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Optimized Krylov-Ventcell
method. Application to
convection-diffusion problems

Caroline Japhet

1 Introduction

In this paper a domain decomposition method with non-overlapping subdomains is
presented, applied to the convection-diffusion problem:

Oou .
3y vAu = fin Q (1.1)

C(u) =g, on 99

L(u) = cu + a(z, y)g—z + b(z,y)

where Q is a bounded open set of R2, a = (a, b) is the velocity field, v is the viscosity,
C is a linear operator, ¢ is a constant which could be ¢ = Ait with At a time step of a
backward-Euler scheme for solving the time dependent convection-diffusion problem.
The strategy could be applied to other PDE’s.

Substructuring formulation
Let (2: U;o, (_21-, Q;NQ; =0, i #j. We denote by I'; ; the common interface to €;
and €2, ¢ # j. The outward normal from Q; to Q; is n; ; and 7, ; is a tangential unit
vector.
The additive Schwarz algorithm [Lio89] is:

LM = f, inQ

Bij(ui*th) = Bi;(u}), onTyj, i#j

Clut) = g, on 9NN

Where B; ; is an interface operator.

In [NRAS95], this algorithm is interpreted as a Jacobi algorithm applied to the interface
problem

(Id—T)(H) =G (1.2)
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where 7 is an interface operator, G' a second member only depending on f and g. To
accelerate convergence, the Jacobi algorithm is replaced by a BICGSTAB [Van92] or
GMRES [SS86] algorithm.

In this paper, to accelerate convergence again, the interface conditions B;; between
subdomains are chosen as partial differential operators of order 2 in the tangential
direction to the interface, which minimize the rate of convergence of the Schwarz
algorithm. We denote them by Optimized Order 2 conditions (002). To introduce
them, other interface conditions are first recalled.

Interface conditions
General interface operators of order 2 in the tangential direction,

0 9? 0 0 d?
R L= 1.
B; ; ani’]+01+026‘r +0362 y» Bji 8n1,+c4+058‘r +066 2 (1.3)
where ¢,,, are constants, 1 <m < 6.
In [Des90],[CQI5], the interface conditions are of order 0 :
Taylor order 0 interface conditions (T0)
0 an;; —/(a.n;;)? +4cv
- — i : 14
Bl’] anm- 2v ( )
and B; ; is defined as is B; j, replacing n; ; by n; ;.
In [NRAS95], [NR95], the interface conditions are of order 2 :
Taylor order 2 interface conditions (T2)
0 My — )2 +4 0
Bi,j — _an; (a’ nl,]) CV a. Tz,] (15)
on; ; 2v 1/ (am;;)? +4cv 074
B v 1+ (@.7i;)? ) 0?
(a.n; ;)% +4ev (a.n;;)? +4ev” 013

and B;; is defined as is B; j, replacing n; ; by n;; and 7;; by 7 ;.

Conditions (1.4), (1.5) can be seen as Taylor approximations of order 0 and
order 2, for low wave numbers, of the artificial boundary conditions [EM77], [Hal86]:
Q=R xR, 2 =Rt xR, and I'; ; is the axis z = 0, the artificial boundary
conditions are 8, — A~, 8, — AT, with A~ the Dirichlet to Neumann operator of the
right half plane defined as A~ : ug — g—:(O,y) with w such as
Lw) =0, z>0, w(0,y) =uo(y) at £ =0, and w bounded at infinity

The Dirichlet to Neumann operator of the left half plane AT is defined in the same
way. When the coefficients of £ are constant, if we denote by Af, and A, the Taylor
approximations of order 0 or 2, for low wave numbers, of AT and A, they satisfy:

AL +Ag, =AY +A = % (1.6)

Then, B;; = 0, — A, Bji = 0, — A},, and B;; can be obtained from B; ;, using
(1.6). So in (1.3) the coefficients ¢y, c5, cg are obtained from ¢, ¢z, c3 (or reciprocally).
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In [TB94], interface operators of order 1 are used : ¢3 = ¢g = 0. The coefficients
1, C2, Cq, C5 are chosen in order to minimize the convergence rate. As the minimization
problem on the four parameters is very costly, an approximate minimization problem
is solved, but it may lead to non convergence in some cases. The link between B; ; and
B;,; as in (1.6) has not been done.

2 0OO02 interface conditions

In this paper, the interface conditions are of order 2 as in (1.3) and are chosen as
follows:

e First we link B; ; and B;; as in (1.6). This means that c4,cs, cg are obtained
from ¢y, c2, c3:
c1 = cl(a.ni,j,a.‘ri,j), Coy = CQ(a.n,-,j,a.Ti,j), C3 = 03(a.nz~,j,a.n,j), and
_ an,;,; _ _ S 1
cs =c1 + ", ¢5 = c2(a.m;;,a.1;;), cg = c3(a.n;;,a.1j;). So we only
have to determine ¢y, co, c3.

a.mn; ;—/ (a.ni,]‘)2+4cll

e Then, we choose ¢; = — o
is exact for the lowest wave number.

e Finally, we compute ¢; and ¢; by minimizing the convergence rate of the
Schwarz algorithm in the case of 2 subdomains and constant coefficients.

so that the interface condition

Advantages (N subdomains case): The minimization problem on ¢; and c3 is on a set
of conditions which verify (1.6), i.e. on a set of conditions which ensures (adding a
condition on the sign of ¢3) the convergence of the Schwarz algorithm (see [NN94]). So
an approximate minimization problem on the same set of conditions will also ensure
the convergence. In the case of 2 subdomains, the convergence is proved by computing
explicitely the convergence rate. When the domain is decomposed in N subdomains
(strips) the convergence rate is estimated in function of the convergence rate of the 2
subdomain case and the decomposition geometry. The convergence is proved by using
techniques issued from formal language theory (see [NN94]).

The minimization problem on ¢s; and c¢3 is sought in term of wave numbers k:

we minimize the maximum of the convergence rate function k& — p(k,cs,c3) on the
interval |k| < ke where ko, is a given constant, k., > 0 (in the discrete case,
Emaz = €228%2% where h is the mesh size in y) (see [Jap96]).
The study of the function p leads us to determine only one parameter, which is a
low wave number k;,; (see Figure 1). This parameter is computed with a dichotomy
algorithm, which is not costly. With k;,; we can compute co = c2(kint) and ¢z =
cs(kint)-

Theorem 2.1 Let Q be decomposed in 2 subdomains, with a € R, a # 0, b =0

and ¢ > 0 in (1.1). Let kynax = § where h is the mesh size, and let (pmae)1c be the

mazimum of p on 0 < k < kyuqp with the interface condition IC. Let a =1+ %.

Then, when h — 0:

(Pmaz) To=1- %a%(#)a PmaZ)TQ ~1-
11 |a|

(Pmaz) 002~ 1 — 8as (7 151)s

N

ai(lahy

SIS

=~
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Figure 1 Rate of convergence versus wave numbers k, 0 <k < kmax = T
a=1,b=1,v=001, c=0, h =5
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So the condition number is asymptotically much better for OO2 than for Taylor TO
or T2 interface conditions.

3 Numerical results

Let the problem be: L(u)=f, 0<z<1,0<y<1

with u(0,y) = 2%(1,y) =0, 0 <y <1, g—;(x,l) =0, u(z,0)=1, 0<z < 1.

We consider a rectangular finite difference grid with a mesh size h. The operator £
and B;; are discretized by a standard upwind difference scheme (see [Fle90]). The
unit square is decomposed into N rectangles with one overlapping mesh cell.
Remark: another discretization could be used, with a non-overlapping decomposition.
Algorithm :

The interface problem (1.2) is solved by a Bicgstab algorithm. This involves solving
N independant subproblems which can be done in parallel. Each subproblem is solved
by a direct method:

- First we compute the LU factorization of the matrix corresponding to the dis-
cretization of the subproblems. This is a parallel task.

- Then at each iteration of Bicgstab, we solve in parallel the subproblems using this
LU factorization.

Important point: Each iteration has the same cost for all the interface conditions
002,(1.4),(1.5),and Dirichlet, because the use of order 2 conditions does not increase
the bandwidth of the local matrix.

We are more interested in the stationary case, so we take ¢ = 107° in the fol-
lowing results. The convergence is also significantly better when ¢ >> 1.

The OO2 interface conditions give a significantly better convergence which is
independant of the convection velocity angle to the interfaces (see Figure 2 and
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Figure 3).

Figure 2 Error versus the number of iterations. Normal velocity to the interfaces,
16 x 1 subdomains, a =y, b=10, v =0.01, c=10"°%, h = ;.
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One of the advantages to have a convergence independant of the convection velocity
angle to the interfaces is that for a given number of subdomains, the decomposition
of the domain (in strips or in rectangles) doesn’t affect the convergence (see Figures
2 and 4).

Figure 5 shows that the convergence with OO2 interface conditions is significantly
better for a more general convection velocity (a rotating velocity) with a decomposition
in 8 x 4 rectangles. The OO2 interface conditions are easy to implement and not cost
increasing at each iteration. We observed numerically that the convergence with the
002 interface conditions is also practically independant of the viscosity v.

Moreover the OO2 interface conditions can be seen as a preconditioner for iterative
methods, and the convergence for the studied numerical cases is independent of the
mesh size (see Figures 6 and 7).
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Figure 3 Error versus the number of iterations. Tangential velocity to the

interfaces, 16 x 1 subdomains, a =y, b=0, v =0.01, ¢c=10"%, h = ﬁ.
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Figure 4 Error versus the number of iterations.
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4 x 4 subdomains, a =y, b=0, v =0.01, ¢=10"°, h = 5%, with conditions of
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Figure 5 Error versus the number of iteration.

8 x 4 subdomains, v =0.01, ¢c=0, h = ﬁ,
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NUMBER OF ITERATION

Figure 6 Number of iterations versus the mesh size.
16 x 1 subdomains, a =y, b=0, v =0.01, ¢ = 10"%, max (Error) < 107°
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Figure 7 Number of iterations versus the mesh size.
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