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This study investigated children’s knowledge of division and its relationship to their 
teacher’s conceptual understanding of division following Professional Development. 
A paper and pencil test was administered to 47 year 7 students and 2 teachers over 2 
phases. Following the testing, six students and the teacher from each phase were 
interviewed. Results from this study indicate that most Phase 1 students rely on 
following a procedure with limited understanding. Their teacher displayed some 
conceptual understanding, however she too demonstrated a bias for procedural 
knowledge. This contrasts with Phase 2 teacher and students who demonstrated 
conceptual knowledge both in the test and the interviews. 
INTRODUCTION
Division is required for many of the processes used in everyday situations, ranging 
from finding averages to determining rates and proportions involved with fuel use, 
cost and selling prices, and budgeting. It is also critical in problem solving and as part 
of the thinking underlying determination of area, volume and probabilities. A secure 
understanding of division, along with other forms of multiplicative thinking, is 
essential for work with fractions, ratios, algebra and further mathematics that marks 
the transition from the arithmetical thinking of the primary school to the more 
advanced thinking of the secondary curriculum and beyond (Booker 2003). Yet, 
many students experience considerable difficulties with division and it is often 
viewed as the most difficult of the four operations to learn by students and teachers. 

A major source of these difficulties are the rote procedures that have often 
dominated its teaching and the language associated with them that provide little 
insight into the steps to be followed or their link to the underlying multiplication 
notions that allow division to be carried out (Booker et al 2004). Frequently, students 
have little understanding of the division concept in terms of sharing that provides a 
link to the multiplication facts needed at each step of the division process and are 
unable to read or interpret division statements or results (Greer 1995; Simon 1993).

Whether the teaching and learning of mathematics should focus on conceptual 
understanding or procedural competency has been the topic of research over many 
years (Ma 1999, Hiebert 1987). However conceptual understanding does not appear 
to be achieved by rote learning procedures in isolation, nor does simply knowing the 
steps necessarily indicate conceptual understanding of a mathematical process such 
as division (Silver 1987). Rather, the concepts and processes of mathematics need to 
grow hand-in-hand so that students can see connections between concepts and 
processes, interpret mathematics from multiple perspectives, be aware of the basic 
ideas fundamental to mathematics and possess an ability to reflect on previously
learned concepts to give coherence to their knowledge (Ma 1999:122).
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Ma’s (1999) study compared conceptual understanding and procedural 
competency of experienced U.S. and Chinese primary teachers across a range of 
mathematical topics. She concluded that the major influence on students’ learning of 
the fundamental ideas on which all future learning and problem solving depended 
was the strength of their teacher’s conceptual understanding of mathematics and their 
capacity to use this to generate meaningful examples, explanations and processes. 

In contrast, many students are expected to embrace division without the concept 
development stages that occurred with the other three operations because they have 
already had considerable experience with symbolic representations (Anghileri 1996; 
NCTM 2000). This has led to considerable difficulties in reading division where they 
are often unaware of the importance of order when using division expressions 
(Anghileri 1999) and in interpreting remainders in calculations (Silver et al 1993). 
Insufficiently developed understanding of the division concept also leads students to 
calculate unrealistic answers and then not question their results (Simon 1993). 

 An investigation of the division understanding of teachers and their students 
might then provide insights into the reasons for students’ difficulties with division 
and its applications, similar to those Ma has reported for other mathematical topics.  

THE STUDY 
Forty-seven students and their teachers from two year 7 classes participated in a 
pencil and paper test containing 6 division questions made up of ten items and were 
asked to solve them without any imposed time limit. Following the testing 6students 
from each class and their teachers were interviewed on their test responses and their 
understanding of division. The two classes participated a year apart during which 
time professional development sessions were attended by most staff at the school.  
Prior to the testing teachers used a process called Divide Multiply Subtract bring 
down commonly called DMS bring down to teach the division algorithm. Following 
Phase 1 professional development was conducted in the school where a focus on the 
development of conceptual understand by the use of games, and concrete 
representations of the sharing of division. This paper reports on the responses 
provided to 2 of these 6 questions aimed at identifying an ability to solve word 
problems through interpreting the problem, completing calculations involving 
internal zeros and interpreting their result to produce answers to the problems. 
These questions are
Q5: When Movie World opened the Wild, Wild west ride, 6445 people went on the ride on 
the first day. If each wagon holds 7 people, how many full wagons could there have been?
Q6: A Birch Carroll and Coyle cinema needed 9238 packets of skittles to stack their 
shelves. If 4 packets are contained in each box how many boxes would need to be ordered? 

RESULTS AND DISCUSSION 
Student and teacher test results and interview responses are discussed in terms of the 
overall results and interview responses, error analysis of test responses, and the 
manner in which the remainder is interpreted to finally solve the problem. 
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Overall results 
 Algorithm 

with
recording 

Algorithm 
without

recording 

Algorithm 
not recorded: 
answer only 

No
answer

Algorithm 
correct

recording 

Algorithm 
incorrect
recording  

% correct 
with

calculation 
shown

Q5        
Phase 1 

n=24
12 7 3 2 3 1 21% 

Phase 2 
n=23

20 1 2 - 16 1 80% 

Q6        
Phase 1 

n=24
12 7 2 3 6 Zero 31% 

Phase 2 
n=23

21 - 2 - 16 - 76% 

Table 1: Comparison of Phase 1 and Phase 2 results 
Table 1 shows the impact that professional development had on student results 
between Phase 1 and Phase 2. Phase 1 testing shows that only 21% of students were 
able to correctly complete the division algorithm for question 5 and 31%, for question 
6. The year 7 students the following year (Phase 2) demonstrated far greater 
understanding, with 80% correctly calculating question 5 and 76%, question 6 
Interview analysis 
There was a noticeable shift towards conceptual explanations given by the six 
interviewed students in Phase 2 when compared to the interviewed responses for 
students in Phase 1.  During the interviews the students where asked

‘Please complete this division for me, 6 1845  and explain exactly what you are 
doing so that I can understand’. 

Phase 1 students gave procedural descriptions. Some showed all their working and 
some chose to simply write in the quotient. Jimmy for example, wrote and said: 

6 doesn’t go into 1 so 6 into 18 goes 3 times. 6 doesn’t go into 4 so 6 into 45 goes 7 
with remainder 3. Easy. 

Beth also exhibited considerable confusion although she remained very 
confident throughout the interview. Her working below is supported by the following 
description of her calculation. 

Beth:   Well 6 divided by 18 goes in 2 times with 6 left over. 64 divided by 6 equals 10 
with 4 left over. 45 divided by 6 which is (counting on her fingers) 7 remainder 2.
Interviewer:   So what is your answer?  
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Beth:   217  (Beth replied as she wrote the number beside her calculation.)
Interviewer:   So is that a zero in there or ten? 
Beth:   You don’t have to worry about the zero. The answer is just 217r2.  (Pointing at 
her calculation) 

Although Beth said ‘6 divided by 18’ she calculated 18 divided by 6. She then went on 
to correctly say ‘45 divided by 6.’ The ease with which she vacillates between the two 
descriptions of her calculation indicates her limited conceptual understanding of the 
division operation. She failed to recognise that the remaining 6 could have been 
shared with her initial calculation, that a 2digit number cannot sit in one place, that a 
zero marks a place and cannot simply be omitted and that 45 divided by 6 is not 7 
remainder 2. 
Leea correctly completed the algorithm, however her description is very procedural.  

Leea: 6 into 1 can’t go. 6 into 18, 3. Bring down the 4. 6 into 4 can’t go so bring down 
the 5. 6 into 45, 7 remainder 3. 

Leea has adhered to the DMS bring down process very strictly and has produced a 
correct answer. However this has not fostered a deeper understanding of the division 
operation nor the importance of place value. 

The year 7 teacher from Phase 1 expressed concern during her interview that she 
did not have sufficient time to ‘teach for understanding’ and that ‘if the students just do 
as I tell them they will get it right.’ She said she liked structured teaching, which she 
classified as ‘sit up and shut up.’ This style of teaching fits very well with the 
procedural explanation she gave for the division process: 

The students just have to learn to deal with one number at a time, apply the learned 
process of DMS bring down, and they will get it right every time. 

Of the 6 students interviewed in Phase 2, Peter was the only student who chose 
to calculate his answer by writing the answer without any working: 

He was also the only student to explain his calculation from a procedural perspective.  
Peter:   How many 6’s can I put into one? I can’t. How many 6’s can I put into 18? 3. 
Write it up here. How many 6’s can I put into 4? Can’t, so I put down the zero.
Interviewer:   Why did you put a zero here? Can you explain? 
Peter:   You just do. Now, how many 6’s can I put into 45? (counting quietly) 42, so 7 
goes up here, remainder 3. The answer is 307r3. 
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Not only is Peter’s explanation procedural, limited conceptual knowledge is 
evidenced by his inability to explain why the zero was placed in his answer. 

Katie’s work and explanation was typical of the remaining 5 interviewed students. 
Can I share 1 thousand among 6? No, so I rename as 18 hundreds. 18 shared among 6, 
which is 3. 3 times 6 equals 18. 18 minus 18. Then you bring the 4 down. Can I share 
out 4 tens among 3? I can’t so I put zero here. Then I bring down the 5 and rename as 
45 ones. 7, 6 times 7 equals 42 so 45 take away 42 is 3. I now have to rename to 
tenths. 6 into 30 tenths equals 5 with nothing left over. 

Katie is aware of place value, that renaming is occurring and that division involves 
sharing. She is still using the language of ‘bring down’ as she renames however it 
could be argued that she understands exactly what she is doing and why. 

Following the Professional Development, the Phase 2 year 7 teacher introduced 
her classroom to an approach to teaching mathematics where concrete materials were 
used and discussions encouraged to explain the concepts being developed. When 
asked how this approach had impacted on her teaching of division she replied:

Once the kids get into the upper (primary) school they stop using concrete materials 
(for the operations) and the kids have a real reluctance to go back to using them. 
Maybe that is why DMS bring down was taught But with division being introduced in 
the upper school, and I have used games and other materials it is now OK to use 
concrete materials, in their eyes. I have found that by using concrete materials that kids 
get it, and I am talking about kids who haven’t got it mathematically in the past. I 
think it is because we now do so much concrete stuff and they can all see it together 
and talk about it. You don’t have to be able to work in the abstract to get it. 

Error Analysis 
When the errors made by the students are analysed further insight into the varying 
levels of student conceptual understanding is evident between Phase 1 and Phase2 
students and their teachers. While the number of students who chose not to attempt 
the questions or to show any of their working has reduced from Phase 1 to Phase 2, 
the area of most change is in the process errors. Table 2 documents the student errors: 

 Correct 
calculation 

%
Correct

Incorrect
calculation 

No
attempt 
or no 

working

Internal 
zero
error

Process
error

Fact
error

Misc
errors

Q5         
Phase1
n=24

4 21% 15 5 5 9 4 1 

Phase2
n=23

18 80% 4 1 3 - 1 - 
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Q6         
Phase1
n=24

6 31% 13 5 4 7 5 - 

Phase2
n=23

16 76% 5 2 2 - 1 2 

Table 2 Error Analysis 
Phase 2 students did not make any errors that have been classified as process errors in 
contrast to the large numbers of process areas for questions 5 and 6 in Phase 1. 
However, internal zero and fact errors have continued.

In Phase 1 there were a variety degrees of process errors which provide good 
insight into the limited conceptual understanding these students possess. For example 
David wrote: 

He has learned that when you cannot share a number in a place, you put a zero to 
indicate that no sharing has occurred. However, he has failed to share 230 and the 
remainder 1 is possibly the remainder from the sharing of 9 thousands. 

While Bella’s work superficially appears to indicate substantially more 
understanding than the previous examples, on closer examination she demonstrates 
processing errors with both division and subtraction. 

When Bella could not divide 3 tens between 4 she changed the divisor to 3 wrote in 
the quotient that 3 was shared once and that she had used all 4 tens. She then takes 
the 4 tens from 3 tens leaving her with one ten. Examples such as this indicate how 
superficial her understanding of the other operations may be, yet could be so very 
easily marked wrong without considerations to what aspect was incorrect particularly 
when her setting out looks like she has learned the process. 

The results from both phases of this study indicate that a zero in the ones place 
in the quotient is more difficult to master than a zero in tens place.  Phase 1 student, 
Daniel, has difficulty with internal zeros in both questions. 

Divesh’s work is a typical example of the 16 students in Phase 2 who correctly 
calculated the answers to questions 5 and 6. He clearly documents what place is being
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shared indicating place value knowledge and a thorough understanding of the concept 
of division. These children have had experience using games to demonstrate the 
sharing that is division, they then moved on to sharing MAB on a place value chart 
and then documenting the sharing in the form of the algorithm seen by the following 
example.  

Interpretation of Remainder 
The final aspect of these two questions to be analysed in this paper is the question of 
interpretation of the remainder to solve the problem.  

Correct
calculation
Remainder 
interpreted
correctly

Difficulty
Interpreting
Remainder
-calculation 
correct to 
this stage 

No attempt to 
interpret

remainder –
calculation

correct to this 
stage.

Difficulty
Interpreting
Remainder

-
calculation
incorrect

No attempt 
to interpret 
remainder-
Calculation 
incorrect

Q5      

Phase 1 
n=24 0 1 3 1 14

Phase 2 
n=23 8 1 8 1 3

Q6      
Phase 1 

n=24 0 0 6 2 11
Phase 2 

n=23 4 3 9 1 4

Table 3 Interpretation of Calculation 
The example above shows that Divesh has interpreted the remainder in his 
calculation in order to arrive at his final answer of 2310 boxes. However, this was not 
commonplace as Table 3 shows. 

No student in Phase 1 completed problems 5 and 6 successfully. There has been 
an improvement in students correctly completing both questions in Phase 2 but this 
remains at a low level, 47% for question 5 and 25% for question 6. When teacher 
responses are taken into consideration Phase I students can not be blamed for their 
low priority to interpret their calculation and solve the problem when their teacher 
does not have this aspect of problem solving as a priority and only interpreted one of 
the calculations herself.  
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Teacher Phase 1 

On the other hand, while the Phase 2 teacher gives the correct solution to both 
problems, she does not appear to have prioritised this to her students judging by their 
poor results on this aspect of problem solving. 
CONCLUSION
The responses given by both students and teachers demonstrated considerable growth 
in conceptual understanding of division. Prior to PD both teachers taught the process 
known as DMS bring down when teaching the division operation. Following PD the 
Phase 2 teacher introduced games, use of concrete materials as representations and 
then mirrored these representations with documented working of the algorithm This 
allowed children to understand the sharing that occurred with greater respect for 
place value. The students did not have to learn a process they did not understand nor 
were they expected to work in the abstract. They were able to see exactly what was 
being shared and how this impacted on the final result. Phase 2 students 
outperformed Phase 1 students, their error rate was lower, their conceptual 
understanding of division was greater and they had began to consider interpreting 
their calculation to solve the problem.  
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