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Measure Up is a research and development project that uses findings from Davydov 
(1975) and others to introduce mathematics through measurement and algebra in 
grades 1–3. This paper illustrates the use of generalized diagrams and symbols in 
solving word problems for a group of 10 children selected from a grade 3 Measure 
Up classroom. Students use the diagrams to help solve word problems by focusing on 
the broader structure rather than seeing each problem as an entity in and of itself. 
The type and sophistication of the diagram can be linked to Sfard’s theory (1991 
1995) on mathematical development. The consistent use of the diagrams is related to 
students’ experience with simultaneous presentations of physical, diagrammatic, and 
symbolic representations used in Measure Up. 

INTRODUCTION AND THEORETICAL FRAMEWORK 
Solving number sentences (equations) and word problems that involve number 
sentences is an area in early grades that often creates much difficulty for children. 
This may be related to children’s misconceptions about and misapplications of 
equations, including the use of the equals sign (Kieran, 1981, 1985, Vergnaud, 1985) 
or an inability to think beyond the literal word translations of the problem to see the 
more general structure. This phenomenon is likened to an intraoperational period 
(Garcia & Piaget, 1989) in that initially, students are solely concerned with finding a 
solution to a specific equation or problem and the equation is treated as an object that 
exists only to solve a particular problem. 
If children, however, are to make sense of generalized statements and classify 
problems into larger groups to create more efficient and robust methods of solving 
them, then a different approach to introduce problem solving might be considered. 
One such approach stems from the work of V. V. Davydov and B. Elkonin (Davydov, 
1975) and is embodied in Measure Up (MU), a project of the Curriculum Research & 
Development Group (CRDG) of the University of Hawai‘i.
Davydov (1975a) believed that very young children should begin their mathematics 
learning with abstractions so that they could use formal abstractions in later school 
years and their thinking would develop in a way that could support and tolerate the 
capacity to deal with more complex mathematics. He (1975b) and others (Minskaya, 
1975) felt that beginning with specific numbers (natural and counting) led to 
misconceptions and difficulties later on when students worked with rational and real 
numbers or algebra. He combined this idea with Vygotsky’s distinction between 
spontaneous and scientific concepts (1978). Spontaneous or empirical concepts are 
developed when children can abstract properties from concrete experiences or 
instances. Scientific concepts, on the other hand, develop from formal experiences 
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with properties themselves, progressing to identifying those properties in concrete 
instances. Spontaneous concepts progress from natural numbers to whole, rational, 
irrational, and finally real numbers, in a very specific sequence. Scientific concepts 
reverse this idea and focus on real numbers in the larger sense first, with specific 
cases found in natural, whole, rational, and irrational numbers at the same time. 
Davydov (1966) conjectured that a general-to-specific approach in the case of the 
scientific concept was much more conducive to student understanding than using the 
spontaneous concept approach.
Davydov (1966) wrote, “there is nothing about the intellectual capabilities of primary 
schoolchildren to hinder the algebraization of elementary mathematics. In fact, such 
an approach helps to bring and to increase these very capabilities children have for 
learning mathematics” (p. 202). Beginning with general quantities in an algebra 
context enhances children’s abilities to apply those concepts to specific examples that 
use numbers.  
Davydov (1975a) proposed starting children’s mathematical experiences with basic 
conceptual ideas about mathematics and its structure, and then build number from 
there. Thus young children begin their mathematics program in grade 1 by describing 
and defining physical attributes of objects that can be compared. Davydov (1975a) 
advocated children begin in this way as a means of providing a context to explore 
relationships, both equal and unequal. Six-year-olds physically compare objects’ 
attributes (length, area, volume, and mass), and describe those comparisons with 
relational statements like H < B, where H and B represent unspecified quantities
being compared, not objects. The physical context of these explorations and means 
by which they are recorded, link measurement and algebra so that children develop 
meaning for statements they write and do not see them as abstract.  
In the prenumeric phase, children grapple with how to make 1) unequal quantities 
equal or 2) equal quantities unequal by adding or subtracting an amount. A statement 
representing the action is written: if H < B, students could add to volume H or 
subtract from volume B. First graders observe that regardless of the action they 
choose, the amount added or subtracted is the same and is called the difference.
Number is introduced when students are presented with problematic situations that 
require quantification. It is then that a unit is presented within a measurement 
context. First graders re-examine some of the situations where they transformed two 
unequal quantities into equal amounts. For example, when working with mass, they 
may have written Y = A + Q. They notice now that mass Y is the whole and masses A
and Q are the parts that make up the whole.  
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Both diagrams represent the relationships among the parts and whole of any quantity. 
From these diagrams children can write equations in a more formal way.  

Y = A + Q Q + A = Y Y – Q = A Y – A = Q
The part-whole concept and related diagrams help young children organize and 
structure their thinking when they are working with word or contextual problems. 
The scheme supports children writing equations and identifying which ones are 
helpful in solving for an unknown amount, without forcing a particular solution 
method. For example, students are given the following problem: 

Jarod’s father gave him 14 pencils. Jarod lost some of those pencils, but still has 9 left. 
How many pencils did Jarod lose? (Dougherty et al., 2003) 

In this case 14 is the whole, 9 is a part and the lost pencils (x) are a part. There are at 
least four equations (a fact team) that can be written to describe this relationship. 
(1) 14 = 9 + x   (2) 14 = x + 9   (3) 14 – 9 = x (4) 14 – x = 9 
The third equation, 14 – 9 = x, could be an appropriate choice to solve for the 
unknown. Some of the students in the MU research study use that method. However, 
other students choose to use the first or second equation to solve for the unknown 
amount. Their reasoning follows the compensation method for solving an equation by 
asking the question, “What do I add to 9 that gives 14?”

DESCRIPTION OF STUDY AND DATA COLLECTION 
Measure Up uses design research (Shavelson, Phillips, Towne, & Feuer, 2003) as a 
means of linking research with the intricacies found in classrooms. The design 
research includes two sites 1) Education Laboratory School (ELS) Honolulu, HI and 
2) Connections Public Charter School, (CPCS), Hilo, HI. These sites were carefully 
selected to provide a diverse student group representative of larger student 
populations in regard to 1) student performance levels, 2) socio-economic status, and 
3) ethnicity. Student achievement levels range from the 5th to 99th percentile, with 
students from low to high socio-economic status and ethnicities including, but not 
limited to, Native Hawaiian, Pacific Islanders, African-American, Asian, Hispanic, 
and Caucasian. Students at ELS are chosen through a stratified random sampling 
approach based on achievement, ethnicity, and SES. No segregation or tracking of 
students is done at either site; all special education students are part of an inclusion 
program. Both sites have a stable student population for longitudinal study.  
The MU project team is in the classroom observing and/or co-teaching daily. Three 
project staff members record observation notes in three separate formats. One person 
is responsible for documenting the mathematical development, one scripts the lesson, 
and one records instructional strategies used. Observation notes form a microgenetic 
study of student learning related to the materials under development. Videotapes are 
made of critical point lessons where the complexity of the mathematics shifts. 
Indicative of the design research approach, the MU project team discusses the types 
of problems or tasks that were used, the discourse that evolved from them, the 
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expectations about participation across the broad range of students, the role(s) played 
by representations and tools in the learning process, and the mathematics itself in 
debriefing sessions where analyses of data and interpretations of such are done.
Two types of individual student interviews are also conducted. One type, “teaching 
experiments,” is adapted from a similar technique used in developing an algebra 
program at CRDG (Rachlin, Matsumoto, & Wada, 1987). As tasks are presented, 
students are asked to “think aloud” as they attempt the them. If students stop 
explaining, the interviewer prompts them by asking ‘What are you trying to find 
(do)?’ or ‘What’s giving you a problem?’ If difficulty persists, the interviewer gives 
more specific clues, increasing the specificity until the child can complete it. The 
clues range from noting a particular error to more direct instruction.  
In the second type of student interviews, project staff gives students tasks that would 
represent the level of mathematics that students would have experienced in a more 
conventional program or that focus on bigger ideas. Responses from students are 
compared to students from other grade levels that have not been part of MU. The 
purpose of these interviews is to determine how the mathematical understandings of 
students in the MU project compare to those students in other programs.  
During student interviews, a group of mathematics educators, mathematicians, and 
psychologists has the opportunity to watch and participate in the interview live. The 
interviewer wears an earphone, and a video camera projects the interview into 
another room where the group is seated. The group can suggest additional questions 
through a microphone for the interviewer to pursue, enhancing the information 
gathered from the interview. 
Types of problems presented and solutions used 
As students move through their mathematical experiences, they use a variety of 
means of representing problem situations. They follow a progression similar to what 
Sfard (1991, 1995) described as a historical perspective (interiorization, 
condensation, and reification). As students work in each mathematical concept, every
new idea is introduced with a physical model that is simultaneously represented with 
an intermediate model (like a diagram) and a symbolization (equation or inequality). 
This does not follow the typical approach where students work with physical models 
or manipulatives, then move to iconic or pictorial representations, and lastly, work 
only with symbols. The advantage of simultaneous representations is that students 
form a cohesive mapping of what the symbols represent and can see patterns and 
generalizations beyond the specific problem. 
What follows are three snapshots of ten grade 3 students, taken from the 2003–04 
school year. These students have been part of the Measure Up project since grade 1 
with the exception of one student (Student S) who joined the class this year. In the 
first and last snapshots presented the data were taken from the classroom. The second 
example is from individual student interviews of these children. The tasks show the 
bridging from grade 1 and 2 mathematics to a more sophisticated level. Their 
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responses are linked to Sfard’s progression (1991, 1995) such that an interiorization 
response is indicative of problem-specific characteristics; a condesation response 
indicates a transition from a specific to general solution approach, and a reification 
response embodies multiples forms of representation as a means of generalizing the 
structure of the problem. 
Sample 1 

Ama caught k fishes and Chris caught e fishes less. How many fishes did Chris catch? 
Dusty had b fishes in a bucket. When Anthony added his fish, there were g fishes in the 
bucket. How many fishes did Anthony catch? 
Sarah caught p fishes, and Tara caught c fishes. How many more fish did Sarah catch? 

Students were asked to ‘show the parts and whole in a diagram or on line segments’ 
(Dougherty et al., 2003).  
Students’ representations varied with their ability to handle complex cognitive tasks. 
A sample of each type in response to the first problem follows.  

Interiorization (Student M, 2003)

Condensation                  (Student S, 2003)

Reification       k – c = e       k    (Student RI, 2003)
      k – e = c 

Sample 2 
Reed gave Jackie a strip of paper w length-units long. He gave Macy another strip of 
paper 9 length-units shorter than Jackie’s. How long are Macy’s and Jackie’s lengths 
altogether?
Jason has v mass-units of rice. Jon has k mass-units less than Jason. How many mass 
units of rice do Jason and Jon have together? 
Karyn had 43 volume-units of water in one container. In another container, she had 8 
volume-units less than in the first container. If she pours all the water into one large 
container, how many volume-units of water will she have? 

Students were asked to decide in what order they would like to solve the problems. 
Then, solve the problems in any way they wanted.
Consistently, regardless of cognitive level, students opted to do the numerical 
problem first. The mixed non-specified/numerical problem was chosen second, with 
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the non-specified problem chosen last. Four students indicated that it did not matter 
what order was chosen, they were all solved the same way. They did, however, 
proceed to solve the numerical one first. In all cases, students, including those who 
had used the interiorization method at the onset of the school year, used either a 
condensation or reification approach to solve the problems. 

Condensation         43 – 8 = 35    35 + 43 = 78  (Student C, 2003) 

Reification      x x = 43 + 35     (Student RE, 2003) 
            x = 78 

Sample 3 
When his father takes 1 step, it takes Michael 3 steps to travel the same distance. 
a. Michael’s father walks 5 steps to get from the front door to the sidewalk. How many 

steps would Michael take to get from the front door to the sidewalk? 
b. Michael took 27 steps to get from the front door to his neighbor’s front door. How 

many steps would Michael’s father take to walk the same distance? 

These problems were used in the introduction of multiplication. Without direct 
instruction, students used similar diagrams to represent, and assist in solving, the 
problems. Samples from each type are as follows.   
Interiorization                      (Student C, 2003) 

Condensation               3 + 3 + 3 + 3 + 3 = 15    (Student J, 2003) 

Reification

   3 • 5 = x x = 15     (Student M, 2003) 
The generalization of the structure increases with each successive level. The diagram 
used in the reification approach is indicative of the general model of multiplication 
used in Measure Up. Unit M (in this case, Michael’s step) is used three times to make 
intermediate unit D (the dad’s step). Intermediate unit D is used five times to make 
quantity Q. If Unit M had been used by itself to create Q, Q is then represented as the 
product of 3 and 5. This last diagram embodies the use of a unit used to create a 
larger, intermediate unit as a means of creating a quantity. As MU students explore 
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multiplication and division, this model helps them define the quantities they are 
working with and their relationships.

IMPLICATIONS
Student solution methods strongly suggest that young children are capable of using 
algebraic symbols and generalized diagrams to solve problems. The diagrams and 
associated symbols can represent the structure of a mathematical situation and may 
be applied across a variety of settings. Students appear to utilize some form of the 
diagram and regardless of the sophistication of that model, students are developing a 
fluidity that allows them to attempt, and solve, word problems. The use of algebraic 
symbols and diagrams appears, at this stage of the research, to positively impact on 
students’ mathematical development, especially when children develop their 
understanding of, and applications for, such diagrams through an approach that 
consistently and simultaneously links the physical model, intermediate 
representations, and symbolizations within each lesson, and not in a sequential 
manner.
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