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The article focuses on a specific method of constructing the concept of function. The 
core of this method is a didactic model that plays two roles together– on the one hand 
a role of a model of the concept of function and on the other hand a role of a model 
of physical phenomena that functions can represent. This synergy of modeling 
situations and constructing mathematical language to describe them is an initial 
issue in a Learning System.
DIDACTIC MODEL AS A COMPONENT IN A LEARNING SYSTEM  
A didactic model is a means for learning a new mathematical concept. It consists of 
objects familiar to the learner with well-defined operations on them. The operations 
performed on the objects are rigorously defined and are fully and uniquely mapped 
onto the formal mathematical operations and syntax of this yet unknown 
mathematical concept. These operations support the construction of an understanding 
of more formal reasoning about mathematical concepts and about their essential 
properties. An example of such model is the Cuisenaire Rods for supporting the 
foundation for learning the concept of number (described by Nesher 1989).  
An attempt to use the didactic models of mathematical concepts -- to address the 
complexity of establishing a meaningful formal language is described by Nesher 
(ibid.). At the heart of Nesher's Learning System mathematical models are a major 
means toward understanding the properties of formal mathematical language. As in 
traditional approaches, the physical world enters the sequence only after the formal 
language has been meaningfully understood. Thus, while the didactic modeling offers 
a significant ways to grasp the properties of the concept of number (e.g.; comparison 
of quantities as objects, group of binary operation) and connect them to formal 
language, the link between the physical field and the mathematical concept is not 
firmly established. 
The Realistic Mathematics Education (RME) approach suggests that students 
investigate real contexts on their own (Gravemeijer & Doorman 1999). Within their 
perspective, the model and the situation modeled co-evolve and are constituted 
mutually within the course of the modeling activity.  
Our approach to function based algebra learning by “guided inquiry”, combines 
elements of the “guided reinvention” environment (RME approach) and of the 
Learning System approach. Like the RME developers, we studied the students' ability 
to re-invent and construct mathematical notations and mathematical concepts 
(Yerushalmy ,1997). Like the Learning System developers, we take responsibility for 
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the design of mathematical didactic models that are the core of the conceptual 
knowledge to be acquired.
Elsewhere we describe in details the rationale for a function approach to algebra that 
starts with qualitative modeling (Yerushalmy & Shternberg 2001). Here we will 
describe the design of the didactic models –DM - that promote and enable learning in 
this approach. About each component of the DM we will make clear to which 
mathematical object and action it corresponds.
The offered DM has two parts according to two directions for analyzing functions 
and their changes: from a function to its change and from a change to appropriated 
functions.
The first part - from a function to its change - consists of a set of seven graphical 
icons; each icon is a line with a different behavior of change. The other part of 
DM allows defining function by using another set of icons, which determines 
discrete “changes” and presents the function as accumulation of these changes. 
The DM is in fact a piece of software, and as such it is naturally dynamic. For 
example, each line can be stretched as far as it preserves the behavior of the 
change (for instance, it remains ascending with a descending change), or the 
parameters of each change can be altered manually and the function is adjusted 
accordingly.
Figure 1 presents briefly the main components of the first part of the DM that is 
relevant to the study concerning in this paper. 
Learning with the DM the students have a chance to begin constructing basic 
mathematical concepts of calculus at their first steps in high school algebra. The 
meaning of function grows in parallel with the meaning of phenomena this function 
could model. Far away from being familiarly with symbolical presentation of 
function, students get mathematical tools for inquiring meaningful mathematics and 
phenomena. 
The different components: icons, verbs, and stairs are eventually adopted as 
manipulable objects that support students in constructing complex mathematical 
models. The learning system is designed to map the terrain of the concept of function 
in a simplified and abstract way. It provides mathematical terminology and an 
overview of the possible behavior of processes. The icons, that are models of 
functions and are used for reasoning about functions, are also mathematical models 
of situations, and together with the stairs model are used for reasoning about 
phenomena. Thus, the same model serves as the DM of the concept of function and 
as the mathematical model of a physical situation. While mathematical modeling 
cannot be fully accomplished by this qualitative sign system, the issue for this study 
is to identify essential contributions of modeling using didactic models.  
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Figure 1: The main components of the DM 
Applying the didactic model enables one to analyze phenomena, to describe them 
mathematically and to communicate about the phenomena and about the functions 
that represent them. As an illustration, we will introduce the case of pre-algebra 
students who, before studying symbolic expressions, apply the concept model of 
the concept of the function to describe a phenomenon. 
We will argue that a Learning System that combines the concept model of the 
concept of function with the mathematical model of the physical situation can 
help students develop a profound understanding of the mathematics of functions 
and of its role in describing physical situations.
In the following section we will make some distinctions for describing pre-
algebra students' modeling attempts. 

The DM:  
A model for the concept of function and functional change 

The objects of the 
DM: 
seven graphic icons; 
each icon is a line 
representing 
different behaviors 
of change 
Action on the 
objects (lines): 
constructing 
different graphs 
from the lines and 
constructing stairs 
to create a model of 
a concept of change 

and

A model of acting within the contexts that a function could model
Above the lines 
are the properties 
of functions in 
terms of the 
situation (e.g.: 
the pace of milk 
production is 
increasing).
Placing points on 
the properties (or 
the domains), one 
gets the 
appropriate 
segment in the 
context.  

A Context 

During the 
summer cows 
produce small 
quantities of 
milk. As winter 
nears, the 
quantity of 
milk increases 
to the point 
where the cows 
reach peak 
production. 
In midwinter 
there is a 
decrease in the 
quantity of 
milk. The pace 
of the decline 
speeds up 
until the 
following 
summer.
Describe how 
the pace of 
milk 
production 
depends on the 
time that 
elapsed from 
one summer to 
the next. 
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REASONING WITH DIDACTIC MODELS: THE CASE OF 
INSTANTANEOUS SPEED 
A group of 34 pre-algebra 7th grade students was interviewed as they were 
solving seven tasks. The tasks required constructing mathematical models of 
phenomena characterized by their function or by their changes and distinguished 
one from the other by the way of presenting the phenomenon and by the aspect of 
the rate of change that was outlined in the task.  
“Motorcycle” was one of the suggested tasks. It presented a continuous kinetic 
phenomenon by a graph that describes the length of the route of the motorcycle in 
time (figure 2). 

Figure 2: The “Motorcycle” task 
It was a new type of problem for the students, because it asked about change at a 
point (unlike the DM that deals with change over an interval), and because it 
required a numerical solution (unlike the modeling tasks that ask for graphical 
and verbal descriptions with which the students were already familiar from their 
previous class work).
In class, students learned to use the DM to analyze and compare situations, 
usually in their graphic or verbal forms and with no concern as to their numeric 
values. “Motorcycle” challenged the students to use the DM in a way that differed 
from that for which it was designed. In their regular math course, these students 
had not yet coped with functions in any presentation except the graphic one. A 
common strategy used by the class, which was also applied to the “Motorcycle” 
task, was to analyze the behavior of a graph by visually comparing �f (heights) or 
�f/�x (slopes). Although this strategy was inadequate for finding the speed at t=2, 
it was obviously very applicative at different steps of the solution process. It was 
interesting, therefore, to observe whether the didactic model would play any role 
in the definition of the new concept, its construction, and the process of seeking 
the solution for the task, i.e. measuring the speed at the second minute.   

The graph describes the length of the motorcycle’s route over time:

Find the motorcycle's speed at the end of the second minute.
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The examples below demonstrate the use of the DM in defining a new concept 
about which the students had only some previous intuitive insight. 
� Defining speed as the distance within the second minute 

Tzor: From it (points in the stairs) one can infer the speed. Suddenly I see the speed in 
the graph. The stairs do not continue equally, they are increasing. You can see that at this 
time (points to a width of a stair) you move this distance (points on the height of the same 
stair) and from this you derive the speed. 

Tzor “sees” speed just as the distance within the whole second minute, as if the 
speed would be constant during this period. 
� Defining speed as the distance within a small unit near t=2 

Almost all the students defined speed as the distance within a unit of time. 
Moreover, most of them improved their definition by dividing the 3 minutes 
into more than 3 units referring to a small unit near t=2.  

Marina and Rina were first to initiate an explicit discussion about the definition of 
speed. 

Marina: What is speed? 
Rina: Speed is the distance traveled in an allocated period of time. In the second 
minute it means something like this (draws a stair)… In the last minute he traveled 
almost twice the distance covered in the second minute. Try to make the stairs less 
wide so that the slope is not too drastic.  
Marina: You don’t have anything exact between one stair and another. I think that the 
difference will increase all the time (draws the differences). It comes out that in the 
second minute he passes something like 5 meters. 

From Marina’s drawing we can learn that she divided the 3 minute period into 
more than 3 stairs and referred to the one that was close to the point of t=2. 



4–190  PME28 – 2004

� Referring to the average speed 
With regard to average speed, none of the 68 students mentioned the 
misleading possibility of finding the speed at t=2 as the average of the speed 
during the 3 minutes. All the students indicated that the actual speed, unlike 
average speed, was not constant.  

David: When you ask about the speed in the second minute, do you mean the average 
in two minutes? But the speed is different each second! If one draws here a straight 
line, he will get the average speed. 

Some of the students went further and tried to define a specific rule for the 
change of speed, keeping the average as a reference. 

Nir: The average for the three minutes is nine.  
Shani: But at the beginning he moves a bit slow and then a bit faster. We should 
therefore add to nine here, and subtract from nine here. You should add and subtract 
equally.
Nir: No, here the acceleration is fast and you cannot do it equally. 
Shani: We check the distance he traveled in the first minute. On average he traveled 
9 km in a minute. But the first incline should be a bit less than the average, and then a 
bit more than average. 
Nir: The rise between one and the other cannot be constant. Shani conjectured and I 
refuted it. He said we should add and subtract equally. It would be 6, 9, 12. It would fit 
if… it would increase at a constant rate, but the distance does not increase at a constant 
rate. Actually it cannot be right. If it were a straight line, then the speed would be 
constant. And here the speed begins slowly and slowly increases. 

DISCUSSION 
The stairs component of the DM offers presentations of the average rate of change in 
an interval, and does not offer any presentation of instantaneous speed, such as a 
tangent. Although most of the students knew intuitively that in order to determine the 
speed they needed to divide the distance by time, they realized that this would not 
work when the speed was not constant.
Unable to discover another way to find the speed, they tried using very small 
intervals of time, and even then they understood that the division would give them 
the average speed, not the actual one. Applying the DM of stairs, the students created 
a mathematical model that uses the concept suitable to the processes in a situation, 
“saw” the speed, and came up with an operative definition for it. The DM linked the 
speed to the accumulated distance and created a visual presentation of the speed as 
the change of the function. Some of the students even tried to define a recursive rule 



PME28 – 2004  4–191

for the change of the function, attempting to present each height of a stair as a 
function of the height of the previous stair. A striking impact, which was probably a 
result of using this strategy, was the absence of 'average' considerations that typically 
appear when considering linearity. Not one of the 68 students used the linearity 
argument.
The use of the stairs to find the number value of the speed might result in grasping 
speed as a constant at each unit of time. This did not happen because the students 
were used to analyzing the change of function as a continuous smooth magnitude.  
In the “Motorcycle” task, the students spontaneously gave the DM new roles: as a 
model of speed and instantaneous speed, as a tool for definition of new concepts and 
as a presentation of average speed. Thus, the students used the DM not only to 
analyze the processes, as they were accustomed, but also to define concepts and to do 
computations. They really connected between the different presentations of speed and 
took a step forward from viewing speed as a process to defining it as an object.
Carlson et al (2002) reported on an investigation of high-performing 2nd-semester 
calculus students, where students appeared to have difficulties in forming images of a 
continuously changing rate and could not interpret accurately the increasing and 
decreasing rate of dynamic function situations. The 7th grade students in this study, 
in contrast to the above mentioned calculus students, demonstrated an ability to 
figure out co-varying quantities, to represent constant and non-constant changes and 
to make the link between the graph of accumulated quantity to the graph of change. 
Turner et al (2000) believe that these abilities play an essential role in understanding 
the concept of change.  
The DM helped the students to develop an understanding of the main properties of 
the concept of instantaneous speed and to build together the concept of the 
mathematical signifier – a small stair near the point -- and the signified object in the 
phenomenon –instantaneous speed. It seems that they took a meaningful step towards 
understanding some important subjects in calculus, such as the average change of 
function and instantaneous change and the linkage between them. 
The students demonstrated an understanding of the relationship between the graphical 
presentation of speed and its numerical characteristics and communicated about each 
of the presentations in terms of the modeled situations. They related to the speed as to 
a process of accumulating distance in a unit of time and also as an object (defining its 
properties such as its ability to increase). All this allows us to claim that these 
students took a step forward towards the profound understanding of important 
concepts in calculus, such as the average change of function, instantaneous change, 
and the linkage between them.
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