/2) = A1/2(S) ⊕
A1/2(S)⊥ ∩R(A1/2) we get that H = S +A−1(S⊥) + kerA1/2 = S +A−1(S⊥).

3 ↔ 4: If y ∈ R(A1/2) then y = y1 + y2 for unique y1 ∈ A1/2(S) and y2 ∈
A1/2(S)⊥, but then PM(y) = y1 ∈ R(A1/2P ). The converse is similar. �
Remark 3.7. If the pair (A,S) is compatible it follows from item 3 of Proposition
3.6 that A1/2(S) is closed in R(A1/2). Observe that in this case if M = A1/2(S)
then

R(A1/2) =M∩R(A1/2)⊕M⊥ ∩R(A1/2).
Conversely if R(A1/2) = M∩ R(A1/2) ⊕M⊥ ∩ R(A1/2) and A1/2(S) is closed in
R(A1/2) then (A,S) is compatible.
Proposition 3.8. Let A ∈ L(H)+, P ∈ P and S = R(P ). Then

1. (A2
/S
)1/2 ≤ A/S .

2. If A(S) is closed in R(A), then A1/2(S) is closed in R(A1/2).
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3. If (A,S) is compatible, then A(S) is closed in R(A).

Proof.
1. A2

/S
≤ A2 implies that (A2

/S
)1/2 ≤ A. But R((A2

/S
)1/2) ⊆ S⊥.

2. Using Corollary 2.5, the fact that A(S) is closed in R(A) implies that
kerA2

/S = kerA
2 + S = kerA+ S.

Using item 1, we can deduce that kerA/S ⊆ kerA + S, so that A1/2(S) is
closed in R(A1/2), again by Corollary 2.5.

3. Assume that (A,S) is compatible. By equation (1), if Q ∈ P(A,S), then
R(A) = R(A) ∩R(Q∗)⊕ R(A) ∩ kerQ∗.

Therefore A(S) = R(AQ) = R(Q∗A) = R(Q∗) ∩R(A) is closed in R(A).
�

Lemma 3.9. If A ∈ L(H)+ then
1. The following conditions are equivalent:

(a) R(PAP ) is closed.
(b) A1/2(S) is closed.
(c) A(S) is closed.

2. If R(PAP ) is closed, then the pair (A,S) is compatible.
3. If the pair (A,S) is compatible, then S + kerA is closed.

Proof.
1. Since A1/2(S) = R(A1/2P ) and PAP = (A1/2P )∗A1/2P , we get that (a) is
equivalent to (b). Suppose that R(PAP ) is closed. Note that A(S) = R(AP )
and R(AP ) is closed if and only if R(PA) is closed if and only if R(PA2P )
is closed. Note that (PAP )2 ≤ PA2P and

ker(PAP )2 = kerPA2P = S⊥ ⊕ (S ∩ kerA).
Since PA2P ≥ (PAP )2 > 0 in (ker(PAP )2)⊥ we get that R(PA2P ) is closed.
The reverse implication is easy to see.

2. See Remark 3.4.
3. If (A,S) is compatible, then, by item 3 of Proposition 3.6, A1/2(S) is closed
in R(A1/2) and then S + kerA = A−1/2(A1/2(S)) is closed.

�
The condition “A(S) closed in R(A)” (or equivalently “A(S) closed” when A has

closed range), which is necessary for the pair (A,S) to be compatible (by Proposition
3.8), turns out to be sufficient when A has closed range, as we will see in the following
proposition.

Proposition 3.10. If A ∈ L(H)+ has closed range then the following conditions
are equivalent:

1. The pair (A,S) is compatible.
2. R(PAP ) is closed.
3. S + kerA is closed.
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Proof. By Lemma 3.9, we know that 2→ 1→ 3. If S+kerA is closed then PR(A)(S)
is closed. Therefore A(S) = A(PR(A)(S)) which is closed because PR(A)(S) ⊆ R(A)
is closed. �
Remark 3.11. If A,B ∈ L(H)+ have both the same closed range, then kerA =
kerB and, by Proposition 3.10, (A,S) is compatible if and only if (B,S) is compat-
ible. Moreover, P(A,S) and P(B,S) are parallel affine manifolds by Remark 4.2
above.

For positive injective operators the following equivalences hold:

Proposition 3.12. If A ∈ L(H)+ is injective then the following conditions are
equivalent:

1. The pair (A,S) is compatible.
2. S ⊕ S⊥A = H.
3. S⊥ ⊕A(S) is closed.

Proof. 1 ↔ 2: follows from Proposition 3.6 and the fact that S ∩ S⊥A = {0} when
A is injective.

2 ↔ 3: First observe that, ifW = A(S), then S⊥+W is always a dense set when
A is injective because S⊥ +W = (S∩A(S)⊥)⊥ = H. Then S⊥+W = H if and only
if S⊥ +W is closed. The equivalence follows by using the general fact that given
closed subspaces M and N thenM⊕N = H if and only ifM⊥ ⊕N⊥ = H. �
Remark 3.13. Given two subspaces S, T , the cosine of the Friedrichs angle between
them is defined by

c(S, T ) = sup{|〈ξ, η〉| : ξ ∈ S ∩ (S ∩ T )⊥, ‖ξ‖ ≤ 1, η ∈ T ∩ (S ∩ T )⊥, ‖η‖ ≤ 1}.
It is well known that c(S, T ) < 1 if and only if S + T is closed. Then compatibility
in the case of a closed range operator or in the injective case is related to an angle
condition between two subspaces:

1. If A ∈ L(H)+ has closed range, then (A,S) is compatible if and only if
c(S, kerA) < 1 (see Proposition 3.10).

2. If A ∈ L(H)+ is injective, then, by Proposition 3.12, (A,S) is compatible if
and only if c(S⊥, A(S) ) < 1.

4. The minimal projection

Let A ∈ L(H)+ and S ⊆ H a closed subspace such that the pair (A,S) is
compatible. Using Lemma 3.1 or Proposition 3.6, it is clear that P(A,S) is a
singleton if and only if kerA ∩ S = {0}. If this is no the case, there exists a
projection in P(A,S) with optimal properties:
Definition 4.1. Let A ∈ L(H)+ and suppose that the pair (A,S) is compatible. If

A =
(
a b
b∗ c

)
and d ∈ L(S⊥,S) is the reduced solution of the equation ax = b,

we define the following oblique projection onto S:

PA,S =
(
1 d
0 0

)
.
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Remark 4.2. Let A ∈ L(H)+ and suppose that (A,S) is compatible. Denote by
N = A−1(S⊥) ∩ S = kerA ∩ S. Then PA,S ∈ P(A,S), kerPA,S = A−1(S⊥) � N
and P(A,S) is an affine manifold that can be parametrized as

P(A,S) = PA,S + L(S⊥,N ),
where L(S⊥,N ) is viewed as a subspace of L(H). Observe that P(A,S) has a unique
element (PA,S) if and only if N = {0}, i.e. if S ⊕ A−1(S⊥) = H.
Moreover PA,S has minimal norm in P(A,S). Nevertheless, PA,S is not in general

the unique Q ∈ P(A,S) that realizes the minimum. For a proof of these facts see 3.6
of [7].

Proposition 3.3 shows that the pair (A,S) is compatible if and only if R(PA) ⊆
R(PAP ). Therefore, if (A,S) is compatible, it is natural to look at the reduced
solution Q of the equation

(4) (PAP )X = PA

and its relation with PA,S . Observe that R(Q) ⊆ R(PAP ) which can be strictly
included in S, so that, in general, Q �= PA,S . Nevertheless:

Proposition 4.3. Let A ∈ L(H)+ such that the pair (A,S) is compatible. Let Q
be the reduced solution of the equation (4). Let N = kerA ∩ S. Then Q = PA,S
N
and

PA,S = PN +Q.

Proof. Let A =
(
a b
b∗ c

)
. In L(S), ker a = N and R(a) = R(a1/2) = S � N .

Note that R(Q) ⊆ R(a). Also kerQ = ker(PA) = A−1(S⊥). If ξ ∈ S � N , then
a(Qξ) = (PAP )Qξ = PAξ = PAPξ = a(ξ).

Since a is injective in S � N , we can deduce that Qξ = ξ for all ξ ∈ S � N . Now,
the compatibility of (A,S) implies that S + A−1(S⊥) = H. Also A−1(S⊥) ∩ S =
kerA∩S = N . Therefore A−1(S⊥)⊕(S�N ) = H. Then Q2 = Q andR(Q) = S�N .
Note that

kerQ = A−1(S⊥) ⊆ A−1((S �N )⊥) = R(Q)⊥A ,

so that Q is A-selfadjoint by Lemma 3.1. On the other hand, (S�N )∩kerA = {0},
so that Q is the unique element of P (A,S � N ), by Remark 4.2. Observe that
N ⊆ kerA ⊆ A−1(S⊥). Therefore

(PN +Q)2 = PN +Q , R(PN +Q) = S and

ker(PN +Q) = (A−1(S⊥)) �N .
These formulae clearly implies that PN +Q = PA,S (see Remark 4.2). �

By Proposition 3.6, the pair (A,S) is compatible if and only if R(PMA1/2) ⊆
R(A1/2P ) or equivalently if equation A1/2PX = PMA1/2 admits a solution. More-
over, equation (4) and equation A1/2PX = PMA1/2 have the same reduced solution
as we will see in the following proposition.
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Proposition 4.4. Let A ∈ L(H)+ such that the pair (A,S) is compatible. Let
M = A1/2(S) and N = kerA ∩ S. Consider Q the reduced solution of the equation

(5) (A1/2P )X = PMA
1/2.

Then Q = PA,S
N and PA,S = PN + Q. In particular, if A1/2(S) is closed and
kerA ∩ S = {0}, then
(6) PA,S = (A1/2P )†PMA

1/2 = (A1/2P )†A1/2

where (A1/2P )† denotes the Moore-Penrose pseudoinverse of (A1/2P ).

Proof. Wewill prove that equations (4) and (5) have the same RS. Denote B = A1/2.
Recall thatM = B(S) = B−1(S⊥)⊥. Observe that
(7) BPMB = APA,S = APPA,S.

In fact, for ξ ∈ H, let η = PA,Sξ and ρ = ξ − η ∈ A−1(S⊥); then Bη ∈ M and
Bρ ∈ B−1(S⊥) =M⊥ . Hence BPMBξ = Aη = APA,Sξ. By Proposition 4.3, the
projection Q = PA,S − PN is the reduced solution of the equation PAPX = PA.
We shall see that Q is the reduced solution of the equation (5). First note that,
by equation (7), BPMB = (AP )PA,S = (AP )Q, so B(PMB − BPQ) = 0. But
R(PMB − BPQ) ⊆ R(B) = (kerB)⊥. Hence Q is a solution of (5). Note that
kerPMB = B−1(B−1(S⊥)) = A−1(S⊥) = kerQ by Proposition 4.3. Finally,

R((BP )∗) = R(PB) = R(PAP ) = S �N = R(Q).

The first equality of equation (6) follows directly. The second, from the fact that

(A1/2P )†PM = (A1/2P )†.

�

Formula (6), for operators with closed range, is due to Golomb [12].

Corollary 4.5. Consider A ∈ L(H)+ injective such that the pair (A,S) is compat-
ible. Then, with the same notations as in Proposition 4.4,

PA,S = A
−1/2

PMA
1/2.

5. The relationship with shorted operators

As before, let P ∈ P be the orthogonal projection onto the closed subspace
S ⊆ H. The following proposition relates, when (A,S) is compatible, the shorted
operator A/S defined in section 2.3 with the elements of P(A,S).
Proposition 5.1. Let A ∈ L(H)+ such that the pair (A,S) is compatible. Let
E ∈ P(A,S) and Q = 1−E. Then

1. A/S = AQ = Q
∗AQ.

2. A/S = min{R∗AR : R ∈ Q, kerR = S}. Actually, this property is equivalent
to the compatibility of the pair (A,S).

3. R(A/S ) = R(A) ∩ S⊥.
4. kerA/S = kerA + S.
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Proof.

1. Note that 0 ≤ AQ = Q∗AQ ≤ A, by Lemma 3.1. Also R(AQ) = R(Q∗A) ⊆
R(Q∗) = S⊥. Given X ≤ A with R(X) ⊆ S⊥, then, since kerQ = S, we
have that

X = Q∗XQ ≤ Q∗AQ = AQ,

where the first equality can be easily checked because X =
(
0 0
0 x

)
.

2. By item 1, Q∗AQ = A/S and kerQ = S. So the minimum is attained at
Q by Theorem 2.4. On the other hand, if the minimum is attained at some
projection Y , then Y ∗AY = A/S ≤ A implies that Y is A-selfadjoint, by
Lemma 3.1. Therefore 1− Y ∈ P(A,S).

3. Clearly the equation A/S = AQ implies that R(A/S ) ⊆ R(A) ∩ S⊥. The
other inclusion always holds by Theorem 2.4.

4. It follows from Remark 3.7 and Corollary 2.5

�

The condition R(A/S ) ⊆ R(A), which is necessary for compatibility, implies that
some subspace bigger than S (actually kerA/S ) is A-compatible:

Proposition 5.2. Let A ∈ L(H)+ such that R(A/S ) ⊆ R(A). Denote kerA/S = T .
Then

1. A/T = A/S .
2. The pair (A, T ) is compatible.
3. Let Q be the reduced solution of the equation AX = A/S . Then

1−Q = PA,T .

Proof. Item 1 follows directly from the definition of shorted operator. Condition
R(A/S ) ⊆ R(A) implies, by Douglas theorem, that the set

∆ =
{
Q ∈ L(H) : AQ = A/S and kerQ = T

}
is not empty. Let Q ∈ ∆. Clearly Q verifies that kerQ = T and Q∗A = AQ,
because A/S is selfadjoint. In order to prove that 1−Q ∈ P(A, T ), it just remain
to show that Q2 = Q. Let us first prove that, if Z = A−1/2(S⊥) = A1/2(S)⊥, then
Q is a solution of the equation A1/2X = PZA1/2. Recall that A/S = A

1/2PZA1/2,
so A1/2(A1/2Q − PZA1/2) = 0. Then, if ξ ∈ H, PZA1/2ξ = A1/2Qξ + η with
η ∈ kerA1/2 = R(A1/2)⊥ ⊆ Z. So that

‖η‖2 = 〈PZA
1/2ξ, η〉 − 〈A1/2Qξ, η〉 = 〈A1/2ξ, PZη〉 = 〈A1/2ξ, η〉 = 0.

Therefore A1/2Q = PZA1/2. Note that also A1/2Q2 = (PZ)2A1/2 = PZA1/2, so
A1/2(Q2 −Q) = 0. Let ρ ∈ R(Q). Then Qρ − ρ ∈ kerA ∩ R(Q). If Qρ− ρ = Qω,
for some ω ∈ H, then 0 = AQω = A/Sω. So ω ∈ kerA/S = T = kerQ. Therefore
Qρ = ρ for every ρ ∈ R(Q). This clearly implies that Q2 = Q and 1−Q ∈ P(A, T ),
showing item 2.
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Denote by Qo the reduced solution of AX = A/S . Then R(Qo) ⊆ R(A) =
(kerA)⊥. Also kerQo = kerA/S = T so that 1 − Qo ∈ P(A, T ) and R(Qo) ⊆
A−1(T ⊥). Then R(1−Qo) = T = R(PA,T ) and

ker(1 −Qo) = R(Qo) ⊆ A−1(T ⊥) ∩ (kerA)⊥

⊆ A−1(T ⊥) ∩ (T ∩ kerA)⊥ = kerPA,T

by Remark 4.2. Therefore it must be PA,T = 1−Qo. �

Remark 5.3.
1. Observe that if A has closed range then (A,S) is compatible if and only if
ker(A/S ) = S + kerA. Indeed, (A,S) is compatible if and only if A1/2(S)
is closed (see Proposition 3.10) if and only if A1/2(S) is closed in R(A1/2)
(because R(A1/2) = R(A) is closed) if and only if R(A/S ) = S + kerA (see
Corollary 2.5). Note that R(A/S ) = R(A) ∩ S⊥ if R(A) closed.

2. If A is injective, using Propositions 5.1 and 5.2, one gets that (A,S) is com-
patible if and only if R(A/S ) = R(A) ∩ S⊥ and ker(A/S ) = S (see also 5.5
of [7]).

Now we state a general result:

Theorem 5.4. Let A ∈ L(H)+ and S a closed subspace of H. Then (A,S) is
compatible if and only if R(A/S ) = R(A) ∩ S⊥ and kerA/S = kerA+ S.
Proof. One implication is stated in Proposition 5.1. Conversely, if R(A/S ) = R(A)∩
S⊥ and kerA/S = kerA+S = T then, by Proposition 5.2, pair (A, T ) is compatible,
or equivalently T +A−1(T ⊥) = H. But

kerA ⊆ A−1(S⊥) = A(S)⊥ = A(T )⊥ = A−1(T ⊥),

so that S + A−1(S⊥) = H. Then (A,S) is compatible. �

Compressions. Let A ∈ L(H)+ and S ⊆ H a closed subspace. Recall from Def-
inition 2.6, that the compression of A by S is AS = A − A/S . Using Proposition
5.1, if (A,S) is compatible, then AS = APA,S . So that R(AS) = A(S). In the next
Proposition we shall see that this equality actually characterizes compatibility:

Proposition 5.5. Let A ∈ L(H)+, P ∈ P and S = R(P ). Then
1. The pair (A,S) is compatible if and only if R(AS) = A(S).
2. If (A,S) is compatible and Y is the reduced solution of the equation (AP )X =
AS and N = kerA ∩ S, then Y = PA,S
N and

PA,S = Y + PN .

Proof. If (A,S) is compatible then from the properties of AS above, R(AS) = A(S).
Conversely, R(AS) = A(S) implies that the equation APX = AS admits a solution
(apply Douglas’ theorem). Denote by Y the reduced solution of the equationAPX =
AS . Then

(8) kerY = kerAS = A(S)⊥ and
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(9) R(Y ) ⊆ (kerAP )⊥ = (S⊥ +N )⊥ = S �N ⊆ S.

So that PY = Y and AS = AY = Y ∗A, which means that Y is A-selfadjoint. On
the other hand, because A

∣∣
S = AS

∣∣
S and the fact that A

∣∣
S
N is injective, we can

deduce that Y ξ = ξ for every ξ ∈ S � N , which means that Y 2 = Y . Then Y 2 is
the reduced solution and Y = Y 2. So H = R(Y ) + kerY ⊆ S +A(S)⊥ and the pair
(A,S) is compatible. Using formulae (8) and (9), item 2 follows as in the proof of
Proposition 4.3. �

6. Some examples

Example 6.1. Given a positive injective operator A ∈ L(H) with non-closed range.
Let ξ ∈ R(A1/2) and let Pξ be the orthogonal projection onto the subspace 〈ξ〉
generated by ξ. Then R(Pξ) ⊆ R(A1/2), so that, by Douglas’ theorem, Pξ ≤ λA for
some positive number λ which we can suppose equal to 1, by changing A by λA. It
is well known that this implies that the operator B ∈ L(H⊕H) defined by

B =
(
A Pξ

Pξ A

)

is positive. By Lemma 2.2, R(A) is strictly contained in R(A1/2). Suppose that ξ ∈
R(A1/2)\R(A). Let S = H1 = H⊕0. Then S⊥ = H2 = 0⊕H. We shall see that B is
injective, kerB/S = S, moreover B(S) is closed in R(B) (this condition is necessary
for compatibility and it implies that B1/2(S) is closed in R(B1/2) i.e. kerB/S = S,
by Proposition 3.8), but the pair (B,S) is incompatible. Indeed, it is clear that B
does not verify condition 3 of Proposition 3.3, so the pair (B,S) is incompatible. Let
D be the reduced solution of Pξ = A1/2X. Then B/S =

(
0 0
0 A−D∗D

)
. Note

that kerD = kerPx implies DPξ = D. So D∗D = PξD
∗D. Then, if 0⊕η ∈ kerB/S ,

Aη = D∗Dη = PξD
∗Dη = λξ for some λ ∈ R ⇒ η = 0

because ξ /∈ R(A) and A is injective. So kerB/S = S. Also

B(ω ⊕ η) = 0⊕ 0⇒ Aω + Pξ η = 0 = Aη + Pξ ω ⇒ Aω = Aη = 0⇒ ω = η = 0,

so that B is injective. Finally, H⊕ 〈ξ〉 ∩R(B) = B(H ⊕ 0), because if ω �= 0, then
Aω /∈ 〈ξ〉 and B(η⊕ω) /∈ H⊕〈ξ〉 for every η ∈ H. Therefore B(S) is closed in R(B).

Remark 6.2. Let P ∈ P, R(P ) = S and A =
(
a b
b∗ c

)
∈ L(H)+ . It is well

known that the positivity of A implies that R(b) ⊆ R(a1/2). Therefore it is true,
without restrictions on A, that if dimS < ∞, then the pair (A,S) is compatible,
since in this case R(a) = R(PAP ) must be closed, so R(b) ⊆ R(a1/2) = R(a) and
Proposition 3.3 can be applied. On the other hand, if dimS⊥ < ∞ and R(A) is
closed then, by Proposition 3.10, (A,S) is compatible. However, if R(A) is not
closed, then Example 6.3 shows that the result fails in general.
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Example 6.3. Let A ∈ L(H)+ be injective non invertible. Let ξ ∈ H\R(A) a unit
vector. Denote by S⊥ the subspace generated by ξ, P = PS and Pξ = 1− P . If

A =
(
a b
b∗ c

)

in terms of P and Aξ = λξ + η with η ∈ S, then λ = 〈Aξ, ξ〉 �= 0 and η �= 0
(otherwise ξ ∈ R(A)). Therefore c = λPξ and b(µξ) = µη, µ ∈ C.
Suppose that η ∈ R(a), i.e., there exists ν ∈ S which verifies aν = bξ. Then

PA(ν − ξ) = aν − bξ = 0, so A(ν − ξ) is a multiple of ξ, which must be 0 (ξ /∈
R(A)). So ν = ξ, a contradiction. Therefore R(b) �⊆ R(a) and the pair (A,S) is
incompatible.
Let d be the reduced solution of the equation a1/2x = b. The facts that η /∈ R(a)

and that a1/2 is injective in S clearly implies that R(a1/2) ∩ R(d) = {0}. Consider
now the operator

B =
(
a b
b∗ dd∗

)
≥ 0.

Then the pair (B,S) is also incompatible and B/S = 0. But in this case B is
injective. Indeed,

B =
(

a a1/2d

d∗a1/2 dd∗

)
=
(
a1/2 0
d∗ 0

)(
a1/2 d
0 0

)

and therefore

kerB = ker
(
a1/2 d
0 0

)
= {0}

because R(a1/2) ∩ R(d) = {0}, a1/2 is injective in S and d is injective in S⊥.
This example shows the intrinsic necessarity of the condition kerA/S = S in the
equivalence given in Theorem 5.4: ifA is injective, the pair (A,S) is compatible⇐⇒
R(A/S ) ⊆ R(A) and kerA/S = S. In fact the example shows that R(A/S ) ⊆ R(A)
does not imply kerA/S = S neither in the injective case. In this sense this example
complements Example 6.1.

6.4. Two positive operators A,B ∈ L(H) are in the same “Thompson component”,
if

A ∼ B ⇐⇒ R(A1/2) = R(B1/2) ⇐⇒ λA ≤ B ≤ µA
for some constants λ, µ in R+. A natural question is: given S a closed subspace
of H, is it true that (A,S) is compatible if and only if (B,S) is compatible? This
is true for closed range operators by Remark 3.11. Unfortunately, in general the
answer is no, as we shall see in the following example. We first need a lemma:

Lemma 6.5. Let A,B ∈ L(H)+.

1. If R(A) = R(B) then R(At) = R(Bt) for 0 ≤ t ≤ 1. In particular A ∼ B.
2. If A ∈ L(H)+ and R(A) is not closed, then there exists B ∈ L(H)+ such that
A ∼ B but R(A) �= R(B).
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Proof.
1. By Douglas theorem, R(A) = R(B) implies that there exist λ, µ > 0 such
that λA2 ≤ B2 ≤ µA2. Then, by Löwner theorem [17], λtA2t ≤ B2t ≤ µtA2t

and R(At) = R(Bt), for 0 ≤ t ≤ 1. Taking t = 1/2 one gets that A ∼ B.
2. Denote C = A1/2. If G ∈ GL(H)+, then R(C) = R(CG1/2) = R((CGC)1/2).
We claim that G can be chosen in such a way that R(A) �= R(CGC). Indeed,
take ξ ∈ R(C) \ R(A), η ∈ (kerC)⊥ such that Cη = ξ, and ρ ∈ R(C) such
that 〈ρ, η〉 > 0 (recall that R(C) is dense in (kerC)⊥). Choose G ∈ GL(H)+
such that Gρ = η. This can be done working separately in the subspace Z
generated by ρ and η, and in Z⊥. The condition 〈ρ, η〉 > 0 is sufficient by
an easy 2 × 2 argument. Then ξ = Cη = CGρ ∈ R(CGC) \ R(A). Take
B = CGC.

�

Example 6.6. Let A ∈ L(H)+ injective but not invertible. Suppose that A ∼ B
and λA ≤ B ≤ µA with λ < 1 < µ. By last lemma, we can also suppose that
R(A) �= R(B). So there exists ξ ∈ R(A) \ R(B) ⊆ R(A1/2) = R(B1/2). Let Pξ

be the orthogonal projection onto the subspace generated by ξ. Then R(Pξ) ⊆
R(A1/2) = R(B1/2). So that, by Douglas theorem, we can suppose 2Pξ ≤ A and
2Pξ ≤ B. As in Example 6.1, the operators MA,MB ∈ L(H ⊕H) defined by

MA =
(
A Pξ

Pξ A

)
, MB =

(
B Pξ

Pξ B

)

are positive. Let S = H1 = H ⊕ 0. Then S⊥ = H2 = 0 ⊕H. In Example 6.1 it is
shown thatMB is injective but the pair (MB ,S) is incompatible. On the other hand,
since ξ ∈ R(A), then the pair (MA,S) is compatible. We shall see that MA ∼MB,
thus contradicting the previous conjecture. Indeed, note that

2Pξ ≤ A and
1
µ
B ≤ A ⇒ 2A− 1

µ
B ≥ 2Pξ ≥

(
2− 1

µ

)
Pξ.

Therefore

2MA = 2
(
A Pξ

Pξ A

)
≥ 1
µ

(
B Pξ

Pξ B

)
=
1
µ
MB .

Analogously 2Pξ ≤ B and λA ≤ B implies that 2B − λA ≥ 2Pξ ≥ (2 − λ)Pξ.
Therefore

2MB = 2
(
B Pξ

Pξ B

)
≥ λ

(
A Pξ

Pξ A

)
= λMA.

Example 6.7. Let A = {(A, P ) ∈ L(H)+ × P : the pair (A,S) is compatible }. If
dimH =∞, then the space A is neither open nor closed in L(H)+×P. Indeed, the
proper subset GL(H)+×P ⊆ A of A is dense in L(H)+×P, so A is not closed. On
the other hand, let A be a positive injective operator in L(H) with non-closed range
and ξ ∈ R(A1/2). Consider the operator B ∈ L(H⊕H) defined in Example 6.1. If
S = H1 = H⊕ 0, then (B,S) is compatible if and only if ξ ∈ R(A). It is easy to see
that some ξ ∈ R(A) can be approached by elements of R(A1/2) \R(A) and so, the
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compatible pair (B,S) can be approached by non compatible pairs. Since H⊕H is
isomorphic to H, this shows that A is not open in L(H)+ ×P.
Example 6.8. Consider the map α : A → Q given by α(A, P ) = PA,S , where A is
the set defined in Example 6.7. We shall see that α is not continuous. Indeed, fix

S ⊆ H and consider A =
(
a b
b∗ c

)
, such that R(b) = R(a) is a closed subspace

M properly included in S. Denote by N = S �M and consider the projection PN
and some element u ∈ L(S⊥,N ) ⊆ L(H), u �= 0. Consider, for every n ∈ N,

An = A +
1
n
(PN + u)∗(PN + u)

= A +
1
n


 1 0 u

0 0 0
u∗ 0 u∗u


 N
M
S⊥

=


 1

n 0 1
n u

0 a b
1
n u

∗ b∗ c+ 1
n u

∗u


 ≥ A ≥ 0.

It is clear that An → A. Note that a is invertible in L(M). Then, by Remark 4.2,

PA,S =


 1 0 0
0 1 a−1b
0 0 0


 N
M
S⊥

.

Note that a+ 1
n
PN is invertible in L(S). Then, by equation (3),

PAn,S =


 n 0 0
0 a−1 0
0 0 0




 1

n 0 1
n u

0 a b
1
n
u∗ b∗ c+ 1

n
u∗u


 =


 1 0 u
0 1 a−1b
0 0 0


 N
M
S⊥

for all n ∈ N. Therefore α(An, P ) = PAn,S �→ PA,S = α(A, P ). Remark that the
sequence α(An, P ) converges (actually, it is constant) to PA,S+u, which belongs to
P(A,S) by Remark 4.2. Also, it is easy to see that, for every n ∈ N, (An)/S = A/S .

Example 6.9. Let A ∈ L(H)+ and

M =
(

A A1/2

A1/2 I

)
=
(
A1/2 0
I 0

)(
A1/2 I
0 0

)
∈ L(H⊕H)+

like in Example 3.5. Denote by S = H ⊕ {0} and by N =
(
A1/2 I
0 0

)
. Since

M = N∗N , then kerM = kerN = {ξ ⊕ −A1/2ξ : ξ ∈ H} which is the graph of
−A1/2. Note that R(N) = (R(A1/2) + R(I)) ⊕ {0} = S, so that R(M) is also
closed. Also M/S =

(
0 0
0 Pker A

)
, because the reduced solution of the equation

A1/2X = A1/2 is D = PR(A).
If A is injective not inversible, then (M,S) is not compatible (because R(A) is

properly included in R(A1/2)). Also M = MS and M(S) �= R(MS). Hence in this
example R(MS) =M(S) while M(S) is not closed (see Proposition 5.5).
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