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Based on a national survey and some further studies of mathematical proof and
refutation of 7" through 9" graders, this paper will show evidence of the existence of
continuity between refuting as a learning strategy and the production of conjectures,
and between a more effective teaching strategy and the traditional teaching strategy.
A detailed analysis of students’ refutation schemes will be presented, and a model of
their refuting process will be described based on both their refutation schemes and
an expert’s thinking process on refutation.

INTRODUCTION
Connecting Teaching with Students’ Cognition

Research on students’ mathematics cognition usually aims to investigate students’
thinking and the strategies used, and further to show what guides students’ thinking
and why the strategies are used. Information about students’ cognition can then
naturally be applied to redesigning teaching strategies for enhancing students’
learning in mathematics classrooms. Both the students’ mathematics cognition and
the related teaching modules associated with empirical evidence on its effectiveness
are meaningful resources for teachers to learn teaching. Indeed, results of research on
students’ mathematics cognition proved to be key resources for redesigning teaching
modules and reforming curriculum to ensure effective learning (Hart, 1980, 1984;
Lin, 1991, 2000; Harel, 2002; Boero et al., 1998, 2002; Duval, 2002).

This paper focuses on investigating teaching and learning strategies to connect
students’ mathematics cognition for enhancing learning on mathematical proof and
refutation. We will analyze cognition on proof and refutation in a specific group of
students (about one third of their age population). And, for easy implementation in
school practices, we chose the coloring strategy for learning proving, and the refuting
strategy for learning conjecturing; both strategies are economic and innovative with
new thinking. The evidence of using refuting as a learning strategy to generate
innovative conjectures shall be presented.

A Research Program on Argumentation and Mathematics Proof

An ongoing two-staged research program on the development of proof and proving is
the main reference in this paper. The first stage (2000~03) studied junior high
students’ understanding of proof and proving. The second stage (2003~07) is
studying teaching and learning of mathematics proof. Three phases were carried out
during the first stage: instrument development, pilot study, and national survey. Six
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booklets comprising of algebra and geometry questions for 7%, 8", and 9™ graders
were developed for the national sampling survey, and the survey involved 1181
seventh, 1105 eighth, and 1059 ninth graders respectively from 61, 60 and 61 classes
in 18 sample schools. Most of the items developed in the English study (Healy &
Hoyles, 1998) were adopted and modified based on Taiwan students’ responses in the
pre-pilot study during the first phase of the first stage. In addition, some new tasks
were evolved from our interviews, which enabled the features of students’ pre-formal
reasoning to come through in both the instrument and coding system.

The second stage, teaching and learning mathematics proof, is comprised of an
integrated project and four subprojects focusing on algebra (Lin, et al., 2004),
geometry (Cheng & Lin, 2005), reading comprehension of geometry proof (Yang &
Lin, 2005), and teaching and learning the validity of conditional statements (Yu Wu
et al., 2004). The studies are strongly influenced by the work of many current
researchers, such as the classification of student proof scheme (Harel & Sowder,
1998) and its application on teacher education (Harel, 2002), the cognitive analysis of
argumentation and mathematical proof (Duval, 1998, 1999, 2002), the framework of
proof and proving (Healy & Hoyles, 1998), the complexity of students understanding
proving (Balacheff, 1987), the function and value of proof (Hanna, 1996, de Villiers,
1991, Hanna & Jahnke, 1993), and the theoretical validation approach of the Italian
school (Garuit, Boero & Lemut, 1998).

ONE MORE STEP TOWARD AN ACCEPTABLE PROOF
The Incomplete Proof Group

When the national survey was administered in December 2002, the gh graders had
just learned formal proof in geometry for three months, while the 7" and 8" graders
had not yet learned it. Based on the detailed coding schemes, students’ performances
on geometry proving were regrouped into four types: acceptable, incomplete,
improper and intuitive proof. Students missing one step in their deductive reasoning
1s a typical incomplete proof. Students reasoning non-deductively or based on
incorrect properties or with correct properties that do not satisfy with the given
premises are codes of the improper proof. Students reasoning based on visual
judgment or authority are typical codes of the intuitive proof.

The terminology “acceptable proof” derived from a statement by Clark and Invanik
(1997): “Writing, for both students and researchers, is not just about communicating
mathematical subject matter. It is also about communicating with individual readers,
including powerful gatekeepers such as examiners, reviewers and editors.” We took
into account teachers’ views for assessing whether a proof was acceptable or not.

Students in the incomplete proof category were able to recognize some crucial
elements for their reasoning (Kuchemann & Hoyles, 2002). They were able to
distinguish premises from conclusions in the task setting. Particularly, on the two-
step proof items, they were even mindful to check conditions of the theorems applied,
1.e., micro reasoning (Duval, 1999.) They were also able to organize statements
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according to the status, premise, conclusion and theorem into a deductive step. Duval
(2002) named such competency as the first level in geometrical proof. The second
level is the organization of deductive steps into a proof. From the first step
conclusion to the target conclusion, valid deductive reasoning generally moves
forward through either successive substitution of intermediary conclusion or
coordination of some conclusions. Duval (2002) pointed out that students might have
“gaps in the progress of reasoning which makes the attempt of proving failed.” This
arises either from misunderstanding of the second level organization or from the
context of the problem. We shall carefully examine Duval’s statement above for the
group of students who performed incomplete proofs in the two-step proof tasks.

The data from our national survey showed that one quarter of 9" graders could
construct acceptable proofs in a two-step unfamiliar item; approximately one third

was able to perform incomplete proofs; and one third did not have any responses at
all.

It is obvious that educators would like to focus on this one third of 9™ graders who
were able to perform incomplete proofs, and to develop a learning strategy for them
to fill the gap, i.e., develop one more step toward an acceptable proof. An effective
learning strategy should promise that nearly a half of 9" graders will be able to
construct a two-step unfamiliar geometry proof.

Incapability of Students with Incomplete Proof Performance

The two-step unfamiliar question used in the survey is as follows.

0
A 1s the center of a circle and AB is a radius. C is a

C
l point on the circle where the perpendicular bisector
, A\ of AB crosses the circle. Please prove that triangle
P B ABC is always equilateral.

Two types of incomplete proofs were observed. One type was missing the ending
process. Students showed that AC=BC and AC=AB, but did not conclude that the
three sides were equal. From a deductive point of view, they were ritually incomplete
with the ending process, i.e., if a=b and b=c then a=b=c. Do these students who
performed two valid deductive steps still have difficulty in the ending process, a
classical syllogism? Or might these students simply be thinking that the two
conclusions were too obvious for implying the target conclusion? Should one write
this obvious step down? Would this be just an issue in the conventions of
mathematical writing? Studies of students’ understanding of proof by contradiction
(Lin et al., 2002) and mathematical induction (Yu Wu, 2000) showed that senior high
students who concluded their proofs without the ending process using either method,
very often developed a ritual view about the methods. And the principle of the
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methods was not understood (Lin et al., 2002). If a teacher considers the two valid
deductive steps as an acceptable proof, would the teacher create learning difficulties
on mathematical proof for some students? A general question can be asked: How
many students who can perform every valid deductive step necessary for a proof task
also have difficulty organizing the deductive steps into a proof? Interview data
showed that there were students behaving as such.

The other type of incomplete proof was missing one step, either AB=AC or AC=BC.
The information “AC is a radius” was implicitly situated within the given premise.
This information was invisible for students who did not conclude AB=AC. The
property of the perpendicular bisector of a segment seemed unclear for students who
did not draw the conclusion AC=BC. Some students of this type might not be aware
of the need to derive the equality of all three sides for an isosceles triangle. Thus, the
group of students with incomplete proof performance might not be able to:

(1) organize the deductive steps into a proof, or
(2) visualize some implicit information in the given premise, or
(3) recognize a needed mathematics property, or
(4) be aware of all necessary statements/deductive steps.
These four cognitive gaps are due not only to:
(1) misunderstanding of the organization of deductive steps into a proof,
(2) the content of a problem, but also
(3) the context knowledge, and

(4) the epistemic value, i.e., the degree of trust of an individual in a statement,

from likely or visually obvious, to a statement becomes necessary (Duval,
2002).

For teaching experiments, one needs to rethink a learning strategy to ensure that
students can cross these cognitive gaps.

A Learning Strategy for Promoting One More Deductive Step

Using X as learning strategy for students within their mathematics proof activities is
an active research issue. Fifteen paper presentations that dealt with this issue in PME
22~28 are reviewed. The different Xs used in those papers include: arranging the
context of proof situations (Garuti et al., PME26) and encouraging interactive
discursion to create students’ cognitive confliction (Boufi (PME26), Krummheuer
(PME24), Douek et al. (PME24), Sackur et al. (PME24), Antonini (PMEZ2S)),
learning within an ICT environment for conjecturing (Miyazaki (PME24), Gardiner
(PMEZ22), Hoyles et al. (PME23), Sanchez (PME27), Hadas (PME?22)), emphasizing
teachers’ questioning as scaffolding (Blanton et al. (PME27), Douek et al. (PME27)),
and using metaphors (travel) for setting target goals (Sekiguchi (PME24)). Note that
the notation (PME24) indicates the paper appeared in the Proceedings of PME24. We

PME29 — 2005 1-6



Lin

exercised a “thought experiment”(Gravemeijer, 2002) with each of those strategies in
addition to typical geometry teaching strategies used in Taiwan secondary
mathematics classroom, to match the characterization of the incomplete proof group
and enhance them to move one more deductive step. Finally, we chose two strategies
that are commonly observed in typical Taiwanese 9" grade geometry classrooms and
tested them for helping students achieve one more deductive step. The reading and
coloring strategy means that students are asked to read the question, label the
mathematical terms, and draw or construct this information on the given figure by
color pens. The analytic questioning strategy means that students are asked to reply
on what the question asked you to prove, and what conditions in the premise can be
useful.

Several phases were conducted in our teaching and learning study:

® Phase (I1): A three-item diagnostic assessment paper was developed for
1dentifying sample subjects of the focus group. All three items share a common
feature with implicitly necessary information.
® Phase (2): An instructional interview was conducted on 9 samples individually
to examine the effectiveness of implementing both learning strategies
simultaneously.
® Phases (3) and (4): A small group teaching experiment was carried out to study
the effectiveness of only implementing one of the two learning strategies.
® Phase (5): A set of learning tasks on geometry proving was developed.
Based on the data resulting from phase (3), we will analyze the function of coloring
the mathematical terms in proving. Turning implicit information into explicit
information is definitely one function of the strategy. What else happened so that the
subjects were able to complete an acceptable proof? It is noteworthy to interpret this
with the data collected in the phase (3).

The three items, including the two-step unfamiliar item (G2) used in the national
survey, were used in both phases (1) and (2). Nine samples were identified and
interviewed. Their performances before the instructional interviews (Pre-I) and after
intervening with the reading and coloring strategy (R-C) and analytic questioning
strategy (A-C), respectively, during the interviews are presented in Table 1.

The notation (31) denotes the sample who performed an incomplete proof without the
ending process due to omission (sample 02) or students’ epistemic value that the
ending process is unnecessary (sample 05, 06, 09). The notation 31* indicates that
sample 01 would not agree with the syllogistic rule “if a=b and b=c then a=b=c”
during the interviews, but agreed that “a=b and b=c” are the conditions for an
equilateral triangle with sides a, b and c. The behavior of sample 01 on the syllogistic
rule reveals one kind of reason for missing the ending process.

Sample | Performance | Gl G2 G3 Gl G2 G3 | Sample

01 Pre-I 0 32 0 4 32 32 06
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R-C 4 32 4 32 32
A-Q 31%* (31) (31)
Pre-1 (31) 0 32 0
02 R-C 4 32 32 32 07
A-Q 4 4
Pre-1 0 32 0 32
03 R-C 32 4 4 32 08
A-Q 4 4
04 Pre-1 32 21 32 0 (31) 32
R-C 4 4 09
A-Q
Pre-1 4 31 32
05 R-C 31
A-Q

Note: Definition of codes: 4 denotes an acceptable proof; 31 denotes incomplete, missing the
ending process; 32 denotes incomplete, missing one deductive step; 21 denotes improper, using an
incorrect property; 0 denotes no response.

Table 1: Students’ performance with/without the learning strategies R-C and A-Q

Table 1 shows that among the 24 (27-3) positions of students’ performances which
need to move towards an acceptable proof, 15 positions were successfully moved
before or after the intervening of only the reading and coloring strategy. Since this
coloring strategy is procedural in nature, the cognitive demand on learners for using
this strategy is much lighter than using the analytic questioning strategy, which
demands quite heavy analytical thinking. So, it is worthy to further explore the extent
to which the reading and coloring strategy can enhance students’ proving
performance. Which kind of proof content will be effective by using this strategy?
And a further interpretation of the effectiveness also seems interesting. This is the
phase (3) study.

Effects of the Coloring Strategy

During the phase (3) study, four two-step unfamiliar new items were developed for 8
new participants. Before intervening with the reading and coloring strategy, out of 32
(8 x 4) performances, 10 were acceptable proofs and 22 were unacceptable, i.e.,
incomplete, or improper or had no response. Each participant had at least two
unacceptable performances. One week later, 8 participants worked on the same items
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after intervening with the reading and coloring strategy. As a result, 16 out of the 22
unacceptable proofs had progressed to acceptable proofs. However, 4 out of 10
acceptable proofs became unacceptable, in which 3 out of 4 negative effects were
coded from the same item 3.

Item 3.

Points A, E, C are collinear,

and AABC is congruent to AADC.
Show that: BE=DE

VAN

Two students misinterpreted the equality signs labelled on ZABC and ZADC as
ZCBE =ZCDE. The other student associated the sign around point C, with the angle
bisector theorem and applied it improperly. Indeed, colored signs labelling on sub-
i/\ figures which cross each other would generate a disturbance that
affects visualizers’ interpretation on the explicit information

transmitted from the sub-figures.

Among the non-effected performance, all six were collected from item 2.

Item 2.

A D Points B, E, C are collinear,
/ ; ; \ and AABE is congruent to ADEC.
B
E C Show that: AD/BC

When the equality signs were colored on the six elements, sides and angles of each
triangle, the colored signs produced superfluous relations among the elements.
Whenever a relation matching his/her target goal was observed by a student, it
became active and operational. Students then applied it without justifying
deductively. This seemed to be the pattern among those non-effected unsuccessful
performances. Analyzing the negative effects and non-effects of the coloring label
strategy, a criterion could be used by teachers to restrict the tasks on using the
strategy. If a disturbance or superfluous relation from the coloring strategy were
intentionally generated onto an item, it may backfire and result in negative effects or
non-effects; in this case, the strategy may not be suitable for this item.

Transmission of the Subfigure with Relation to the Theorem Image

In spite of the negative and non-effects of the coloring strategy, we are interested in
how the effectiveness (16/22) of the reading and coloring strategy takes place. From
neuro-psychological perspectives, “Learning occurs... when transmitter release rate
increases make signal transmission from one neuron to the next easier. Hence
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learning is, in effect, an increase in the number of ‘operative’ connections among
neurons” (Lawson, 2003).

Learning was indeed achieved by those subjects who applied the coloring strategy
and were able to perform an acceptable proof. How were the operative connections
increased among the statements according to specific status and the use of theorems?
The necessary theorems existed previously in the subjects’ mental structure, but were
inoperative before they applied the coloring strategy. The result of the coloring
process revealed subfigures with notable relations that may also correspond to the
theorem. If this happens, then learners have increased the relation between the
subfigure and the needed theorem. To make it clear, we shall use the term theorem
image, similar to the term concept image (Tall & Vinner, 1981), to describe the total
cognitive structure that is associated with the theorem, which includes all the mental
pictures and associated examples, relations, process and applications. A theorem
image 1s built up over years of learning experiences. It is personal and constantly
changing as the individual meets new stimuli. Different stimuli can activate different
parts of the theorem image. The stimulus resulting from coloring of mathematical
terms in the premise is functioning to lead the transmitter of the revealed subfigure
with relation to the corresponding part of his/her theorem image. This leads the effect
of the organization of one deductive step.

MAKING DECISIONS ON FALSE CONJECTURES

Some items in each of the six booklets were connected to how students reason to
make their decisions on a given false conjecture. Students were asked to make a
decision among two (three) choices — agree, disagree, or uncertain (algebraic item) —
and then give explanations on their choices. A unity of coding schemes was evolved
for both geometry and algebra surveys. The coding schemes were used to analyze the
students’ performances. Based on this coding scheme, a model of refuting will be
discussed. Firstly, for researchers to make sense of the thinking process in
mathematical refutation, an expert was interviewed.

Mr. Counter-Example’s Thinking Process on Refutation

A mathematician, nicknamed Mr. Counter-Example by his peers during his graduate
studies, was interviewed to reveal the thinking process of an expert on refutation.

“Suppose an unfamiliar mathematics proposition is proposed by myself or peers. Reading
it and without having much sense with the proposition, the doubtfulness of its truth
usually does not arise in my mind. To make sense of the proposition, very often I'll
substitute some individual examples. Then, I will find more and more examples to satisfy
the premise. Naturally those examples will be classified according to certain
mathematical property. As long as the property is grasped, all kinds of examples will be
considered. Finally, a specific kind of example will be identified to counter the
conclusion if the proposition is false.”

According to Mr. Counter-Example’s description, his refuting process covers five
sequential processes:
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. Entry

. Testing some individual examples point-wisely for sense making

1
2
3. Testing with different kinds of examples
4. Organizing all kinds of examples

5

. Identifying one (kind of) counterexample when realizing a falsehood

This expert’s thinking process on refutation can be inferred to analyze students’
reasons on refuting.

On Geometrical False Conjectures

Two conjectures in geometry were adopted from the English study (Healy & Hoyles,
1998):

“Whatever quadrilateral I draw with corners on a circle, the diagonals will always cross
at the center of circle?” (7G1, Geometry)

“Whatever quadrilateral I draw, at least one of diagonals will cut the area of the
quadrilateral in half?” (8G1, Geometry)

Three false conjectures were evolved from the interviews carried out during the pilot
study phase of the first stage. The following one was included in geometry booklets
for both 7™ and 8" graders who were the subjects concerned in this section.

“A quadrilateral, in which one pair of opposite angles are right angles, is a rectangle.”
(7&8 G5, Geometry)

This coding scheme was evolved according to the performances of the national
representative sample and the expert’s thinking process on refutation, and is more
detailed than the schemes developed in the English study (Hoyles & Kuchemann,
2002), which only focused on high-attainers (top 20~25% of the student population).

On geometrical false conjectures, students either confirmed or refuted it. Comparing
the frequency on G5 of 7™ and 8" graders’ performances, there is no evidence of
progress with correct decisions over the year (37% for 8" graders, even more than
26% for 7™ graders). Based on the words provided by students who ticked disagree,
we classified them into three subcategories: rhetorical argument, correcting the given
information, and generating counterexamples. Duval (1999, 2002) classified the
relationship between a given statement A and another statement B into two types —
the derivation relationship and the justification relationship. For each type, there are
two kinds of reasoning that are practiced or required in mathematics teaching and
learning. Semantic inference and mathematical proof support the derivation
relationship; heuristic argument and rhetorical argument support the justification
relationship. In our code scheme, codes c2, c3, c4, gl, g2 are the so-called heuristic
arguments that take into account the constraints of the situation in the task. Generally,
an argument is considered to be anything that is advanced or used to justify or refute
a proposition. This can be the statement of a fact, the result of an experiment, or even
simply an example, a definition, the recall of a rule, a mutually held belief or else the
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presentation of a contradiction (Duval, 1999). Reasons relative to the person spoken
to or beliefs of the interlocutor are the rhetorical arguments. Therefore, code d4 is a
rhetorical argument, and d3 is a heuristic argument.

False Conjectures if P then Q

Code Frequency (%)
7G1 | 7G5S | 8G1 | 8G5
Confirmation 44 | 26 31 37
dy — Misunderstanding the given information 1 2 2 |
d; — Much ado about nothing 23 5 12 9
d, — Confirm Q with incorrect reason 9 3 8 6
d; — Giving P’ s.t. PP—Q 3 12 3 17
d4 — Authority 0.1 0.2 1.1
Refutation 52 | 67 68 59
Rhetorical argument 8 8 17 11
Correcting the given information 15 51 12 33
co — Criticizing the given information 9 13 3 5
c; — Non-example 3 3 5 9
¢, — Providing alternative Q 32 16
c3 — Characterizing Q s.t. P’— Q 2 3 3 2
c4 — Empirical decision 0.3 0.5 | 0.1
Generating (a) counterexample(s) 24 4 34 11
go— Do not believe it is always true 3 1 5 3
g, — Giving the possibility of a counterexample 5 0.6 13 4
g, — Giving the way of generating a counterexample 4 0.3 4 1
g3 — Explicit, clear counterexample 12 2 10 3
g, — Counterexample with mathematical proof 0.1 0.9 | 0.1

Note: Non-responses are not included

Table 2: 7™ and 8" graders Code Frequencies on items G1 and G5
(N7=1146, N8=1050)

Our coding scheme with code frequencies cover three out of four kinds of reasoning
practiced by our 7™ and 8" graders on refuting false conjectures: rhetorical argument,
heuristic argument and mathematical proof (clear counterexample counts). The
relatively high frequency of code ¢2 in 7G5 was contributed by students who
reasoned that under the assumption, a quadrilateral can be either a square or a
rectangle. This reason reflects the prevalence of students who misunderstand the
inclusion relationship between squares and rectangles. Putting the number of students
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with codes c2, c3, c4, gl and g2 together, and computing its frequency, we found that
11% and 36% of 7" graders and 20% and 24% of 8" graders were able to make a
heuristic arguments for refuting G1 and G35, respectively.

On Algebraic False Conjectures

Three false conjectures in algebra survey for 7" and 8" graders were chosen for
discussion.

A3 “If the sum of two whole numbers is even, their product is 0odd?” (Both 7™ and 8"
graders, adopted from Kiichemann & Holyes, 2002.)

A6b  “The sum of a multiple of 3 and a multiple of 6 must be a multiple of 6?” (8™
graders)

The data (3,6,6) in A6b was replaced by (3,6,9) in A6c for 8" graders, and
respectively by (2,4,4) and (2,4,6) in A6b and A6c for 7h graders. Students’ works on
algebraic false conjectures were analyzed with this code scheme: “g3: explicit, clear
counter example, can be distinguished into three subcodes,” “g31: counterexample
without reason,” “g32: both supporting and counterexamples,” and “g33:
counterexample with analytic reasons,” which often is a rule for generating a specific
counterexample. Referring to the expert’s thinking process on refutation, both
processes (2) and (5) will be coded by g31. Thus, without words, code g31 could
result from primitive or advanced thinking.

Instead of presenting the national survey data, we’ll present a brief description of the
students’ words to model their refutation schemes on algebra. On confirmation: (1) “I
believe that only true statements will be presented in my learning” (code d;); (2) “I
consider it correct, because its familiar format is akin to statements in textbooks”
(code dy); (3) “I had supporting examples, e.g., 3+6=9 and 3x2+6x2=18, they are
multiples of 9” (A6c¢) (code d3). On uncertain responses: (1) “I am not certain because
the multiple is not given,” students interpreted the term multiple in “a multiple of 3”
as specific numbers, a misconception (code ry); (2) “I had both supporting and
counterexamples,” in ordinary language, this statement is uncertain (code gz;). On
refutation performances: (1) “The statement is so elegant, I must have learned it
before. But, I did not. So it can’t be always correct” (code g); (2) Simply adding a
negation without reasons (code r;). Beyond the above beliefs and rhetorical
arguments, the students’ refutation schemes are coded by gl, g2, g31, g32, g33 and
g4. Their thinking process then is similar to certain points in the expert’s thinking
process.

Refuting Generates Conjectures

When students gave their explanations for refuting, many gave heuristic arguments
and explicit counterexamples with reasons, and we observed that some of these
students had even produced relations, known properties evidences, general rules, etc.
Buying the notion of “Cognitive Unity of Theorems” from the Italian school (Garuti
et al., 1998; Boero, 2002), instead of the concerns of the possible continuity between
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some aspects of the conjecturing process and some aspects of the proving process, we
would like to investigate the possible production of conjectures derived from the
aspect of the refuting process.

The activity of refuting in mathematics is considered an economic way of helping
students to develop competency in critical thinking. Competency of critical analyses
has been recognized as a deficit in Taiwan education and is now emphasized in the
school curriculum (Ministry of Education, 2003). Two refuting-conjecture tasks in
algebra and geometry respectively were developed for the investigation. Each task is
comprised of several items. The first item is making decisions on relatively easy false
conjectures that aim to motivate students to be aware that the task is on refuting. The
second item is given some false conjecture used in the national survey for refuting.
The third and fourth items ask students to produce one conjecture and more
conjectures, based on their refuting processes.

All nine 7™ graders who participated in the investigation with the algebra task
produced meaningful conjectures. Three of them even produced a general rule for a

whole number m that is divisible by the linear combination of whole numbers ax+by.

Seventy-five 9" graders from two classes were asked to participate in the geometry
task investigation. The four false conjectures used in the tasks were 7G1 (denotes
item G1 in the 7" grade survey), 8G1, 8G5, 9G6, respectively. According to the code
of frequencies of refutation schemes, 76%, 73%, 53%, and 60% of their
performances were in the category “generating counterexamples” with respect to
those false conjectures 7G1, 8Gl, 8GS5, and 9G6 respectively. The conjectures
produced by this group are presented in Table 3.

% 7G1 8G1 8G5 9G6
Thm. 33 20 52 7
New statement | 17 8 7 1
Innovation 5 33 56
Total 55 61 67 64

Note: Thm. denotes the conjecture is a theorem. New Statement denotes the conjecture is a new
writing of learned properties. Innovation denotes the conjecture is an innovative one.

Table 3: Frequency (%) of different type of conjectures. N=75, 9" graders

Table 3 shows that the success rate for producing correct conjectures on these four
tasks was approximately 60% or more. Different frequencies of each type of
conjectures imply that 8G1 and 9G6 are excellent for creating brand new conjectures
by 9" graders. The item 9G6 is quoted here.
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9G6.

A square is cut along the dotted line, then inverted. Is the resulting figure a rhombus?

%

The conjectures produced by students were further distinguished into “correlating” or
“not correlating” to their explanations for refuting.

The relatively high percentages in Table 4 show the continuity of the refuting process
and conjecturing process. This claims that refuting is an effective learning strategy
for generating conjectures. To create innovative conjectures, the content in the given
false conjecture needs to be well-designed, and 9G6 is a good example.

7G1 8G1 8G5 9G6
T1 40 57 38 69

Table 4: The percentages of conjectures that correlate to refuting

Boero (2002) reported that the Italian school has identified four kinds of inferences,
intervening in conjecturing processes: (1) inference based on induction, (2) inference
based on abduction, (3) inference based on a temporal section of an exploration
process, and (4) inference based on a temporal expansion of regularity. Reading
students’ productions in the refuting-conjecture tasks, we observed that false
conjectures in numbers 7A3 and 8A6 can enhance the generation of conjectures that
are inferences based on induction, abduction (e.g., a narrative) and even deduction
(e.g., 3h+6k=3(h+2k)); the task with figure dissection 9G6 can generate conjectures
that are inferences based on a temporal section of an exploration process (the
dissection), and tasks with 7G1 and 8G1 are relatively effective on generating
conjectures that are based on the expansion of regularity (such as new statements of
some properties). The following excerpt is from 9G6.

If a line cuts a rectangle along the pair of longer sides into two parts so that the cross
segment is equal to the longer side, then the two parts can be inverted to form a rhombus.

This conjecture is produced in association with sequential operations on a rectangle.
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CONCLUSION

Based on our study, there is evidence showing the existence of continuity in different
aspects of mathematics education. In the mathematics learning aspect, a rather high
percentage of students were able to produce correct conjectures when working on
refuting-conjecture tasks; this shows the existence of continuity between the refuting
process and the production of truth statements. For some students, this continuity can
even extend to their proving process. Indeed, some students have already provided
counterexamples with analytic or mathematical proofs to refute false conjectures. In
the mathematics teaching aspect, the effectiveness of the reading and coloring
strategy on geometrical two-step proving shows that teachers can keep their
traditional teaching approach, in which they can encourage students to label
meaningful information within the given premise and conclusion and then seek
linkages between the premise and the conclusion. Without disturbing their approach
but suggesting students to use color pens for labelling, teachers can enhance students’
proving competencies. This demonstrates continuity between a more effective
teaching strategy and the traditional teaching strategy. In the aspect of research in
mathematics education, there is continuity between the investigating processes by
educators in mathematics education research and by mathematicians in mathematics
proving. The six phases of mathematicians in proving identified by Boero (1999) is
indeed shared by mathematics educators in their studies, such as the study presented
in this paper. Formulating on-going investigating issues is always considered to be
connected with reflections on previous phases.

Carrying out more testing on the effectiveness of the refuting-conjecture tasks will
create an equilibrated set of conjecturing tasks suitable for activating different types
of inferences.

Several phases of research in mathematics education presented in this paper are rather
traditional, such as (1) Identifying 1/5~1/3 of students in their age population, whose
mathematics understanding are more likely to be enhanced. (2) Characterizing those
students’ competencies. (3) Carrying out an experimental study with a redesigned
learning strategy that connects to the characteristics of their cognition.

This approach can frame local (geological and societal) education issues in the wider
context of collaborative international studies, for the purpose of improving mutual
education. The experience seems to be a very healthy and effective approach.
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