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We present two vignettes of classroom episodes that exemplify new activity structures 
for introducing core algebra ideas such as linear functions, slope as rate and 
parametric variation within a new educational technology environment that 
combines two kinds of classroom technology affordances, one based in dynamic 
representation and the other based in connectivity.  These descriptions of how 
mathematical and social structures interact in the classroom help account for 
significant algebra learning gains in recent SimCalc teaching experiments among 13-
16 year old students. 
A long-term goal of the SimCalc Project (Kaput, 1994) has been to exploit 
technology’s capacity for interactive visualization tools and simulations linked to 
mathematical representations to provide an alternative to the algebraically based 
prerequisite structure of topics such as calculus to avoid the algebra bottleneck and 
democratize access to big mathematical ideas that are now inaccessible to the great 
majority of students due to the algebra barrier.  But another shorter-term objective 
has emerged, partly as a result of the need to work within the existing structures and 
capacities of curricula and schools, and partly in response to the need to serve today’s 
students, who cannot wait for long term strategies to take hold, no matter how 
promising. 
Hence within the past five years, the SimCalc Project has developed strategies that 
use the interactive representational affordances of technology (visualization, linking 
representations to each other and to simulations, importing physical data into the 
mathematical realm in active ways, graphically editing piecewise-defined functions, 
etc.), to energize and experientially contextualize existing algebra courses, and to do 
so in ways that lay the base for more advanced mathematics, particularly calculus.  
Recently, we have been studying the profound potential of combining the 
representational innovations of the computational medium (Kaput & Roschelle, 
1998) with the new connectivity affordances of increasingly robust and inexpensive 
hand-held devices in wireless networks (Roschelle & Pea, 2002) linked to larger 
computers (Kaput, 2002; Kaput & Hegedus, 2002). 

                                          
1 This research was funded by a grant from the National Science Foundation (REC# 0087771). The 
opinions expressed here are those of the authors and do not necessarily represent those of the NSF. 
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EMERGING THEORETICAL COMMITMENTS 
We have come to see classroom connectivity (CC) as a critical means to unleash the 
long-unrealized potential of computational media in education, because its potential 
impacts are direct and at the communicative heart of everyday classroom instruction 
– more so than internet connectivity.  We are now beginning to build insight into how 
those new ingredients, in combination, may provide the concrete means by which that 
potential may be realized, because they may, in fact, help constitute the first truly 
educational technologies, intimately situated within the fundamental acts of active 
teaching and active learning.  This embeddedness may indeed be more profound than 
we initially recognized, because these ingredients resonate deeply with broader views 
of learning as participation (Lave & Wenger, 1991) and no longer fit within a 
“learning in relation to a machine” (large or small, in the lab, classroom or even your 
hand) view of educational technology.  Indeed, the paradigm is shifting towards one 
where the technology serves not primarily as a cognitive interaction medium for 
individuals, but rather as a much more pervasive medium in which teaching and 
learning are instantiated in the social space of the classroom (Cobb, 1994). We 
deliberately choose “instantiated” ahead of “situated” (Kirshner & Whitson, 1997) 
because we have repeatedly seen mathematical experience emerge from the 
distributed interactions enabled by the mobility and shareability of representations.
The student experience of “being mathematical” becomes a joint experience, shared 
in the social space of the classroom in new ways as student constructions are 
aggregated in common representations – in ways reminiscent of, but distinct from 
those of a participatory simulation (Stroup, 2003; Wilensky & Stroup, 1999).  This 
epistemological shift in the place of technology in classrooms is fundamental to our 
theoretical perspective. 

CONTEXTUALIZATION OF VIGNETTES IN PRIOR SUCCESS STORIES 
The empirical work behind this report investigated the impact of our constellation of 
technological, curricular and pedagogical innovations on student learning, especially 
as measured by independent standard test items on a pre/post-test basis. They include 
intense teaching experiments aimed at core algebra topics in middle and high-school 
classrooms in both Massachusetts and California.  Results demonstrate comparably 
positive outcomes under substantially different instructional and technological 
conditions, somewhat different curricular targets, and different student demographics 
(Tatar, et al, in submission). 
Pre/post-test measures (see http://www.simcalc.umassd.edu/) triangulated with 
observational video and field-note data in these and other instructional situations in 
undergraduate classrooms provide evidence of significant improvements in students’ 
algebraic thinking as measured by students’ performance.  For example, in our after-
school intervention (n=25), students performance was significantly better on post 
tests (p<0.001), with high effect sizes (Cohen’s d=1.80sd) and strong gains occurring 
across disjoint populations (middle and high school) with relative statistical 
independence of prior knowledge, based on Hake’s gain statistic (Hake, 1998) – 
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(<Post> – <Pre>)/(1 – <Pre>), reflecting strong impact of the intervention itself as 
exploiting very different kinds of prior knowledge in the two subpopulations (see 
Hegedus & Kaput, 2003; under review, for further details). 

PARTICIPATORY AGGREGATION OF STUDENT CONSTRUCTIONS TO 
A COMMON PUBLIC DISPLAY 
In a connected algebra environment the class is typically subdivided into numbered 
groups, where the size and number of groups fit both the given size of the class and 
the mathematical activity (ranging from the whole class to pairs).  Groups are often, 
although not necessarily, defined “geographically” – students who are physically near 
each other.  The students usually also “count-off” inside the group, so that each 
student then has a two-number identity that can then serve as "personal parameters," 
a Group Number and a Count-Off Number.  Students then create mathematical 
objects – in the cases discussed here, linear Position vs. Time functions that drive 
animated screen objects.  The functions depend in some critical way on students’ 
respective personal parameters either on a hand-held device or on a computer. 
SimCalc MathWorlds runs on the TI-83Plus as a Flash Application (Calculator 
MathWorlds - CMW), and on desktop computers as a Java Application (Java 
MathWorlds - JMW).  When using CMW or JMW (the scenario for this report), 
students’ constructions are uploaded to the teacher where they are aggregated, 
organized and selectively displayed using JMW and discussed. 
Staggered Start, Staggered Finish (Y=mX+b): The simplest case is to produce 
families of functions defined by a single parameter, such as the “b” in Y=2X+b, 
where b varies according to, say, Group Number.  Then each student in a group 
produces the same position function (Y=2X+ Group Number) on his/her own device, 
so a given group’s linear graphs all overlap (same Y-intercept and same slope = 2), 
and the different groups’ graphs are parallel.  When animated, the screen objects 
“representing” the members of a given group move alongside each other "as a 
group," while the different groups move at the same velocity but are offset by their 
initial positions (see Link 1 at http://www.simcalc.umassd.edu/PME04.htm).  Here, 
the group provides mutual support, and it is of special interest that the superposition 
of graphs provides a strong visual realization of function equality. 
By clicking on the overlapping graphs, we can bring different graphs of a group to 
the front. Further, the graphs and their corresponding objects (“Dots” in “Dots 
World”) are color-coordinated, so the sequence of graph-colors that appear matches 
the sequence of colors of the objects of the given group.  In addition, with the View 
Matrix (see Link 2 at http://www.simcalc.umassd.edu/PME04.htm), the teacher has 
virtually full control of which graphs and objects are displayed, and how they are 
organized or colored – e.g., by Group Number or by Count-Off Number.  
With this simple example in mind, we present two vignettes that correspond to some 
of the learning gains demonstrated in our interventions. 
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Vignette 1: Varying M systematically – Slope as Rate both positive and negative 
The Staggered Start – Simultaneous 
Finish activity is more complex 
than the former and requires the 
students to start at 3 times their 
Count-Off number but “end the 
race in a tie” with the object 
controlled by the target function 
Y=2X (so the target racer moved at 
2 feet per second for 6 seconds and 
started at zero – see the bottom 
graph in Figure 1).  Students now 
need to calculate how fast they 
have to go to end the race in a tie.
And since they start at different 
positions, the slope of their graphs 
changes depending on where they 
start, which in turn depends on their 
personal Count-Off Number.  Each 
group is limited to 5 people and 
while the group number does not 

affect their constructions it gives rise to a smaller, more manageable set of functions 
to discuss (see Link 3 at http://www.simcalc.umassd.edu/PME04.htm).  Secondly, 
and more importantly, the Count-Off Numbers 4 and 5 give rise to two important 
slopes.  The person with Count-Off Number 4 has a graph with constant slope, 
Y=0X+12, since he starts at 12 ft, which is the finish line, so he does not have to 
move!  The person with Count-Off Number 5, starts beyond the finish line (15 ft) and 
so has to run backwards, thus forcing the student to calculate a negative slope.  We 
have observed students in a variety of settings using various strategies including: 
numerical trial-and-error, inputting values into an X-coefficient field in the algebra 
window (a feature of the software for algebraic editing), slope-based analysis (“What 
slope to I need to connect my starting position to (6, 12)?”), velocity-based analysis 
(“How fast do I need to move get to 12 at 6 seconds?”) and, by an implicit 
parametric-variation strategy, comparing what others had done in their group and 
averaging (i.e., observing that the slope of each person’s graph changed by 0.5 as the 
Count-Off Number increases by 1). 
Organizing and displaying student work is a strategic pedagogical decision, e.g., in 
focusing student attention on the underlying mathematical structure.  An important 
question to ask before animating the motions for the whole class is “What will the 
race look like?”   
The aggregate motion in the classroom display becomes a personal reality through 
the personal link with Count-Off Number.  By aggregating and displaying the class 

Figure 1: Simultaneous Finish 
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work, students can observe how their personal construction fits into the “race” and 
allows them to note how people from other groups had constructed identical motions 
because of their Count-Off Number.  In addition the shape of the graph and the parity 
of the slope for those who had to start past the finishing line (i.e. run backwards) was 
made more realistic and understandable in this motion-based scenario.  In discussing 
different strategies and making these explicit in publicly examining outliers (incorrect 
answers) and natural outliers (motions for students with Count-Off Numbers 4 and 5) 
we have some evidence to why students began to improve on items of the pre-post 
test which involved slope analysis. 
Vignette 2: Using both Group Number and Count-Off Number – creating “fans” 
to address the idea of slope-as-velocity 
In this vignette we discuss an activity structure where we systematically increase the 
complexity of the variation by using the other part of the unique identifier – the group 
number.  Students now have to create functions so that their object will travel at a 
velocity equal to their Count-Off Number but start at their Group Number.  We 
highlight here the move from a personal individual construction to a significant group 
structure to a class aggregation.  Each group creates a family of functions, which is 
similar in shape (“a fan”) to every other group but offset by starting position. 
Students anticipate the visual form of the aggregation as is highlighted in the 
transcript, where the class was asked what the collection of graphs would look like.  

J It’s gonna start at two, and it’s gonna end at five, and… it’s gonna look 
kinda like a fan.  And, they’re all going to start at the same place. <SNIP> 

T So, he’s saying they’re gonna start there, and then it’s gonna kinda look 
like a fan? 

J Yeah they’re gonna… {spreads out fingers wide on one hand} like that. 
T … You like that? {hands up for more than half the class}
 {Clapping and a few ‘yeahs’, as the results are displayed} 

Here, John (J), indicates to the class physically with his hands (where his fingers 
resemble individual graphs) that the aggregation will resemble “fans” how these 
groups of functions will be displayed relative to each other.  But although John knew 
where his graph was in the aggregate, he could not explain why in technical, slope 
terms.  Here we highlight the social dynamic enabled by such a public event, which 
allowed two other students Alison (A) and Robert (R) to explain why John’s graph 
(with slope 3) is the one highlighted by linking its slope to the velocity. 

A Go by velocity… however many… what number in a group you’re in…  
how many increments he goes. 

T Okay.  So, he’s the third member of the group. So.. 
A So he can go three times every second.  Up three every second. 
T …  How can we determine, Robert? 
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R See how far it goes… look between zero seconds and one second? 
T You want to come show us?   
R Okay. {Robert goes to the display and inscribes the first one-second 

segment of the graph with a 1-wide by 3-tall rectangle} 

We observed a high level of engagement by the class and reaction to the animation of 
the aggregate, which resulted in a wide distribution of the actors by the end of the 
animation.  This was an opportunity to highlight how some people finished at the 
same place and time but followed different motions, without delving into the 
algebraic detail of why this occurred.  This activity intends to provide an experience 
embodying parametric variation across both the graphical representation (see figure 
2) and the motion-based gestalt of the animated objects – just as the collection of 
graphs has a gestalt-shape captured in the fan metaphor, the collective motion has a 
gestalt (see (see Link 4 at http://www.simcalc.umassd.edu/PME04.htm) for a sense of 
it.

We also highlighted and examined 
outliers, making a conscious 
decision in this case not to hide the 
names (or identifiers) of the 
students, although we note the issue 
of student anonymity in class 
(Scott, 1999). The software includes 
the ability for the teacher to hide 
names of selected functions if 
desired (identifying information 
appears in the lower left hand 
corner of the screen).  Nevertheless, 
the class often took the initiative to 
determine who the outlier was, what 
the underlying error was, and then 
collectively correcting the mistake.  
In effect, the mathematical criteria 
of consistency comes to be socially 

embodied in class norms of “correctness” and coherence. 
At this stage, differences in students’ work are based on inter-group variation (similar 
fans but off-set) and intra-group variation (the establishment of one fan where 
individual Count-Off Number varies slope).  To further build meaning of how 
variation in their identifiers leads to variation in their corresponding graphs, we 
reversed the roles of Group Number and Count-Off Number:  We asked students to 
repeat the task but now construct a motion where they travel at a velocity equal to 
your Group Number for 5 seconds, and start at your Count-Off Number.  Here 
students will produce a visually similar class aggregate, but their personal graph is 
now part of a fan constructed by members of other groups.  In fact, their own group 

Figure 2: Making “fans” from two groups 
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now constructs families of parallel lines, and, of course, their motions differ 
accordingly from the previous case. 

CONCLUSION: ADDRESSING NEW PEDAGOGICAL DECISIONS 
The connected SimCalc algebra classroom opens up a new learning environment for 
students, with increased intensity, structures and levels of participation.  In presenting 
these brief vignettes outlining the student activity and decisions the teacher made 
during the post-aggregation phase of the activity (space prevents descriptions of 
within-group interactions), we have begun to describe how students begin to develop 
an understanding of one of the core ideas of high school algebra, slope-as-rate-of-
change.  Through such activities, students have both an individual “mathematical 
responsibility” to either their group or to the larger class via construction or 
interpretation of shared mathematical objects, as well as a vicarious participation in 
the joint construction upon aggregation. With careful pedagogical decision-making 
by the teacher students’ attention is now moved along a trajectory from static, inert 
representations, to dynamic personally indexed constructions in the SimCalc 
environment on their own device, to parametrically defined aggregations of 
functions, organized and displayed for discussion in the public workspace. 
Substantial teacher knowledge, a deep composite of content and pedagogy, is needed 
to facilitate movement along this trajectory and focus public mathematical dialogue 
on critical features of these visually shared objects to develop meaning.  This is 
hinted at in the last illustration, where Count-Off and Group Numbers are 
interchanged.  In effect, connectivity supports the pedagogical manipulation of 
student’s focus of attention.  But the teacher knowledge needed to take advantage of 
a connected classroom requires extended development.  

How do your - 

Motion(s)

Graphs 

Formula 

Tables

Look Different as 

Look the Same as 

An Individual vs. the Group 

An Individual vs. the Class 

The Group vs. the Class 

Table 1: Constructing pedagogical actions 

Table 1 outlines a simple structure, which can guide the teacher’s inquiry.  Choosing 
one item from each column leads to a particular question that can be addressed to 
individual students, groups or the whole class. Successively using this outline might 
assist teachers in moving students along suitable learning trajectories in this 
environment and elevating mathematical attention.  
In our later activities in the interventions, aggregation was used as a means for 
generalization and abstraction.  As more work is conducted publicly, learning 
increasingly occurs in the social space to complement the individual device-
interaction space.  Encouraging students to make sense of their constructions 
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publicly, annotating their graphs on the display space, and systematically highlighting 
parametric differences leads to more powerful understandings.  
Having highlighted the benefits of social engagement in these activities, we also need 
to investigate in more detail the potential for negative social implications in some of 
these pedagogical actions and classroom decisions (e.g. issues of privacy, social 
embarrassment). We are confident, however, that by combining the two key 
ingredients, dynamic representations and connectivity technology, students can better 
understand fundamental, core algebra ideas by forming new, personal identity-
relationships with the mathematical objects that they construct individually and 
collaboratively with their peers. 
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