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This paper reports on methods of students’ justifications of their solution to a 
problem in the area of combinatorics.  From the analysis of the problem solving of 
150 students in a variety of settings from high-school to graduate study, four major 
forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) 
Elimination Argument, and (4) Analytic Method  (use of formulas.) The predominant 
method for students was reasoning by cases where they used the heuristic of 
controlling for variables or a recursive argument.  Only graduate students and one 
senior undergraduate student1 correctly used analytical methods. 
INTRODUCTION
It is hardly disputable that justification and reasoning about solutions is an important 
goal for students doing mathematics.  In recent years, attention to student thinking 
has suggested that there are rich and creative differences in students’ approaches to 
problem solving and in students’ supporting the solutions they pose.  The purpose of 
this study is to describe several of these approaches from a diverse population of 
students in the area of combinatorics. In particular, we will: (1) analyze the different 
approaches used by the students to solve the problem and justify their solution; (2) 
consider how the challenge to justify triggered in students’ reflection on their 
reasoning, and (3) present arguments from a wide variety of students ranging from 
second year high-school to graduate study. 
THEORETICAL FRAMEWORK 
In order to reach conclusions about a student’s level of understanding a teacher must 
encourage students to justify what they say and do to reveal their thinking and logic 
(Pirie & Kieren, 1992).  Too often, in traditional mathematics classrooms, the answer 
key or the teacher is the source of authority about the correctness of answers, and 
unfortunately, quick, right answers are often valued more than the thinking that leads 
to the answer. Requests to explain their thinking are posed to students frequently only 
when errors have been made. Sanchez and Sacristan concluded from studying the 
written work of students that students are not accustomed to expressing mathematical 
ideas, and offer as an explanation that the emphasis mainly is on producing correct 
solutions (2003). One consequence is that students develop the belief that all 
problems can be solved in a short amount of time and they will not persist if a 
problem cannot be solved quickly.  In a survey by Schoenfeld (1989) of high school 

                                          
1 Robert was a senior undergraduate student who had extensive experience working with tower 
problems as a high-school student in Rutgers University longitudinal Study. 
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students who were asked to respond to the question of what is a reasonable amount of 
time to work on a problem before they knew it was impossible, the largest time 
response given was twenty minutes and the average was twelve.
Another factor that might explain students’ hesitancy and discomfort in justifying 
ideas is a de-emphasis on explanation of problems that are correctly solved. 
McCrone, Martin, Dindyal, & Wallace (2002) argue for a change in pedagogy in 
which teachers focus on the problem structure and the justification.  They suggest 
that in doing so, students will have a better understanding of the underlying 
mathematical concepts and will develop a better sense of the need for proving. 
It is our view that the call for explanation and justification triggers in students the 
need for sense making and reflection. Problems posed to students that require 
accountability of their ideas lead to successful justification of them. 
THE STUDY
The following problem was originally posed by a tenth-grade student, Ankur, to, four 
classmates in fall 1997. Ankur and his classmates were working together as part of a 
after school component of a Rutgers University longitudinal study (Maher, 2002). 

How many towers can you build, four high, selecting from cubes available in three 
different colors, so that the resulting towers contain at least one cube of each color?  List 
all the possible towers.  Justify that you have them all. 

When the problem was originally presented by Ankur, the students partitioned 
themselves into 2 groups and 3 forms of reasoning evolved. Since 1997, the same 
problem was then given to several cohorts of students enrolled in liberal arts 
mathematics and in graduate mathematics-education courses. Students presented their 
written work and were invited to give further verbal explanations and clarifications of 
their solutions.  Researcher notes provided the data for the oral explanations. 
Analysis of the written and oral work of about 150 students indicates the forms of 
reasoning and justifications offered. In this report the reasoning of 22 students is 
described. The students have been selected as representative of the larger collection 
of data.
RESULTS
The justifications that the students used to show that they had indeed found all 
possible towers can be placed into four major classifications  (1) Justification by 
Cases, (2) Inductive Argument, (3) Elimination Argument, and (4) Analytic Method
(use of formulas.)  Representative solutions from the high-school (H), undergraduate 
(U) and graduate (G) students are presented according to the general arguments 
provided: 

Justifications by Cases
(H)-Romina, Jeff and Brian’s Solution. They indicated that the set of all possible 
towers could be partitioned into six groups. Since every tower would have two of one 
color, they focused on the placement of the duplicate color, using x’s and 0’s. They 
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indicated that for each placement of the first, or duplicate color, there would be two 
possible combinations for the second and third colors.  They also indicated that these 
combinations would have two opposite arrangements for the 2nd and 3rd colors.
They then tripled the 12 possibilities to represent every color, concluding that there 
should be a total of 36.  
(U)-Joanne and Donna’s Solution:  If there are three colors available to make stacks 
of four, two blocks will always be the same color. Put like cubes in 1st and 4th

position. Then put the like colors in positions 1 and 3. Next put the like colors in 
positions 1 and 2. Next put the like colors in positions 2 and 3.Next put the like 
colors in positions 3 and 4. Finally put the like colors in positions 2 and 4. There 
were 6 towers for each position of the blocks of the same color because there are 3 
possibilities for the blocks of the same color and two possibilities for the remaining 
spots that are not taken by the blocks of the same color. Knowing that there are 6 
towers for each color combination and 6 color combinations gives 36 towers. 
(U)-Rob and Jessica’s Solution: Working with two yellow cubes, fix the top cube as 
Blue and then moved the Red cube into the second, third and fourth positions for a 
total of three towers.  Fix the Red cube on top and moved the Blue cube into the 
second, third and fourth positions to create three more towers.  Place a Yellow cube 
on top and placed the second Yellow cube in the second, third and fourth position. 
Each position of the second Yellow cube will produce two towers because the 
position of the Red cube and the Blue cube can be reversed. This gives six more 
towers for a total of twelve towers with two Yellow cubes. Repeat this process for 
two Red cubes and two Blue cubes to give a total of thirty-six towers. There has to be 
one color that appears twice, while the other two colors appear once.  
(U)-Marie’s Solution. If the Blue cube appears twice first fix the position of the Blue 
cube on the top and move the second Blue cube to all possible positions. There are 
two towers for each position because the other two colors can be reversed. Fix the 
first Blue cube in the second position and move the second Blue cube into two 
possible positions. Again each position will give two towers. Finally place the two 
Blue cubes in the third and fourth position to give two more towers. This process can 
be repeated for each of the other colors. 
(U)-Bob’s 2nd Solution. There has to be one color that appears twice, while the other 
two colors appear once. If the Blue cube appears twice keep the two Blue cubes 
together and move to all possible positions. There are two towers for each position 
because the other two colors can be reversed. Next separate the two Blue cubes by 
one and move into all possible positions. Again each position will give two towers. 
Finally place the two Blue cubes in the first and fourth position, separated by two 
cubes, to give two more towers. This process can be repeated for each of the other 
colors. [Note: Bob originally used an inductive method to produce his towers (see 
below) and then later gave a cases argument.] 
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 (U)-April’s Solution. Start with Blue on the top. If there is also a Blue in the second 
position, the third and fourth position must be PW or WP in order to have all three 
colors in the tower. If the second cube is Purple the other two cubes must have at 
least one White cube. They can be WW, BW, WB, WP or PW.  If the second cube is 
White the other two cubes must have at least one Purple cube. They can be PP, PB, 
BP, PW or WP. This gives 12 combinations with Blue on top. There are also 12 
combinations with White on top and 12 combinations with Purple on top for a total of 
36 towers. 
(U)-Bernadette’s Solution. Place the Blue cube in the first position of the tower. If 
there are two blue cubes, the second blue cube can be in the second, third or fourth 
position. There are two towers for each position because the other two colors can be 
reversed. If there are two Purple cubes they can be together in the 3rd and 4th position 
or the 2nd and 3rd position or spit between the 2nd and 4th position. The remaining cube 
must be White.  Similarly if there are two White cubes they can be together in the 2nd

and 3rd position or the 3rd and 4th position or spit between the 2nd and 4th position. The 
remaining cube must be Purple. This gives a total of 12 towers with blue on the 
bottom. There are also 12 towers with Purple on the bottom and 12 towers with 
White on the bottom for a total of 36 towers. 
 (G)-Tim’s Solution. Given three colors Red Yellow and Green, towers 4 tall 
containing at least one cube of every color will yield towers with I Red, I Yellow. 2 
Green: 1 Red, 2 Yellow, 1 Green; and 2 Red, 1 Yellow, 1 Green. All these cases will 
be equal in number. Consider 2 Red and 2 Green. There are 6 towers that are 4 tall 
with 2 Red and 2 Green. Now exchange a Yellow for one of the Red’s in each tower. 
There are two ways to do this for each tower. Therefore there are 2 � 6 = 12 towers of 
1 Red, 1 Yellow, 2 Green; 1 Red, 2 Yellow, 1 Green; and 2 Red, 1 Yellow, 1 Green, 
for a total of 36.
(G)-Traci’s Solution Find all permutations with A on the bottom then all with B on 
the bottom then all with C on the bottom. From Traci’s diagram and annotations one 
can see that she started by fixing the first three rows as color ABC. Then row 4 can 
be any one of the three colors. Keeping the first two rows as A and B the remaining 
two rows can either be AC or BC because we have already accounted for all towers 
with C in the third row and we have to use all three colors.  Thus we have a total of 5 
towers with AB on the bottom. She next fixed the first three rows as ACB. Again row 
4 can be any one of the three colors. Keeping the first two rows as A and C the 
remaining two rows can either be AB or CB because we have already accounted for 
all towers with B in the third row and we have to use all three colors.  Thus we have a 
total of 5 towers with AC on the bottom. If we fix the bottom as AA the top two 
blocks can only be BC or CB because we must use all three colors. This gives us a 
total of 12 towers with A on the bottom. There are also 12 with B on the bottom and 
12 with C on the bottom for a total of 36 towers. 
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Induction Arguments
(U)-Errol’s Solution. Errol used an inductive method to produce his towers.  He said 
that you could fix the first level as Red.  The second level could then be Red, Yellow 
or Blue.  If the second level were Red than the third and fourth level would have the 
other two colors Yellow Blue or Blue Yellow.  If the second level were Blue then the 
third and fourth level would contain at least one Yellow.  It could be Yellow Yellow, 
Yellow Red or Red Yellow, Yellow Blue or Blue Yellow.  Similarly if the second 
level were Yellow the third and fourth level could be Blue Blue, Blue Red or Red 
Blue, Blue Yellow or Yellow Blue.  This gives twelve combinations which you 
multiply by three since the first cube could be any of the three colors.
(U)-Christina’s Solution. She started by making towers two high by adding A, B, C 
to each of the three colors. Start with towers with color A on the top. Add a block of 
each color to each of these towers. Add a block of each color to resulting three tall 
towers eliminating tower with 3 of one color because it would be impossible to have 
three different colors. Eliminate resulting 4-tall towers that don’t have all three 
colors. Do the same thing starting with towers with color B on top. Do the same thing 
starting with towers with color C on top. 
 (U)-Bob’s 1st Solution. Start with six towers that are three-tall with all three colors. 
Place a Red Yellow or Blue cube on the bottom of each tower. This will give all 
towers with two of the same color on the bottom and the other colors in all possible 
positions. Place a Red Yellow or Blue cube on the top of each of the original six 
towers eliminating the duplicate that you get from having the same color on the top 
and bottom of the tower. This gives all towers with two of the same color on the top 
of the tower. [Note: When Bob did the problem this way he missed the towers with 
the duplicated color in the middle. He found his missing towers when he changed to a 
cases approach (Glass, 2001).] 
(G)-Frances’ Solution. Start with the first block as Red. Then the 2nd could be Red, 
Yellow, or Blue. If the 2nd is Red the third could only be Yellow or Blue. If the third 
is Yellow then the 4th must be Blue If the 3rd is Blue then the 4th must be Yellow. If 
the second is Blue then the 3rd could be Red Yellow or Blue. If Red The 4th could 
only be Yellow. If Blue the 4th could only be Yellow If Yellow the 4th could be Red 
Yellow or Blue. If the 2nd is Yellow then the third could be Red Yellow or Blue If 
Red, the last could only be Blue. If Yellow the last could only be Blue. If Blue the 
last could be Red Yellow or Blue. The same would happen if the first block were 
Yellow or Blue .
Elimination Arguments
(U)-Penny’s Solution. Penny listed all towers four tall with 3 colors using a tree 
diagram, and then crossed off all towers that did not meet her criteria. Her argument 
was a combination of inductive reasoning with elimination. 
(U)-Robert’s Solution.  Start with the number of towers four tall with 3 colors, 34.
Subtract the 3 towers with exactly one color 3(14). Subtract the towers four tall with 
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two colors, with at least one of each color. There are 24 four tall towers with two 
colors, but you need to subtract 2 or 2(14) towers with one color or the other. There 
are three combinations of two colors (Red/Blue, Red/Green, Blue/Green) I multiplied 
it by three. So the number of towers with two of three colors at least one of each 
color, four tall r is 3(24 – 2(14) . The total number with at least I of each color is 34 –
3( 24 – 2 (14)).- 3(14) = 34 – 45 = 36. 
(G)-Liz’s Solution. Start with 34 = 81 towers 4 tall when choosing from 3 colors. 
Subtract out the ones that don’t have at least 3 colors.  There are 24 = 16 with just 
Red and Green, 1 all Red and 1 all Green. There are 24 = 16 with just Red and Blue, 1 
all Red and 1 all Blue. There are 24 = 16 with just Green and Blue, 1 all Green and 1 
all Blue.  There are three duplicates. So there are 3 • 16 – 3 = 45 without at most 2 
colors. 81 – 45 = 36 with at least 1 of each color.
(G)-Mary’s Solution. Consider towers 4-tall choosing from 3 colors. 34  = 81. At least 
one of each color must be present. Go back to towers 4 high choosing from 2 colors. 
Red and Blue, 24 = 16. Red and Yellow, 24 = 16. Yellow and Blue, 24 = 16.  Since 
only 2 colors are represented in each of these cases subtract. 81 – 3(16) = 33. I 
subtracted too many. Red and Blue, Red and Yellow, Yellow and Blue. Each tower 
of one color appears twice so add three back in and end up with 36. 
Analytic Method
(G)-Leana’s Solution. I used a numerical formula. How many ways can you arrange 
AABC = 4! Divide by 2! To eliminate repeats. You get 4!/2!= 12 towers when A is 
the color repeated . The same when either B or C is the color repeated for a total of 
36 towers. 
CONCLUSIONS
The forms of reasoning displayed by the students in this study can be placed into four 
major categories; however there was a great deal of variation within these categories 
and there is also some overlap between categories. The majority of students that used 
an elimination method used formulas to calculate the number of towers. The other 
student that used an elimination method used an inductive method to generate her list 
of all 81 towers that were 4 tall with three colors. All but two of the students who 
choose to do a justification by cases did so by controlling for variables. Marie and 
Bob, instead, used a recursive argument in which they focused on a fixed cubed and 
rotated it exhaustively for particular cases. The approach to arguing by cases varied. 
Students chose different cases into which to separate the towers and different 
variables for which to control as they built their justification. There were also 
variations within the other approaches. For example, students started their inductive 
argument at different tower heights. Errol and Francis started at height one; Christina 
started with height two; and Bob started at height three, but missed some of the 
towers as a result. He eventually resolved the discrepancy when he considered the 
method of cases. Bob was the only student that used two different methods and it 
served him well in finding his discrepancy from the inductive method.  
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The sharing of ideas was an important component in students’ problem solving. It 
provided them with the opportunity to review their work, reflect on their ideas, and 
sometimes to modify their results. While the written work does not show the 
interchange of ideas that came about as students shared their work with others, the 
invitation to students to share their ideas resulted in a more careful review of the 
work and a greater confidence in the reasoning offered. For example, it was only 
after sharing her justification with the instructor that April became confident that she 
had indeed found all possible towers. In some cases, the discussion revealed to 
students flaws in their reasoning, resulting in a re-examination of the solution 
offered. As an illustration, the process of justifying that he had the correct number of 
towers enabled Bob to realize that his inductive method of producing towers had 
caused him to miss several combinations. In this context, we can observe how the 
process of justifying ones' answers can enable students to reflect upon what they have 
done and whether their answer is reasonable. Limitations in space prohibit a 
presentation of the interchange of ideas that came about as students shared their work 
with others. 
While the solutions generally fell into the four categories, the distribution of correct 
solutions was not uniform according to category.  Few students used formulas and 
most of those students also used an elimination argument.  The correct use of 
formulas was limited to graduate students and one senior under graduate student. 
Undergraduates successfully used arguments by cases and induction, and the 
predominate method of solution was reasoning by cases.  
DISCUSSION AND IMPLICATIONS 
Rich problems can be challenging and engaging for students at a wide range of 
levels. Ankur’s challenge, a problem initially proposed to a group of high-school 
students, has turned out to be of interest to students at many levels and has resulted in 
multiple kinds of thoughtful arguments. An important feature of this problem was to  
account for all of the towers and then to build arguments that are convincing to 
oneself and others. It may be that problems that call for explanation and justification 
trigger sense making in students. We suggest that multiple opportunities for students 
to express, revise, and share in writing, and in a verbal exchange of ideas are 
important contributors. Therefore we recommend that instructors consider writing 
problems that invite students to explain and justify their ideas in writing and in the 
verbal sharing of results. 
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