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This paper presents the conceptualisation of infinity as a multi-faceted concept, discussing 
two examples. The first is from history and illustrates the work of Euler, when using infinity 
in an algebraic context. The second sketches an activity in a school context, namely students 
who approach the definite integral with symbolic-graphic calculators. Analysing the 
similarities between the examples, the authors widen the embodied cognition approach to 
infinity, based on the so called Basic Metaphor of Infinity of Lakoff and Nùñez. In fact, they 
consider also the manipulation of symbols, the use of virtual and real artefacts (in one case, 
the algebraic machine, in the other, the calculator) and their interpretation as instruments. 

INFINITY
Infinity in the class is a very intriguing guest, which fascinates and challenges pupils 
and teachers. The existing research (see Boero et al., 2003 for some references) 
underlines the complexity of its conceptualisation, pointing out its multi-faceted 
sides. For example, it reveals sensible to textual and contextual aspects (Monagham, 
2001), to classroom social interaction situations, to the cultural environment lived by 
pupils (Boero et al., ibid.). Also from the epistemological side the infinite reveals 
intriguing features: many mathematical concepts have been generated speculating on 
infinite processes and with big jumps between the current ideas in the culture of the 
time and the new ones (see Jahnke, 2001). Examples of this kind are: the discovery of 
irrationals in the Greek culture, the creation of the points at infinity in geometry 
(from XVII c.), the birth and development of infinitesimal calculus (from XVII c.) 
and of set theory (XIX c.). Roughly speaking, both the cognitive and the 
epistemological analysis show a persisting conflict between two main approaches to 
infinity, namely the potential and the actual one. According to the former, infinite is 
as an ongoing process that never terminates (e.g. a sequence of decimal 
approximation of � or �2). According to the latter, infinity is conceptualised as a 
given object (e.g., the number � or �2 per se).
The history shows moments where the relationships between the two approaches live 
together in the ideas of the time and moments where the conflict is more apparent 
within mathematics or between (some parts of) mathematics and other disciplines 
(e.g. philosophy). We find an example of the first type in the origin of infinitesimal 
calculus by Leibniz and Newton (since 1670’s), while examples of the second type 
are given by the critique of Bishop Berkeley to infinitesimal methods in 1734 (mainly 
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from the philosophical view) or by the rigour program by Weierstrass and his school 
in the 1870’s (within mathematics). 

THEORETICAL FRAMEWORK 
Some research has pointed out more or less specific cognitive mechanisms, like 
analogies and metaphors, which seem to support the relationships between the two 
approaches and help the transition from one to the other. For important examples, see 
the pioneer book by Polya (1954, especially Ch. 2), the work by Fischbein (1987, 
especially Ch. 12) and the recent book by Lakoff and Núñez (2000, Ch. 8).
Lakoff and Núñez have introduced the so-called Basic Metaphor of Infinity (BMI), 
which arises when one conceptualises actual infinity as the result of an iterative 
process (Lakoff & Nùñez, 2000, p. 159). The two domains (source and target) of the 
metaphor are characterised by an ordinary iterative process with an indefinite number 
of iterations, each of which has an initial state and a resultant state. The crucial effect 
of the metaphor is to add to the target domain the completion of the process and its 
resultant state as a unique final state. This metaphor allows to conceptualise infinity 
in terms of the unique and final result of a process (Lakoff and Nùñez, 2000, p.160): 

Via the BMI, infinity is converted from an open-ended process to a specific, unique entity. 

Lakoff and Nùñez point out some important general features in the conceptualisation 
of the infinity. But their analysis should be refined further, for example adding: “the 
very idiosyncratic nature of students’ individual conceptions” (Sinclair & Schiralli, 
2003); the interactions between students and artefacts in a mathematical activity and 
the cultural environment in which the activity takes place (Rabardel, 1995); the 
subject’s activity, which may be “learning, doing or using mathematics” (Sinclair & 
Schiralli, 2003). Moreover, not only conceptualisation changes, but also the very 
nature of the mathematical concept of infinity varies substantially with respect to the 
context. The infinity of integers, that of the continuum, the infinite limit of a real 
function, the point at infinity in projective geometry have been generated by very 
different processes, whose nature can be lost, if one considers only the BMI. Infinity 
possibly is not a single concept, but a network of concepts: the word itself collects a 
lot of meanings, each with a different story, and the use of the singular word has a 
risk, namely to hide its pluralities of meanings. 
Our aim is to present infinity as a multi-faceted concept, describing two examples: 
one from history, namely Euler’s work about infinity, the other from a teaching 
experiment at school, aimed at constructing the concept of definite integral, through 
approximate area measurements. In the end a comparison between the two examples 
is sketched, discussing the possible integration of the embodied approach within 
other theoretical elements, namely the analysis of symbols and artefacts: in fact, both 
can usefully support the conceptualisation of infinity.  
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AN EXAMPLE FROM THE HISTORY 
This example comes from Euler fascinating book, Introductio in Analysin Infinitorum
(Euler, 1748), whose title (Introduction to Analysis of Infinities) underlines that there 
are many infinities; in fact, Euler analyses three possible situation in which infinite 
occurs: infinite series, infinite products and continued fractions. The algebraic 
context where Euler develops his computations features infinite numbers in a very 
specific way. Their ultimate meaning is acquired through two levels of performing 
abstract calculation:
(i) Letters for variables (“which can take any value”, ibid., #2) are introduced at the 
level of the mathematical language to represent all possible numbers, infinite ones 
included; they can be manipulated according to the usual machinery of algebra. 
Through letters the basic concept of function is introduced, as “an analytic expression 
composed in any way whatsoever of the variable quantity and numbers or constant 
quantities” (ibid., #5): namely a function is given through its form, which can vary 
through suitable transformations (Ch. II).  
(ii) The very concept of infinity is introduced at the meta-level to manipulate the 
forms of the functions through the algebraic laws; so one can add or multiply infinite 
terms. For example (#156), one can add the infinitely small quantity x/j (x finite, j 
infinite) j/2 times and get the finite term x/2. Or one can express the rational function 
a/(���z) as the infinite series that results “by a continuing division procedure” (ibid.,
#60), which gives the value of the function. “Even the nature of transcendental 
functions seems to be better understood when it is expressed in this form [an infinite 
series of powers], even though it is an infinite expression” (ibid., #59). 
It is the interplay between the two levels (i) and (ii) which allows Euler to develop his 
analysis of infinity, as a study of the different forms of functions. For example, in 
Chapter VII to express Exponentials and Logarithms through series he writes:

114. Since a0 = 1,… it follows that if the exponent is infinitely small and positive, then 
the power also exceeds 1 by an infinitely small number. Let � be an infinitely small 
number, or a fraction so small that, although not equal to zero, still a� = 1 + �, where �
is also an infinitely small number. From the preceding chapter we know that that unless �
were infinitely small, then neither � would be infinitely small. It follows that � = �, or �
> �, or  � < �. …so let � = k�. Then we have a� = 1 + k�, and …we have � = 
log(1+k�).

115. …we have aj� = (1+k�)j, whatever value we assign to j. It follows that                  
aj� = 1 + j/1 k� + j(j-1)/1�2 k2�2 + j(j-1)(j-2)/1�2�3 k3�3+ …. If now we let j = z/�, where 
z denote any finite number, since � is infinitely small, then j is infinitely large.…When 
we substitute z/j for then az = 1 + 1/1 kz + 1(j-1)/1�2j k2z2 + 1(j-1)(j-2)/1�2j�3j k3z3+ …. 
This equation is true provided an infinitely large number is substituted for j, but then k is 
a finite number depending on a, as we have just seen. 

And later to sum infinite series he writes in Chapter X: 
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165. If 1 + Az + Bz2 + Cz3 + Dz4 +…= ����z�����z�����z�����z����, then these factors, 
whether they be finite or infinite in number, must produce the expression, when they are 
actually multiplied. It follows that the coefficient A is equal to the sum 
�������������������… The coefficient B is equal to the sum of the products taken two at a 
time. Hence B �������������������������������… All of this is clear from ordinary 
algebra.

As it is well known, Euler uses this type of arguments to prove that: 
�2/6=1+1/4+1/9+1/16+ …(ibid., #167). The excerpts clearly show that the possibility 
of managing the new entities within a suitable symbolic register allows Euler to 
acquire new mathematical results in the field of transcendental functions and new 
operative insights in the concept of infinity. The symbolic register is the machinery of 
algebra, used to make infinite sums and products (the infinite is at the meta-level 
previously described). Euler is particularly attentive to make only finite local 
computations: it is at the level of a global insight that he uses infinite to make general 
considerations, which allow him to introduce the new result within the old frame.  
This analysis goes a step beyond the usual comments (Polya, 1954; Steiner, 1975; 
Fischbein, 1987), which underline the analogy that Euler puts forward between the 
finite and the infinite, extending an algebraic rule “from equations of finite degrees to 
an equation of an infinite degree” (Fischbein, p. 132). However, the extension of the 
law is built up controlling its meaningfulness with respect to the algebraic 
manipulations of the formulas, and not because of abstract ‘transfer’ principles. 
Lakoff & Nùñez (2000) underline that “Infinite Sums Are Limits of Infinite 
Sequences of Partial Sums” (p. 197). This aspect of approximation is present in Euler 
more times, but he is seeking for understanding the infinite by the algebraic exactness 
(Euler, Preface): 

Although Analysis does not require an exhaustive knowledge of algebra, even of all the 
algebraic techniques so far discovered, still there are topics whose consideration prepares 
a student for deeper understanding” and can allow people avoiding the “strange ideas 
[that they entertain] about the concept of infinity. 

AN EXAMPLE FROM THE CLASSROOM 
We describe now an example from the classroom, aimed at showing the 
conceptualisation of definite integral; it has been carried out through various 
activities based on approximate measures of areas under curves in the Cartesian 
plane, using before paper and pencil, then a technological artefact, namely the 
calculator TI89 (Robutti, 2003). The students, at the 12th grade of a scientific-oriented 
Italian school, are used to work in small groups, then to share the results in a class 
discussion led by the teacher. 
In the example described here, the students are working to evaluate the area under the 
graph of a given function. The task consists in the determination of the work made by 
a perfect gas during an isothermal transformation, represented by a hyperbola on the 
Cartesian plane (p,V) [1]. From the discussion about different procedures (obtained 
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by the students in the groups) to determine the work (the area under the hyperbola), 
the need of an algorithmic formula arose. A formula has an advantage respect to other 
non-algorithmic methods: it can be implemented in a program on the calculator. The 
teacher guides the various students’ interventions to converge on the method of 
rectangles under and over the function to approximate the area. After that, the 
students use the program (Figure 1) based on this calculation, in a group activity, to 
evaluate the area under the graph with different numbers of rectangles [2]. 

Figure 1 

The discussion following this activity was aimed to reflect on the degree of 
approximation with respect to the number of rectangles. 

Teacher: “Which was the best we said?” 
Andrea: “The last!” 
Teacher: “Why?” 
Andrea: “Because it has more intervals and then ... ” 
Stella: “Because it gets nearer to the area” 
Teacher: “But why is it so precise, if there are more intervals?” 
Andrea: “Because … with more intervals … it is possible to give a better 

approximation of the curve with a line going to a more …  microscopic, 
and then … nearer” 

The last phrase is interesting, because it reveals a passage from the global to the local 
properties of functions, as if Andrea could notice the local properties of a graph, after 
having observed the global ones, thanks to the sub-division of the interval on the x-
axis. The student has the intuition that the more the intervals, the better is the 
approximation of a curve with segments, which are closer to the curve. This intuition 
marks a first step in the conceptualisation of definite integral. The word 
"microscopic" reminds to the local approximation of curves with lines, that is the 
theoretical base of Calculus. The discussion continues with the next excerpts: 

Teacher: “The last is more precise: what does it mean saying more precise?” 
Andrea: “That it gets nearer to the average value” 
Students: “That it gets nearer to the real value”. “That it gets closer to the real value” 

The students come to a second step in the conceptualisation process: the idea that the 
last result of the program, which approximates the area, is more precise than all the 
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previous results, because “it gets nearer to the real value”. This step is characterised 
by the consciousness that there exists a “real value” for the area, even if they do not 
have it, at the moment, because they have seen a succession of values approximating 
the area, but not ‘the end of the story’. 
In the collective discussion after the group activity, the students are guided by the 
teacher toward connecting the approximate evaluation of the area with a theoretical 
content, which was developed in the previous year (the concept of real number as a 
pair of contiguous classes). 

Teacher: “What do we remember thinking back to this situation?” 
Stella: “The square root of 2” 
Teacher: “The square root of 2. That is, when did we construct what?” 
Francesco: “The contiguous classes” 

In the process of evaluating the area of the rectangles, the students recognise the 
construction of a real number, namely �2, and this is the third step in the 
conceptualisation. But it is not sufficient, because, if they understand the analogy 
between the approximate measure of the area and a real number, they are unable to 
bridge the gap between the approximation process of evaluation and the exact value 
of the area, namely between finite and infinite.
The students need to extend the possibilities of the real calculator in order to reach 
infinity, because at a certain moment Francesco says, substituting n with the symbol 
� in the program of rectangles on the real calculator:  

Francesco: “I put infinite instead of a number n, and the calculator answers undef” [3]). 

And when the response of the calculator is undef, because it is unable to produce this 
number, Francesco shares his surprise with his mates. 
In order to help students to pass to infinity, the teacher introduces an ideal calculator: 

Teacher: “Now I am in an ideal calculator, which doesn’t exist of course, and I 
imagine doing the calculation” 

Francesco: “At the end we will have a root” 
Teacher: “A root?” 
Francesco: “No, a number … What is the name of those numbers?” 
Teacher: “Real” 

Through the ideal calculator, conceived as an instrument (Rabardel, 1995) that does 
the same calculation as those done by the real calculator, but without limitations, 
neither in quantities, nor in the number of operations, it is possible to bridge the gap 
between finite and infinite. This is the fourth step in the conceptualisation: to 
recognise the analogy between the exact measure of the area and the concept of real 
number.  
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DISCUSSION 
The conceptualisation process described above reveals the Basic Metaphor of 
Infinity, in the particular case: Infinite Sums Are Limits of Infinite Sequences of 
Partial Sums (Lakoff & Nùñez, 2000; p. 197). But the BMI is not sufficient. We have 
shown that in both Euler’s and students other ingredients are essential to understand 
the process. The core of Euler’s process is the use of infinite sums and products, in 
which the coefficients must be equal, in that they represent different forms of the 
same function. More specifically, Euler did not use an identity principle in infinite 
formulas, but the necessity that the calculations produce the same results, showing in 
that a semiotic need, more than a structural one. And in doing this, he found his 
famous outcome about the powers of � as infinite sums of the inverses of powers of 
naturals (Euler, 1748, #168). The students, in the process of approximation, can use 
different values in the number of rectangles. In this way, they use the letter n in the 
program as a symbol for a variable (see in Figure 1, where arecc and ardif are 
programs depending on the endpoints of the interval, a and b, and on the number n of 
subdivision of the interval). They use different numbers, bigger and bigger, to reach a 
better approximation for the area, till Francesco tries to substitute �. And his attempt 
to insert � in the calculation process corresponds to a need of algebraic exactness, as 
in Euler’s process. The second element is the ideal calculator, which leads the 
students towards the measure of the area, thought of as a real number. The students 
already know �2 as a real number, and they are constructing a calculation process 
with the areas of rectangles, to approximate the area under a graph. The link between 
the two objects (the exact area and the real number), which represent the same 
concept, is ‘embodied’ by the ideal calculator, introduced by the teacher. A kind of  
ideal calculator exists also in Euler’s process, when he uses infinite algebraic 
computations as if they were finite. Euler’s ideal calculator is constituted by the 
algebraic computations extended to infinity, together with the use of infinity at the 
meta-level, as pointed out by him several times. Both the protagonists of the two 
examples (Euler and the classroom) had at disposal artefacts: in the former case, it 
was the set of algorithms of algebraic computation; in the latter it was the TI89. 
During the process the artefacts went through the process of instrumentation 
(Rabardel 1995) that transformed them into instruments.  The role of the artefacts is 
essential: they work at the meta-level, and help the subjects to “manipulate” or 
“conceive” infinity as well. The cases we have presented in this paper have been 
chosen in a list of examples that concern the parallel analysis of historical processes 
and of didactical processes concerning infinity. The artefacts that lead the 
manipulation and the conception of infinity may be different when different meanings 
of infinity are into play. Hence a local analysis is needed that adds the needed 
elements to the Basic Metaphor of Infinity (for examples see the case of 
perspectograph in Bartolini et al., in press; the case of abacus in Bartolini & Boni, 
2003).
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Endnotes
[+] Research funded by the MIUR and the Università di Torino and the Università di 
Modena e Reggio Emilia (COFIN03 n. 2003011072). 
[1] p and V mean pressure and volume of a gas respectively. 
[2] ardif indicates the area of the rectangles under the graph (defect approximation), 
while arecc refers to the rectangles over the graph (excess approximation). 
[3] The response undef means undefined, in the sense that the calculator has no 
possibility to produce an answer. 
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