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1. Introduction

We start by considering the space H of half-lines in R™*! which can be identified with
S™ x R™! in a natural way. Let f : M — R"! be a smooth, bounded map and assume
that g : M — H is a smooth map such that, for z € M, g(z) is a half-line starting at f(x).
Now surround f(M) by a round n-sphere S and define F' : M — S by taking F'(x) to be the
intersection point of g(z) with S. We will say that F' is a spherical indicatriz. The purpose
of the present note is to study the map F' in some particular cases. Maps of this type have
cropped up in some of our work [3], [4].

2. Normal indicatrices of a codimension 1 immersion

In what follows M will denote a boundaryless, compact, connected, oriented, n-dimensional
manifold. Let f : M — R"! be a smooth immersion, smooth here meaning C*. Assume
that S is a round n-sphere surrounding f(M). For what follows there is no loss of generality
in assuming that the sphere is centred at the origin. Let now g : M — S™ x R™! be of
the form (U, f). The indicatriz Fy is defined as follows. For x € M, consider the half-line
f(z) +aU(z),a > 0. Then Fy(z) is the intersection of the half-line with S. We can write
Fy = f+ AU, where XA is a positive, smooth map.

Let us now denote by N : M — R™*! the normal unit vector field determined in the fol-
lowing way. If, for x € M, 6, is the orientation for the tangent space T, M, then [f..(6;), N(x)]

1 This is an original research article and no version has submitted for publication elsewhere.
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is the usual orientation of R**'. Here f,, denotes the induced linear map and the tangent
space to R"*! at x will be identified with R**! itself. The maps Fy and F_y are the normal
indicatrices.

Maps of the type fe : M — R"* with fe(z) = f(x) + £(z), where £ is a parallel normal
field where studied by Carter and Sentiirk [1] among other people.

If M is not diffeomorphic to S™ then any indicatrix will have critical points. We shall
next characterise the critical points of the normal indicatrices.

Proposition 1. z is a critical point of Fy iff Fx(x) is a focal point of f with x as base
point.

Proof. Let Fy = f + AN and x € M. Use a chart ¢ at z and conclude that Fy,, is injective
iff the matrix I + A(z)A is nonsingular, where I is the identity and A = [a;;] is given by

0 & 0
New((57-).) = 2_ 4ji fua((57-).)-
0¢; jgl ’ 09;

Next it can be shown that Fiy(z) is a focal point of f with x as base point iff I + \(z)A
is singular. This can be done using the square-distance function L,(y) =|| f(y) — z ||?, with
z = Fy(z), of which z is a critical point and the characterization of critical point degeneracy
in terms of focal points as given in [6]. O

If f:S™ — R™!is an smooth immersion such that its Gaussian curvature does not vanish
then one of the maps Fy,F_y is an immersion. Since nonvanishing Gaussian curvature is
equivalent to focal set boundedness it is clear that if the radius of S is sufficiently large then
both maps are immersions. A simple example where one of the normal indicatrices is not an
immersion is shown below.
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3. Degree of an indicatrix

Let us have the same assumptions and notations as in Section 2. We start with a result on
mod 2 degrees.

Proposition 1. Let f : M — R™! be an immersion. Then degrees Fy + degrees F_n =
e(M) mod 2, where e(M) stands for the Euler number of M.

Proof. Choose p € S such that p is a regular value for both Fx and F_y. Consider L, :
M — R given by L,(z) =|| f(z) — p ||>. The result follows easily from the fact that L, is a
Morse function [6] and the number of its critical points is congruent with e(M) mod 2. O

Proposition 2. Let M be even-dimensional. If Fy is an indicatriz such that, for x € M,
L(U(z),N(z)) < Z then degree Fy = 5 e(M).

Proof. This follows from an old result of Heinz Hopf [5] and the fact that there is a homotopy
between Fy; and the map rN, where r is the radius of S. In fact, for ¢t € [0,1],2 € M,
H(z,t) = rN(x)+t(Fy(x)—rN(z)) is different from zero. If, for some t # 0,1, € M, H(t,x)

were zero we would have Fy(z) = —rN(z) and consequently f(z) = —A(z)U(x) — rN(z).
Since /(U(x), N(z)) < %, that would imply || f(z) |[[> r. We can then use H to define a
homotopy between Fi; and the map rN. O

If M is odd-dimensional there is still a homotopy but the result is no longer true. For instance,
for M = S™, odd n, we can have arbitrary odd degree. We refer the reader to the results in

[5]-
Assume now that M = S! and that we are immersing it into R%.

Proposition 3. Let Fy; : S' — S be an indicatriz such that, for s € S*, L(U(s), N(s)) < .
Then Fy is homotopic to Fy.

Proof. Let T : S* x[0,1] — S* be such that T(s,t) = ”ggﬁgggiggg;” Use now T to obtain

H : S'x[0,1] = S given by H(s,t) = f(s) + p(s,t)T(s,t), where pu(s,t) is obtained after
finding the intersection of the half-line f(s) + oT'(s,t),a > 0, with S. O

We see that the tangential indicatriz, Fr, with T'(z) the tangent vector to the curve at z,
is homotopic to Fy. Using a rotation of angle 7t in R? we can show that Fr and Fy are
homotopic to F_r and F_y respectively.

Let f: S — R? be an immersion and p € R*\ f(S'). We recall the following definitions.
The rotation number of f is 27 degree T, T'(x) being the tangent vector to f at . On the
other hand the winding number of f with respect to p is the degree of the map from S! into

itself given by H;Eg:}’; T

In the next two propositions both circles S' and S are to be oriented in a similar way.

Proposition 4. Let f : S' — R? be such that no tangent line passes through 0. Then, for
U as in Proposition 3, degree Fy is the winding number of f with respect to O.
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Proof. Tt is enough to consider the case U = T. Now define H : S' x [0,1] — S by
_ f@)+tA(x)T (x . .

H(z,t) = rm, where 7 is the radius of S. O

Proposition 5. Let f : S' — R? be such that its curvature does not vanish. Then, for U as

in Proposition 8, 2w degree Fy = rot f, where rot f stands for the rotation number of f.

Proof. Again we consider he case U = T. From Fr = f + AT it is clear that f and Fr are
regularly homotopic and consequently rot f = rot Fr. Since rot Fr = 27 degree Fr the
result follows. O

4. Applications

There is no reason to consider just immersions with codimension 1. An interesting situation
occurs with curves in 3-space.

A. Curves with small total torsion

In [2] it was convenient at some stage to indicate how curves with small total torsion could
be obtained. There we used a convenient non-degenerate homotopy as suggested by [7]. Here
we will use another type of homotopy for a similar purpose.

Let f : S — R3 be a closed curve with nonvanishing torsion. Consider Fp : S — S
given by Fr(z) = f(z)+ A(z)T(x), where T'(x) is the unit tangent vector at . For 0 <t <1,
gt = f 4+ tAT gives rise to a non-degenerate homotopy, that is one that at every stage ¢ the
corresponding curve g; has curvature which vanishes nowhere. Since under a non-degenerate
deformation the total torsion varies continuously and the total torsion of a spherical curve is
zero it follows that curves with very small, nonzero total torsion can be obtained.

B. Linking numbers

Let f,g:S' — R? be curves with disjoint images. The linking number L(f, g) is the degree
. ql 1 2 — _f(x)—9(¥)

of the map ¢ : S*' x St — S given by ¢(z,y) = HOETOIR

Proposition 1. Let f,g : S* — R? be curves such that the image of one of them does not

intersect any tangent line to the other. Then the linking number L(f, g) is zero.

Proof. Assume that no tangent line to f meets g(S'). Consider Fr = f + AT. Then f is
homotopic to Fr and the homotopy induces a homotopy between ¢ : S' x S' — S2, given
by ¢(z,y) = ﬁm and ¥ : ST x S1 — 52, given by ¥(z,y) = Az&=9W)_  Therefore

z)—g()ll  Pr(@) =gl
L(f,g) = L(Fr,g). If we choose the 2-sphere S for the definition of Fr sufficiently big it
follows that L(Fr,g) = 0. O

Let us recall that two space curves f and g are athwart if no tangent line to f intersects a
tangent line to g [4]. Athwart curves are examples of curves in the conditions of Proposition
1. It is known [4] that there are curves which cannot be athwart to any other curve. We are
going to show that on the other hand given a curve we can always find another one such that
the conditions of Proposition 1 are satisfied.
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Proposition 2. Let f : S — R? be a curve. Then, for every sphere containing f(S') in its
interior, there is a spherical curve g : S* — R? such that no tangent line to f meets g(S*).

Proof. We follow [3] where we showed that the tangent lines to f do not fill R®. Consider
Fr,F_r. Then X = Fr(S') U F_7(S') is a set of which the complement in S? is open and
nonempty. Any curve g : S — R?® with image in S? \ X will do. O

In the statement above spherical may be replaced by plane as we show next.

Proposition 2/. Let f : S* — R? be a curve. Then, for every plane which does not meet
f(SY), there is a plane curve g : S — R3 such that no tangent line to f meets g(S').

Proof. Take a plane 7 such that f(S') N7 = (). Consider the projective closure RP? of 7
and define F : S' — RP? by letting F(x) be the intersection point of the tangent line to f
at ¢ with 7. Such a map F' is smooth and again by Sard’s Theorem it is possible to find a
non-empty open subset of 7 which avoids F(S'). Take for g any curve with image in that
open subset. O

Obviously similar results can be obtained replacing tangent by principal normal or binormal
if the extra assumption of nonvanishing curvature is imposed where necessary.
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