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A Domain Decomposition Method
for Helmholtz Scattering Problems

Souad Ghanemi

1 Introduction

We present a study of iterative nonoverlapping domain decomposition methods
(DDMs) for the harmonic scattering wave equation in the 3D case. We introduce
some new nonlocal transmission conditions at subdomain interfaces in order to obtain
an exponential rate of convergence. This work is a natural continuation of the
work by Despres [Des91]. We present numerical results for a mixed finite element
approximation. The parallel performance of the method on a tightly coupled machine
and a loosely connected network is also shown.

2 Domain decomposition methods

A model problem

We study the scattering scalar Helmholtz equation in three dimensions. Let © C IR?
be a bounded domain, I' its boundary, and n the outgoing normal to I'. The problem
to solve is:

(a) —V(qu) —wleu=f on 0

W
10u . [e (1)
(b) L on +zw\/;u_0 on I
() u=0 on OF

The boundary condition (b) plays an essential role and can be interpreted as a first-
order absorbing boundary condition, where p and € are two positive parameters
piecewise C'. We know that for every f in L2(Q), (1) has a unique weak solution
in H(Q).
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Domain decomposition methods

We apply the DDM concept to the Helmholtz scattering problem. The originality in
our work is the introduction of some new nonlocal transmission conditions at the
interfaces between subdomains in order to obtain an exponential rate of convergence.

Let us give a brief presentation of the method. The general idea is to split the
domain  into several subdomains ()rer. The solution is the limit of the following
iterative process. We denote as u} the restriction of the approximate solution to the
domain Qy, at step n, uj being the solution of the following problem:

( Fin(% ultt € HY(Q)
V(EVUZ—H) —w?eupt = fi in
1 6UZ+1 €k 1
— +iw, =t =0 on I 2
\ Hr Ong Vo * * (2)
uZ'H =0 on OFy
1 Quptt 1 1 Ouf
— k4 iThut = - — — L T u =gr; on T (%),
- 6”]‘; JkYE 'L&Janj kit Gkj J ()
where Ty; and Tjk are continuous linear operators, for which Tx; = T =T and

Ty : HY?(Zig) — H2 (D)

is a symmetric isomorphism between H'/2(Xy;) and H~/2(Z;). We call equation

() on T; a transmission condition. The following theorem ensures that u} ™" is well

defined at each step n.

Theorem 2.1 Let f, € L*() and gij € H_l/z(Ekj), pr € L°(Q) and €, €
L>®(Q4) and piecewise C'. Then problem (2) has an unique weak solution uj €
HY(Qy).

Proof see [Gha96]. W
In the following theorem, we prove that the iterative process (2) is convergent.

0
ouy,

1
Theorem 2.2 Under the hypothesis — € H™Y2(0Q), Yk € I, (uk,er) €

11 Hr Ony
L>®(Q4)2, piecewise C' and (M—,—) € L™(Q)?, the solution of equations (2), up
k €k

converges in H(Qy) to uy, the solution on Q.

Proof see [Gha96]. B

Geometrical convergence

For the sake of clarity, we show the convergence in a homogeneous medium. The
iterative process (2) is written as

2" = Aan, ®
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where 2" is the sequence defined on the interface (I'y, Xx;) by
n 2
n __ n n ml"k €L (Fk)
o =tosi){ 5 e
More precisely, V = & [®;2xL*(Zx;) & L*(Tk)] ,

A: 174 — VvV
o = (0, af,) — o= Ao,

such that:

—1 9Ok
53, = (897 5k +iser,
Ty, = ﬂ + iweg,
where ey is the unique solution of the problem.
Aey, +w?e, =0 in Q (1)
Oey,
(: ) lank + iSep, = .Tzk on ij (2) (4)
6—2’; +iwer = a1, on Ty (3).
z™*1 is constructed in the following way:
Oe;
n+l _ noo— _(S* -1%"7 iSe.;
xjfl jkj 57 an; P
.’L‘l—\k T = 0

Some properties of the A operator are:

o |lA <1,

o if some eigenvalues of A are close to 1, then convergence is slow [GJC95].

For achieving geometrical convergence, it is necessary to use a relaxation method.
The fourth (*) equation in (2) is replaced by:

n+1 6’&
L duj -HTJuk =r(— l—-HTkJ ™+ (1—r)(16uk

— + 1Ty uy) on Xy,
P On Hj O Hi Ong i) I

where r is the relaxation parameter and belongs to ]0,1[. As a result, we have

= rAz™ + (1 —r)z". (5)

0
Theorem 2.3 Assume % € H™Y2(8Q), Vk € I. If the interfaces Ti; do not
k

intersect, we get an exponential rate of convergence for the relaxed iterative process:

Je >0 such that |[(1—r)Ild+rAl|lvyvy <V1I-€r(l-r)<1. (6)
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Proof We assume the following identity:
>0, VzeV, |[(I-Azllv > c¢€lz|lv. (7
So, let z € V such that ||z||y = 1. From

1T = A)e|[3 = | A4zl[} + [|2]f}, — 2Re < Az,z > > (el|]lv)*.

we deduce that
2Re < Az,z > < 2— €,

and
|(rA+ (1 —r)Dz|2 < (1—7)?||z||® + r?||Az||* + 2r(1 — r)Re < Az, z >,

[rA+ (1 —r)Dz||} <@ =7 +r*+2r(1—r)(1 —€*/2) =1 —r(1 —r)e’.

Finally, we have:

VzeV, |rA+(1 —r)I)ﬁHV <1-r(l—r)e

Vz €V, [[rA+ (1 =r)Dz|lv <V/1—r1—-7r)e||z||v.
|
Assumption (7) is proved if the bijectivity of the Id — A operator is obtained. Then:
VeeV, z=(I-A"-Az, |z <I[T-ANI-Azll, (8)

and
1 —
1= A)~H]
First, we show that I — A is injective.
If z € V, is such that z = Az, the field e solution of

€.

w2ek —+ Aek =0 in Qk
é)ek .
— 4+ weyp = Tk, on Fk
Onk 6
«\—1 O€k .
(S™) 1% +1iSep =z; on Xy
satisfies
6ek Oe; .
* _1— ] = ;= L= — * _1—] ; E j
(S*) o, +iSey = T (A:r)k] (S*) an, +1iSe; on Xij,
w_10€e; . w1 0€ )
(87150 +iSej = zjn = (An)j = —(S) T 5t +iSe on T
J
and
6€k

%+iwek=mk=(¢4m)k=0 on Tk,
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then e = (ey) is such that e, € H*();) and

wle+ Ae=0 in  Q—Ulg; UXy;
s + iwe, =0 on T
O 9 9
e e;
er = ey, —k=——J on Ekj,
Bnk (9'/1,]'
Oe

80, e is solution of the Helmholtz equation in  with +iwe=0 on 99,

on

and we deduce e = 0 and z = 0.

Second, we show that I — A is surjective.

Given a g in V where g/r, = gk, 9/5;, = 9kj> (9k,9kj) € (HY2(Ty), H=Y2(3y5)),
we find an z € L? such that:

(I - Az =g,

which imply the existence of e belonging H*(£2), and satisfying the Helmholtz equation
on ) —Ul'y U ij and

0 ) o_10€; .
(S*)_la—:; +156k] - [—(S ) 16—7? +1iSej| =gr; on Xy,
Oe ’ 9)
O—HZ + iweg = gk on Ty.

Finally, the field e must satisfy the Helmholtz equation in each subdomain and the
jump of equations (9). We note that the jump of the trace needs to belong to the space
H'/?(%};) and its normal derivative needs to belong to the space H~'/2(y;). These
conditions are satisfied if the interfaces ¥;; do not intersect. We get the solution e
using potential theory (see [KC93]). By defining

0
Ty = (S*)_laﬁ +iSer, on Xy
Tk (10)
Ty = % + iwer = on Tk
k= s k= Gk )

we can easily show that (zy, zx;) € (L?(Tk), L?(Zk;))- Finally, we obtain
(I-Az=yg.

In conclusion, the geometrical convergence with a nonlocal operator is proved given a
particular decomposition. The generalisation of the proof given any decomposition is
an open problem.

We implement this method using the mixed hybrid finite element method [CR89).
We perform several tests to study the improvement of the convergence due to the
following transparent-like operators:

_ Cm 1/2
Tp_w(I-l-FAEkj) /2, (11)

1
, A
VEk-Pk t \/€5-1ij

frequency of the problem.

where ¢,, =

5, is the Laplace-Beltrami operator and w is the
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Figure 1 Computational problem
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3 Numerical results

We choose a cubic domain. The scattering problem with slits located at the center
of the computational domain in (3D) case is solved. The source is a plane wave (Fig. 1).

We compare the convergence of the DDM obtained with the transparent-like
operator T}, and the identity operator [Des91]. Figure 2 shows the fast convergence
with the new transparent transmission operator.

Figure 2 Convergence of the DDM with 80 subdomains

3D case with 80 subdomains

osf i identity (2750s)

operator (170s)

Our computations are done on a CRAY C90 computer. If we need 10~2 precision, for
example, the method that does not use the nonlocal operator requires 1000 iterations
and 2750 s execution time. The method with the T, operator requires only 150
iterations and 170 s excution time. In Figure 3 on the right, the discretization step
h varies for a fixed operator T,. When the step h is fine enough (40 points per
wavelength) then the convergence curves (in the log scale) confirm the exponential
rate of convergence.

The same experiment is carried out with the identity operator (see Fig. 3 on the
left) with mesh refinement. For fixed h, we still have exponential convergence but the
corresponding rate depends on h and degenerates when h tends to 0.



DDM FOR HELMHOLTZ SCATTERING PROBLEMS 111

Figure 3 Convergence of the DDM with identity operator and with T, operator
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Table 1 CRAY T3D (above), SUN (below)

L » [ 2 || 4] 8] 16 |
Ty(s) [ 1045 ] 288 | 92 || 28
T,,(s) || 552 || 103 || 15 | 2.8
S(p) | 1.89 | 2:89 | 5.78 | 10.03
p_ | 2 || 4 [ 6 ]9 |12|]
T, (s) || 3585 | 2523 ]| 465 || 241 || 167
T, (s) || 2589 || 752 || 127 | 41 || 28
S(p) || 1.38 || 256 | 3.67 | 5.7 | 5.94

4 Parallel version of the DDM

The domain decomposition algorithm can be parallelised naturally. After the
discretization of the method, we have to solve several independent problems, at each
step n. The solution of each subdomain can be calculated on each processor of a
parallel computer. Between two iteration steps, it receives the value of both the trace
and the flux of the solution, as evaluated by the processors which compute the solution
of the neighbouring subdomains. The parallelization tool is PVM (Parallel Virtual
Machine). Our computations are done on a heterogeneous network of workstations
(SUN SPARC), and on a multiprocessor computer (CRAY T3D). The achieved speed-
up S(p) is defined by the ratio between the sequential execution time T’ obtained with
an optimal sequential version of the method and the parallel execution time T, on p
processors. Both tables show the various achieved speed-ups on both platforms.

We obtain a good computational performance with the CRAY T3D. The
performance degrades if we increase the processor number using the heterogeneous
network of workstations. Not all machines have the same computing power and it
might happen that the faster machines are waiting for slower machines. This is not
the case for a multiprocessor CRAY T3D, because all the processors are equivalent
and the interconnecting network is optimized for parallelism.
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Finally, we remark that with a parallel version, we can solve a large size problem on
a distributed memory machine, which cannot solved on a sequential machine because
of its memory limitations.

5 Conclusion

The conclusions of the theoretical studies are the following: we prove that the iterative
process of the domain decomposition method with nonlocal transmission conditions
converges. Given a particular decomposition, we obtain a geometrical convergence.
The generalisation to any kind of decomposition remains an open problem.

The numerical results of the implementation of the DDM show better convergence
with nonlocal transmission operators. They also show that the rate of convergence
does not depend on the discretisation step. Finally, we obtain a good performance
of the parallel version of the method. The communication time between processors is
very small compared to the computation time.
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