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This paper addresses the first year of a three-year, longitudinal study which 
introduces mathematical modeling to young children and provides professional 
development for their teachers.  Four classes of third-graders (8 years of age) and 
their teachers participated in the first year of the program, which involved several 
preliminary modeling experiences followed by two comprehensive modeling 
problems over a span of 6 months. Regular teacher meetings involving preparatory 
workshops as well as reflective analyses were conducted. Analyses of children's 
responses (in group situations) to one of the modeling problems shows the 
spontaneous ways in which children engaged in sense making, problem posing, 
hypothesizing, and  mathematizing (including representing). It is argued that 
modeling tasks of the present type are powerful vehicles for developing important 
mathematical ideas and problem-solving processes in the early school years.

INTRODUCTION
Children today are facing a world that is shaped by increasingly complex, dynamic, 
and powerful systems of information in a knowledge-based economy (e.g., 
sophisticated buying, leasing, and loan plans that appear regularly in the media).
Being able to interpret and work with complex systems involves important 
mathematical processes that are under-emphasized in numerous mathematics 
curricula, such as constructing, explaining, justifying, predicting, conjecturing and 
representing, together with quantifying, coordinating, and organising data. Dealing 
with such systems also requires students to be able to work collaboratively on multi-
component projects in which planning, monitoring, assessing, and communicating 
results are essential to success (English, 2002; Lesh & Doerr, 2003). The primary 
school is the educational environment where all children should begin a meaningful 
development of these processes and skills (Jones, Langrall, Thornton, & Nisbet, 
2002).  However, as Jones et al. note, even the major periods of reform and 
enlightenment in primary mathematics do not seem to have given most children 
access to the deep ideas and key processes that lead to success beyond school. 
In the study addressed here, we introduced 8-year-olds to model-eliciting activities 
that focus on structural characteristics of phenomena (e.g. patterns, interactions, and 
relationships among elements) rather than surface features (e.g. biological, physical 
or artistic attributes). Our longitudinal study addresses both the children's and 
teachers’ growth across three years; however, for this paper we consider the 
development of the children’s mathematization processes as they worked their first 
modeling activity. One of our initial goals was to introduce the children (and their 
teachers) to mathematical modeling. To this end, we developed and implemented a 
number of preliminary modeling activities, which we describe later.
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MATHEMATICAL MODELLING FOR YOUNG LEARNERS
Traditionally, students are not introduced to mathematical modeling until they reach 
secondary school (Stillman, 1998). However, the rudiments of mathematical 
modeling can and should begin much earlier than this, where young children already 
have the foundational competencies on which modelling can be developed 
(Diezmann, Watters, & English, 2002; Lehrer & Schauble, 2003; NCTM, 2000). 
Young children’s problem-solving experiences have traditionally been limited to 
problems in which children apply a known procedure or follow a clearly defined 
pathway. When it comes to solving these problems, the “givens,” the goal, and the 
“legal” solution steps are usually specified unambiguously—that is, they can be 
interpreted in one and only one way.  This means that the interpretation process for 
the child has been minimalised or eliminated. The difficulty for the child is simply 
working out how to get from the given state to the goal state.  While not denying the 
importance of these existing problem experiences, they do not address adequately the 
mathematical knowledge, processes, representational fluency, and social skills that 
our children need for the 21st century (English, 2002; Steen, 2001). An important 
component of problem solving in today’s world is interpreting the problem situation, 
dealing with ambiguous or incomplete information, identifying constraints on 
solutions, and visualising and evaluating possible end-products.   
Mathematical modeling takes children beyond basic problem solving where meaning 
must be made from symbolically described word problems, to authentic situations 
that need to be interpreted and described in mathematical ways (Lesh, 2001). At the 
same time, these modeling activities encourage multiple solution approaches and call 
for multifaceted products.  Another important feature of these activities is that key 
mathematical constructs are embedded within the problem context and are elicited by 
the children as they work the problem. Children not only have to work out how to 
reach the goal state but also have to interpret the goal itself as well as all of the given 
information, some of which might be displayed in representational form (e.g, tables 
of data). Each of these aspects might be incomplete, ambiguous, or undefined; 
furthermore, there might be too much or too little data, and visual representations 
might be difficult to interpret (as in real-world situations).  When presented with 
information of this nature, children might make unwarranted assumptions or might 
impose inappropriate constraints on the products they are to develop.
Modeling activities for children are also social experiences (Zawojewski, Lesh, & 
English, 2002) and are specifically designed for small-group work, where children 
are required to develop explicitly sharable products that involve descriptions, 
explanations, justifications, and mathematical representations. Numerous questions, 
conjectures, conflicts, revisions, and resolutions arise as children develop, assess, and 
prepare to communicate their products.  Because the products are to be shared with 
and used by others, they must hold up under the scrutiny of the team members.   
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RESEARCH DESIGN AND APPROACH

The study is using multilevel collaboration, which employs the structure of the 
multitiered teaching experiments of Lesh and Kelly (2000), and incorporates Simon’s 
(2000) case study approach to teacher development.  Among the features of 
multilevel collaboration is a focus on the developing knowledge of all participants, 
who work as co-investigators operating at different levels of learning (English, 2003).
At the first level of learning, children work on sets of modelling activities, which 
engage them in constructing, refining, and applying mathematical models. At the 
second and third levels respectively, research students and classroom teachers work 
collaboratively with the researchers in preparing and implementing the child 
activities. At the fourth level, the researchers observe, interpret, and document the 
knowledge development of all participants. Multilevel collaboration is most suitable 
for this study, as it caters for complex learning environments undergoing change, 
where the mechanisms of development and the interactions among entities are of 
primary interest (Salomon, Perkins, & Globerson, 1991).

Participants: Four third-grade classes (8 years old) and their teachers participated in 
the first year of the study. The classes represented the entire cohort of third graders in 
a school situated in a middle-class suburb of Brisbane, Australia. The school 
principal and assistant principal provided strong support for the project’s 
implementation. They were informed of the progress of the study, and attended some 
of the workshops and debriefing meetings that we conducted with the teachers.

Procedures and activities: We conducted two half-day workshops with the four 
participating teachers in term 1 to introduce them to the modelling experiences and to 
plan more thoroughly the year’s program. Two more workshops were conducted 
during the middle and at the end of the year for planning and reflective analysis of the 
children's and teachers’ progress. Several shorter meetings were also conducted 
throughout the year, including those before and after the teachers had implemented 
each activity. The contexts of the modelling activities were designed to fit in with the 
teachers’ classroom themes, which included a study of food, animals, and flight.

Preliminary modelling activities were implemented by the teachers towards the end 
of first term and part of second term. These activities were designed to develop 
children's skills in: (a) interpreting mathematical and scientific information presented 
in text and diagrammatic form; (b) reading simple tables of data; (c) collecting, 
analysing, and representing data; (d) preparing written reports from data analysis; (e) 
working collaboratively in group situations, and (f) sharing end products with class 
peers by means of verbal and written reports. For example, one activity involving the 
study of animals required the students to read written text on “The Lifestyle of our 
Bilby,” which included tables of data displaying the size, tail length, and weight of 
the two types of Bilbies. Children answered questions about the text and the tables. In 
another activity focussing on food, the children read about the development of 
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chocolate from the growth of the cocoa bean to the manufacture of various types of 
chocolates. Tables of data on the ingredients found in various chocolate types were 
included. After answering a number of questions on the given information, the 
children implemented their own survey about chocolate consumption, gathered and 
analysed the data, and then reported their findings to their peers. 
During the remainder of second term and for all of third term, the teachers 
implemented, on a weekly basis, the main model-eliciting activities. Each lesson was 
of 40 minutes duration. After an initial whole class introduction, the children worked 
independently in groups of 3 to 4 to complete the activity. The first model-eliciting 
activity, which we address here, was titled “Farmer Sprout.”  It comprised a story 
about the various types of beans the farmer grew, along with data about various 
conditions for their growth.  After responding to questions about the text, the children 
were presented with the “Butter Beans” problem. Here, the children had to examine 
two tables of data displaying the weight of butter beans after 6, 8, and 10 weeks of 
growth under two conditions (sunlight and shade; see Table 1).  
Table 1. Data presented for the Beans Problem (Students were advised that the farmer had grown 4 
rows of butter beans under two light conditions) 

Sunlight Shade

Butter Bean
Plants Week 6 Week 8 Week 10

Butter Bean
Plants Week 6 Week 8 Week 10

Row 1 9 kg 12 kg 13 kg Row 1 5 kg 9 kg 15 kg 

Row 2 8 kg 11 kg 14 kg Row 2 5 kg 8 kg 14 kg 

Row 3 9 kg  14 kg 18 kg Row 3 6 kg 9 kg 12 kg 

Row 4 10 kg 11 kg 17 kg Row 4 6 kg 10 kg 13 kg 

Using the above data, the children had to (a) determine which of the conditions was 
better for growing butter beans to produce the greatest crop. In a letter to Farmer 
Sprout, the children were to outline their recommendation and explain how they 
arrived at their decision; (b) predict the weight of butter beans produced on week 12 
for each type of condition. The children were to explain how they made their 
prediction so that the farmer could use their method for other similar situations. On 
completion of the activity, each group reported back to the class.
All whole class interactions were videotaped, while the group work was videotaped 
(one group per classroom) and audiotaped (2 groups per classroom). We also took 
field notes of all the class and group activities. The teacher meetings were audiotaped 
and transcribed, along with the class and group activities.

SOME FINDINGS: CHILDREN'S RESPONSES TO THE BEANS PROBLEM 
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Prior to addressing some findings, it is worth commenting that each of the teachers 
established classroom norms for group work and for class reporting. For example, 
each group of children had a group-appointed manager who was responsible for 
organising materials and keeping the group on task. The importance of sharing ideas 
as well as explaining answers was also emphasised.   First we consider some general 
observations of the children's progress on the Butter Beans Problem and then 
examine the work of one group of three children. 

In general, we noted an initial tendency for the children to want to record an answer 
from the outset, without carefully examining and discussing the problem and its data. 
The children had to be reminded to think about the given information and share ideas 
on the problem prior to recording a response.  We also observed the children 
oscillating between analysing the data and discussing at length the conditions 
required for growing beans. At times, the children became bogged down in these 
practical discussions, with their progress slowing as a result. This point is revisited 
shortly.    

We noted at least three approaches that the children adopted in analysing the data in 
Table 1.  The first approach was to focus solely on the results for week 10 and 
systematically compare rows 1 to 4 for each condition (i.e., compare 13 kg with 15 
kg, 14 kg with 14 kg and so on). A variation of this approach was to make the 
comparisons for each of weeks 6 and 8 as well. A second approach was to add up the 
amounts for week 10 in each condition and compare the results. A third but 
inappropriate variation of the last approach was to sum all of the weights in each 
table and compare the results. As one child explained, “Sunlight has 146 to 118 
(shade). So plants are in sunlight.” A further approach (again, inappropriate) was to 
add the amounts in each row for each condition and compare the end results (i.e., 9kg 
+ 12kg + 13kg for sunlight and 5kg + 9kg + 15kg for shade, and so on).

As the children explored the data, they were looking for trends or patterns that would 
help them make a decision on the more suitable condition. They were puzzled by the 
anomalies they found, and resorted to their informal knowledge to account for this: 

Students collectively: 10 against 6, 11 against 10, and 17 against 13. 
Student 1:   So this is obviously better than that, but working out why is the problem. 
Student 2: Yes, because the more sunlight the better the beans are. For some reason... 
Student 1: In some cases, it’s less; but in most cases, it’s more the same.
Student 3: It would depend on what type of dirt it has been planted in. 
Student 2: I’ve got an idea. Perhaps there were more beans in the sunlight.
Student 3: We’re forgetting one thing. Rain. How much rain! 

The above group of students spent quite some time trying to suggest reasons for the 
trends in data and became waylaid by practical issues. Nevertheless, in doing so, the 
children engaged in considerable hypothetical reasoning and problem posing, for 
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example: “I’ve got an idea. If we didn’t have any rain, the sunlight wouldn’t …it 
wouldn’t add up to 17 (kg). And, if we didn’t have any sunlight, it wouldn’t be up to 
17 either. But if we had sunlight and rain….” 
For the remainder of this lesson, the above group of students cycled through finding 
practical reasons for why they thought sunlight was better, re-examining the sets of 
data, and attempting to record their findings. The children did not make substantial 
progress during this lesson largely because of their focus on finding reasons for the 
trends in the data. As one child explained to the researchers, “But our problem is, we 
thought it would be because of the rain. It can’t get in as well with the shade cloth on. 
But then we found these results. And we’ve got a problem. We can’t work out why 
this has popped up. So we’re stuck here.”
Considerable progress was made in the second lesson, however, after one of the 
children (Amy) directed the others to focus solely on the data.  The child directed 
their attention to row 3, week 10, where the difference was the greatest (“Here’s the 
best and here’s the worst”). Amy attempted to show the other group members this 
difference by drawing a representation of the two amounts. Her representation took 
the form of a simple bar graph (“picture graph”, as she described it) with the first bar 
coloured yellow to represent the 18kg (sunlight) and the second bar coloured black to 
represent the 12kg (shade).  In directing her peers’ attention to her diagram, Amy 
explained, “O.K., so that would be about the sunlight there…..what I am trying to say 
is the shade is about half as good as sunlight.” Her peers, however, were not paying 
attention so she decided to pose this question to bring them back on task: “This here 
is sunlight and this here is shade. Which one’s better?” Still not happy with her peers’ 
lack of enthusiasm, Amy posed a more advanced question for her peers: 

 Amy:  Oscar, if this long piece was shade, and the short piece was sunlight, and they 
represented the weight of the beans, which one would be better? 

Oscar:  This. 
Amy:  No, shade would be because it’s bigger. A bigger mass of kilograms. 

The difficulty for many of the children was completing the letter for Farmer Sprout. 
As Amy explained to the teacher, “You see, I’ve drawn a picture graph and we’ve 
worked out the answer, but we can’t put it into words... I know! We can draw this 
(her representation) on our letter and explain what it means in words. And that’ll get 
us out of it.”  The group finally produced the following letter, choosing to focus 
solely on the largest difference between the conditions:

Dear Farmer Sprout, We have decided sunlight is the best place to grow Butter Beans. 
Because if this was the best (an arrow pointing to the representation) and this the worst 
(another arrow pointing to the representation), black = shade and yellow = sun. 18kg 
and 12kg. It is obvious that sunlight is better because 18 is higher than 12 by six. We 
came to this decision because sunlight maenley (sic) projuced (sic) more kg or the 
amount of kgs. Yours sincerely, Mars Bars (name of the group).

In reporting their findings to the class, the above group commented that “Shade 
produced about half as much as sunlight altogether.” When asked where they 
obtained their information for this conclusion, Amy explained, “Well, we basically 
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added all of this up (week 10 data for each condition) and we found that shade 
produced about half as much as sunlight altogether.”  
In responding to the second component of the Butter Beans Problem, the children 
generally relied on patterns in the data to predict the mass of the beans after 12 
weeks. For example, another group in Amy’s class reported their predictions for the 
sunlight condition as follows: “Our findings show that in row 1, week 12, you will 
get 15 to 17 kilograms, and in week 12, row 2, you’ll get 17 kilograms, and in row 3, 
week 12, you will get 19 to 21 kilograms, and in week 12, row 4, you shall get 18 to 
20 kilograms. That’s what we think for sunlight.” When asked how they got these 
findings, the children explained, “The data, because we went to week 10 and we 
counted 2 on….because they’ve sort of gone up like, in twos and it was another two.”
It is interesting to note that in one class discussion on the likely mass of the beans at 
week 12, some children again extrapolated beyond the data and claimed that at week 
12 the beans would be too old and would probably die.
CONCLUDING POINTS
The model-eliciting activities used in our study encourage young children to express 
ideas related to structural characteristics of meaningful phenomenon. We saw varying 
levels of sophistication in the mathematization processes of the children. There 
appeared to be several elements that either facilitate or constrain the growth of these 
processes.  First is the ability to interpret and understand data presented in various 
representational formats. Although the majority of children had few difficulties here, 
we observed a few children who misinterpreted what was being measured (i.e., they 
thought that the number of kilograms referred to the amount of sunlight rather than 
the mass of beans). A second element was an intuitive knowledge and understanding 
of the mathematical concepts inherent in the task, such as the notions of change and 
rate of change. Intuitive notions of aggregating and averaging were expressed by 
some of the student groups. A third element was the issue of existing personal 
knowledge versus task knowledge. Being able to distinguish between the two 
knowledge forms, and knowing how they can both help and hinder solution facilitate 
task success. We see the development of such metacognitive and critical reasoning 
skills as important components of these modelling activities.  Fourth, the modelling 
tasks provided rich opportunities for children to express ideas in multiple 
representations. We saw how children used text, diagrams, and verbal explanations to 
engage in effective learning in a socially mediated environment. 
There appear to be several implications for teachers. First children who engage in 
social learning contexts verbalise their thinking and hence make explicit their 
knowledge of content and processes. Opportunities thus exist for teachers to extend 
children's knowledge in areas of need. At least one of the participating teachers often 
capitalised on discussions to make links to historical information that the children 
may have previously learned. Some links were made to scientific or social studies but 
few explicit connections were made to mathematics. The modelling activities were 
embedded in a broader theme being explored by the class but explicit links were 
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often not taken up by the teachers who appeared to assume that the activity needed to 
be isolated for the benefit of the researchers. Opportunities for children to actually 
implement the activity described in the modelling task can help young children who 
might lack some of the related conceptual knowledge. In the present case, 
undertaking the task of comparing growth conditions of plants (either in real life or 
via computer simulation) can provide concrete representations that facilitate model 
development.
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