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A longitudinal study of students’ developing understanding of decimal notation has 
been conducted by testing over 3000 students in Grades 4 to 10 up to 7 times.  A 
pencil-and-paper test based on a carefully designed set of decimal comparison items 
enabled students’ responses to be classified into 11 codes and tracked over time. The 
paper reports on how students’ ideas changed across the grades, which ways of 
thinking were most prevalent, the most persistent and which were most likely to lead 
to expertise. Interestingly the answers were different for primary and secondary 
students. Estimates are also given of the proportion of students affected by particular 
ways of thinking during schooling. The conclusion shows how a careful mapping can 
be useful and draws out features of the learning environment that affect learning. 

In this presentation, we will travel on a metaphorical seven year journey with over 
3000 students. As they progress from Grades 4 to 10, learning mathematics in their 
usual classrooms, we will think of these students as travelling along a road where the 
destination is to understand the meaning of decimals. The noun “decimal” means a 
number written in base ten numeration with a visible decimal point or decimal 
comma. It may be of finite or infinite length. Different students take different routes 
to this destination, and we will follow these different routes through the territory that 
is the understanding of decimal numbers and numeration. Of course, the students are 
simultaneously travelling to many other mathematical and non-mathematical 
destinations, but our information enables us to follow just one of these journeys. The 
benefit in following one journey derives from the knowledge that we gain of their 
paths on this journey, how to help them reach the destination securely and also from 
being able to generalise this knowledge to understanding their likely paths on their 
other mathematical journeys. 

Our travelling companions: the students 
In preparation for our journey, we need to find out about our travelling companions, 
the transport that is available to them, how we will map their progress, the nature of 
their destination and the territory through which they travel. Our travelling 
companions are 3204 Australian students from 12 schools in Melbourne. The schools 
and teachers volunteered their classes for the study. The youngest students were in 
Grade 4, the grade when most schools are just beginning to teach about decimals.  
The oldest students were in Grade 10, two or three years after teachers generally 
expect their students to have fully developed understanding of decimals. The data is 
from a cohort study, which tracked individual students for up to 4 years, testing them 
with the same test each semester (i.e. twice per year). Students entered the study at 
any grade between Grade 4 and 10, and continued to be tested until they left Grade 
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10, or until they left the schools or classes in the study, or until the end of the data 
collection phase of the study. In total, the 3204 students completed 9862 tests, and 
when allowing for absences from class on the testing days, the tests were an average 
of 8.3 months apart. The schools come from a representative range of socio-economic 
backgrounds, and were chosen in six geographical groups so that many students 
could be tracked across the primary-secondary divide. Nearly 60% of the 1079 
students who were first tested in primary school (i.e. elementary school, Grades 4 to 
6) were also tested in secondary school. More than 600 students completed 5, 6 or 7 
tests during the study. The detailed quantitative analyses of the test results presented 
in this paper are taken from the PhD thesis of Vicki Steinle (2004), whose careful and 
imaginative contribution to our joint work on students’ understanding of decimals is 
acknowledged with gratitude and admiration.  

The transport: their teaching 
The transport available to the students along this journey is principally the teaching 
of decimals that was provided at their schools. In the absence of a prescriptive 
national curriculum or recommended textbooks in these schools, teaching approaches 
are selected by teachers. This variety makes it difficult to give a comprehensive 
picture. Instruction will generally begin by introducing one place decimals as an 
alternative notation for tenths (e.g. 0.4 is 4 tenths, 1.8 is one plus 8 tenths) in Grades 
3 or 4. Dienes’ multibase arithmetic blocks and area models are the most common 
manipulatives used. In some programs, calculations are done with one place decimals 
(e.g. 0.24, 4.79) in the early years, followed by calculations with two place decimals 
treated exclusively later. In secondary school, textbooks very frequently ask that all 
decimal calculations are rounded to two decimal places.  Brousseau (1997) is among 
the authors who have commented that teaching which works exclusively with 
decimals of a fixed length is likely to support overgeneralisation of whole number 
properties. In the course of our wider work on teaching and learning decimals, our 
team has designed and trialled a range of teaching interventions, including use of 
novel manipulatives based on a length model (Stacey, Helme, Archer & Condon, 
2001b) and we have created a set of computer games using artificial intelligence 
techniques (Stacey, Sonenberg, Nicholson, Boneh & Steinle, 2003b), but only a very 
tiny percentage of students from the cohort study were involved in trialling any of 
these interventions.  The teaching that the students received in the longitudinal study 
can therefore be assumed to be a representative sample of teaching across Melbourne. 

The destination: understanding decimal notation 
What is the destination for this journey? Students will have arrived at the final 
destination when they have a full understanding of the meaning of decimal notation. 
For the purpose of our wider work on teaching and learning about decimals, full 
understanding means that they should be able to interpret a number such as 17.373 in 
terms of place value in several ways (as 17 + 3 tenths + 7 hundredths + 3 thousandths 
or as 17 + 373 thousandths, etc) and to appreciate that it is less than halfway between 



Stacey 

 

PME29 — 2005 1- 21 

17 and 18, close to 17.4 but with an infinite number of numbers between it and 17.4. 
At this point, it is worth noting that decimal notation, as a mathematical convention, 
involves a mix of arbitrary facts that have to be learned and deep mathematical 
principles. It is not merely a convention. Some aspects are completely arbitrary, for 
example identifying the units column by the contiguous placement of a decimal point 
(or a decimal comma in many countries) or placing the larger place value columns on 
the left rather than the right. However, the notation also embodies deep mathematics, 
such as the uniqueness of the decimal expansion, with the consequence that all 
decimals of the form 2.37xxxx are larger than all decimals of the form 2.36xxxx 
except that 2.369 2.37 2.370= =�  etc. It is this property that makes the decimal 
comparison task so easy for experts. In the sense of Pea (1987), decimal notation is 
an invented symbolic artefact bearing distributed intelligence.  

Early explorers mapping the territory 
The description of the territory through which students pass is strongly linked to the 
way in which their progress can be mapped. This is a basic feature of science: there is 
a two-way interaction between knowledge of a phenomenon and having instruments 
to observe it. In mathematics education, knowledge of students’ thinking depends on 
asking good questions, and we only know what the good questions are by 
understanding students’ thinking. In the context of students’ understanding of 
decimals, Swan commented on this phenomenon in 1983:  

“It is only by asking the right, probing questions that we discover deep misconceptions, and 
only by knowing which misconceptions are likely do we know which questions are worth 
asking”, (Swan, 1983, p65).  

Cumulative research on students’ understanding of decimals has broken this cycle to 
advantage. The task of comparing decimal numbers (e.g. deciding which of two 
decimals is larger, or ordering a set) has been used since at least 1928 (Brueckner, 
1928) to give clues as to how students interpret decimal notation. Refinements to the 
items used, especially since 1980, improved the diagnostic potential of the task and 
provided an increasingly good map of the territory of how students interpret decimal 
notation.  For example, Foxman et al (1985), reporting on large scale government 
monitoring of mathematics in Britain, observed a marked difference in the success 
rates of apparently similar items given to 15 year old students. Asked to identify the 
largest in the set of decimals {0.625, 0.5, 0.375, 0.25, 0.125}, the success rate was 
61%. Asked to identify the smallest, the success rate was a surprisingly much lower 
37%. Note that this paper presents all sets from largest to smallest, not in order 
presented. Further analysis led to the first confirmation in a large scale study that 
whilst some students consistently interpret long decimals (e.g. 0.625, 0.125) as larger 
numbers than short decimals (e.g. 0.5), which was well known at the time, a 
significant group interpret them as smaller numbers.   

“Despite the large proportions of pupils giving this type of response very few teachers, 
advisors, and other educationalists are aware of its existence – the monitoring team were 
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among those unaware of the ‘largest is smallest’ response at the beginning of the series of 
surveys.” (Foxman et al, 1985, p851) 

Asking students to identify the smallest from this set of decimals was used again as 
an item by the international “Trends in Mathematics and Science Study” (TIMSS-R, 
1999) Table 1 gives the percentage of the international and Australian students giving 
each response, alongside Foxman et al’s 1985 data. The existence of the same 
general patterns in the selection of responses across countries and times shows that 
there is a persistent phenomenon here to be studied.  There is also a good fit between 
the results from the TIMSS-R random Australian sample and a prediction made from 
the Grade 8 sample of the present longitudinal study (re-calculated from Steinle, 
2004, Appendix 4, Table 19), which confirms that the results of the longitudinal 
study presented in this paper are representative of today’s Australian students.  

Table 1:  Percentage response to the item: Which of these is the smallest number?  
{0.625, 0.5, 0.375, 0.25, 0.125} from TIMSS-R (age 13), APU (age 15) and with 
prediction from present longitudinal study (Grade 8).   

Option TIMMS-R 
International 

TIMMS-R 
Australia 

Foxman et al. 
APU, age 15 

Prediction 
(Grade 8) 

0.125 46% 58% 37% 60% 

0.25 4% 4% 3% 2% 

0.375 2% 1% 2% 2% 

0.5 24% 15% 22% 18% 

0.625 24% 22% 34% 17% 

 

Working at a similar time to Foxman et al, Sackur-Grisvard and Leonard (1985) 
demonstrated that examination of the pattern of responses that a student makes to a 
carefully designed set of comparison or ordering tasks could reveal how the student 
was interpreting decimal notation reasonably reliably and they documented the 
prevalence of three “errorful rules” which students commonly use.  This provided a 
rudimentary map of the territory through which students pass on their way to 
expertise in understanding decimal notation.  Sackur-Grisvard and Leonard’s test was 
later simplified by Resnick et al (1989) and has been steadily refined by our group to 
provide an instrument which can map where students are on their journey to 
expertise. Current researchers, such as Fuglestad (1998), continue to find that decimal 
comparison tasks provide a useful window into students’ thinking and progress.  

 

The territory and the mapping tool 
Measuring the progress of a large cohort of students along the journey to 
understanding decimal notation required a mapping tool that is quick and easy to 
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administer, and yet informative. The version of the instrument used in our 
longitudinal study is called Decimal Comparison Test 2 (DCT2). It consists of 30 
pairs of decimals with one instruction: “circle the larger number in each pair”. The 
pattern of responses (not the score) on 5 item-types (subsets of items with similar 
mathematical and psychological properties) enables classification of students into 4 
“coarse codes” (A, L, S and U) which are further broken down into 11 “fine codes” 
(A1, A2, L1, etc) to describe likely ways of thinking about decimals. Figure 1 gives 
one sample item from each item-type in DCT2 and shows how students in 7 of the 
fine codes answer these items. Students are classified into the coarse codes on the 
basis on their answers to the first two item-types (shaded in Figure 1) whereas the 
fine codes use all item-types. In summary, we map where students are on their 
journey by administering a test that is simple to do, but has a complex design and a 
complex marking scheme. Details of the sampling, the test and its method of analysis 
and many results have been described elsewhere; for example, Steinle and Stacey 
(2003) and Steinle (2004). We can think of the 11 fine codes as the towns that 
students might visit on the journey, although, as in most adventure stories, these 
towns are mostly not good places to be. The 4 course codes are like shires; 
administrative groupings of towns (fine codes) that have some connections. 

Comparison Item A1 A2 L1 L2 S1 S3 U2 
4.8 4.63 √√√√    √√√√ ×××× ×××× √√√√ √√√√ ×××× 

5.736 5.62 √√√√ √√√√ √√√√ √√√√ ×××× ×××× ×××× 

4.7 4.08 √√√√ √√√√ ×××× √√√√ √√√√ √√√√ ×××× 

4.4502 4.45 √√√√ ×××× √√√√ √√√√ ×××× ×××× ×××× 

0.4  0.3 √√√√ √√√√ √√√√ √√√√ √√√√ ×××× ×××× 

Figure 1.  Sample items from DCT2 and the responses for the specified codes.  

Some of the ways of thinking that lead to these patterns of responses are briefly 
summarised in Table 2.  In the presentation, some of these ways of thinking will be 
illustrated with case studies from Steinle, Stacey and Chambers (2002). The L 
behaviour (generally selecting a longer decimal as a larger number) was widely 
known long before the S behaviour (generally selecting a shorter decimal as a larger 
number) was documented as reported above. Neither coarse code A nor U students 
choose on length. Students coded A are correct on straightforward comparisons, and 
U is a mixed group making other responses. The ways of thinking that lie behind 
these behaviours (other than U) have been identified by interviews with students, 
supported by close analysis of response patterns to identify the characteristics of 
apparently similar items to which groups of students react differently. Behind the 
codes, there are often several different ways of thinking that result in the same 
patterns of responses to the DCT2. Later refinements of the test enable some of these 
different ways of thinking to be separated. Space forbids a full description here. 



Stacey 

 

PME29 — 2005 1- 24 

Table 2: Matching of codes to the ways of thinking 

Coarse 
Code 

Fine 
Code 

 
Brief Description of Ways of Thinking 

A1 Expert, correct on all items, with or without understanding. A 
apparent 
expert 

A2 Correct on items with different initial decimal places. Unsure 
about 4.4502 /4.45. May only draw analogy with money. May 
have little understanding of place value, following partial rules. 

L1 Interprets decimal part of number as whole number of parts of 
unspecified size, so that 4.63>4.8 (63 parts is more than 8 parts). 

L 
longer-is-
larger L2 As L1, but knows the 0 in 4.08 makes decimal part small so that 

4.7>4.08. More sophisticated L2 students interpret 0.81 as 81 
tenths and 0.081 as 81 hundredths etc resulting in same responses.  

S1 Assumes any number of hundredths larger than any number of 
thousandths so 5.736 < 5.62 etc. Some place value understanding. 

S 
shorter-
is-larger S3 Interprets decimal part as whole number and draws analogy with 

reciprocals or negative numbers so 0.3>0.4 like 1/3>1/4 or -3>-4. 
U2 Can “correctly” order decimals, but reverses answers so that all 

are incorrect (e.g. may believe decimals less than zero) 
U 

U1 Unclassified – not fitting elsewhere. Mixed or unknown ideas. 
 

How adequate is DCT2 as an instrument to map where students are on their journeys 
to full understanding? Clearly it has limitations, but it also has many strengths. Its 
ease of administration made the longitudinal study of a large number of students 
possible. The test can reliably identify a wide range of student responses, as 
illustrated in Table 2.  Test-retest agreement is high. Even after one semester, when 
one would expect considerable learning to have occurred, 56% of students re-tested 
in the same fine code (calculation from data in Steinle 2004, Table 5.17). Where we 
have interviewed students shortly after testing, they generally exhibit the diagnosed 
way of thinking in a range of other items probing decimal understanding. There is 
one important exception. Very frequently, students whom the test diagnoses as expert 
(A1) are (i) not experts on other decimal tasks and (ii) it is also sometimes the case 
that they can correctly complete comparison items but do not have a strong 
understanding of decimal notation.  For this reason our code for expertise is A1, with 
A standing for apparent task expert.  In relation to point (i), our intensive use of one 
task has highlighted for us that expertise in one task does not necessarily transfer to 
related tasks without specific teaching. For example, A1 students being expert in the 
comparison test would be able to order books in a library using the Dewey decimal 
system. However, they may have little idea of the metric properties of decimals: that 
0. 12345 is very much closer to 0.12 than it is to 0.13, for example, and they may not 
be able to put numbers on a number line.  We therefore make no claim that our 



Stacey 

 

PME29 — 2005 1- 25 

apparent task experts in A1 are expert on other decimal tasks. In relation to point (ii), 
students with either good or poor understanding can complete DCT2 correctly by 
following either of the two expert rules (left-to-right digit comparison or adding zeros 
and comparing as whole numbers e.g. compare 63 and 80 to compare 4.63 and 4.8). 
DCT2 therefore over-estimates the number of experts. As a tool to map students’ 
progress it overestimates the numbers who have arrived at the destination. Its strength 
is in identifying the nature of erroneous thinking. Some mathematics educators may 
be inclined to dismiss DCT2 as “just a pencil-and-paper test” and take the position 
that only an interview can give reliable or deep information about student thinking.  I 
contend that carefully designed instruments in any format with well studied 
properties, are important for advancing research and improving teaching. Many 
interviews also miss important features of students’ thinking and unwittingly infer 
mastery of one task from mastery of another.    

THE JOURNEYS 
Some sample journeys 
Table 3 shows the journeys of 9 students in the longitudinal study. It shows that 
Student 210403026 completed tests each semester from the second semester of Grade 
4 to the first semester of Grade 7, and was absent on one testing day in Grade 5.  
Student 300704112 always tested in the L coarse code, which is an extreme pattern 
that sadly does not reveal any learning about this topic in two and a half years of 
school attendance.  Student 310401041 completed 7 tests, being diagnosed as either 
unclassified or in the L coarse code. Student 410401088, however, moved from L 
behaviour to expertise in Grade 7. Some of the students in Table 3 have been chosen 
to illustrate how many students persist with similar ways of thinking over several 
years. The average student showed more variation than these. In addition, there is 
always the possibility that changes between tests have been missed, since students 
were tested at most twice per year. Some students show movement in and out of A1. 

Table 3: A sample of students’ paths through the study 

ID Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 
210403026  L1  A1 S3 S5 S1        
300704112       L1 L4 L4 L2 L1    
310401041  L2  L1 U1 U1 L4 U1 U1      
390704012       L1 A1 U1 A1 S3    
400704005       A1 A2 A1 A2 A1    
410401088  L1 L1  L4 L1 L2 A1 A1      
500703003        S1 S5  S3 S3 U1  
500703030        S3 S5  S1 A2   
600703029        A1  U1 A1 A1 A3  
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Prevalence by grade: where the students are in each year of the journey 
Figures 2, 3a and 3b show the percentage of students who are in each of the codes by 
grade level. This data is the best estimate available from the longitudinal study 
(technically, the improved test-focussed prevalence of Steinle (2004)). As expected, 
the percentage of experts on the test (A1 in Figure 2) grows markedly in the early 
years, rising steadily until Grade 8. However, at Grade 10, which is regarded as the 
end of basic education, it is still only at 70% indicating that there are likely to be 
many adults without a strong understanding of decimal numbers. This observation is 
reinforced by studies of teacher education students (Stacey et al, 2001c) and nurses 
where “death by decimal” (Lesar, 2002) is a recognised phenomenon.  Measuring 
expertise with the DCT2 over-estimates, we summarise by noting that one quarter of 
students attain expertise within a year or so of first being introduced to decimals (i.e. 
in grade 5), a further half of students attain expertise over the next 5 years, leaving a 
quarter of the school population who are not clear on these ideas by the end of Grade 
10. 
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Figure 2: Best estimate of the prevalence of A codes by grade  
(from Figure 9.3, Steinle, 2004) 

 

Figure 2 also shows that the percentage of students in the non-expert A group 
remains (i.e. A2/A3) at about 10% from Grade 6 throughout secondary school, and 
for reasons related to the test construction, we know this to be an under-estimate. 
These students operate well on the basic items, but make errors on what could be 
expected to be the easiest comparisons, such as 4.45 and 4.4502. We believe there are 
several causes: an over-reliance on money as a model for decimal numbers; over-
institutionalisation of the practice of rounding off calculations to two decimal places; 
and use of partially remembered, poorly understood rules for comparing decimals.  
A2 and A3 students function well in most circumstances, but may in reality have very 
little understanding. We have several times overheard teachers describing their A2 
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students as having “just a few more little things to learn”. In fact these students may 
have almost no understanding of place value.  

Figure 3a shows how that the prevalence of L codes drops steadily with grade. As 
might be expected, the naïve misconception that the digits after the decimal point 
function like another whole number (so that 4.63 is like 4 and 63 units of unspecified 
size and 4.8 is 4 plus 8 units of unspecified size), is an initial assumption about 
decimal numbers, and Foxman et al (1985) demonstrated that it is exhibited mainly 
by low achieving students. The fairly constant percentage of students in category L2 
(around 4% up to Grade 9) provides an example of how students’ knowledge 
sometimes grows by just adding new facts to their accumulated knowledge, rather 
than building a consistent understanding based on fundamental principles.  One cause 
of code L2 is that L1 students simply add an extra piece of information to their pre-
existing way of thinking – commonly in this case, the information that a decimal 
number with a zero in the tenths column is small so that 4.08 < 4.7 even though 8>7.   

Figure 3b shows the best estimate of prevalence of the S codes.  These codes are less 
common, but there is no consistent trend for them to decrease: instead about 15% of 
students in most grades exhibit S behaviour at any one time. The largest group is in 
code S3, which is again a naïve way of thinking not appreciating place value.  That 
over 10% of Grade 8 students (those in S3) will consistently select 0.3 as smaller than 
0.4 is an extraordinary result. Earlier studies had omitted these items from tests, 
presumably because they were thought to be too easy. We believe that S thinking 
grows in junior secondary school largely because of interference at a deep 
psycholinguistic or metaphorical level from new learning about negative numbers, 
negative powers (e.g. 10^(-6) is a very small number) and more intense treatment of 
fractions, and a strange conflation of the spatial spread of place value columns with 
number-lines.  These ideas are explained by Stacey, Helme & Steinle (2001a).  
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Figure 3a: Prevalence of L codes by 
grade (from Figure 9.7, Steinle, 2004) 

Figure 3b: Prevalence of S codes by 
grade (from Figure 9.10, Steinle, 2004) 
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Student-focussed prevalence: how many students visit each town? 
The data above have shown the percentage of students testing in various codes – in 
the journey metaphor, a snapshot of where the individuals are at a particular moment 
in time. This is one way to answer to the question “how prevalent are these ways of 
thinking”. However, it is also useful to see how many students are affected by these 
ways of thinking over their schooling, which is analogous to asking how many 
students visited each town sometime on their journey. Figure 4 shows the percentage 
of students who tested in each coarse code at some time in primary school, or at some 
time in secondary school. These percentages add up to more than 100% because 
students test in several codes. This data in Figure 4 is based on the 333 students in 
primary school and 682 students in secondary school who had completed at least four 
tests at that level of schooling. Had any individual been tested more often, he or she 
may have also tested in other codes. Hence it is evident that the data in Figure 4 are 
all under-estimates.  

This new analysis gives a different picture of the importance of these codes to 
teaching. For example, less than 25% of students exhibited S behaviour at any one 
test, but 35% of students were affected during primary school. Similar results are 
evident for the fine codes, although not presented here. For example, Fig. 3b shows 
that about 6% of students were in S1 at any one time, but at least 17% of primary and 
10% of secondary students were in S1 at some time. As noted above, these are 
underestimates. 

 

Student-focussed prevalence of codes amongst 
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Figure 4: The percentage of students who test in given codes at some stage in primary 
and secondary school (derived from Steinle, 2004, Ch 9).  
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Persistence: which towns are hard to leave? 
The sections above show where students are at various stages on their journeys. In 
this section we report on how long they stay at each of the towns on their journey. 
These towns are not good places to be, but how attractive are they to students? Figure 
5a shows that around 40% of students in the L and S codes retested in the same code 
at the next test (tests averaged 8.3 months apart). The figure also shows that after 4 
tests (averaging over two and a half years) still about 1 in 6 students retest in the 
same code. It is clear from this data that for many students, school instruction has 
insufficient impact to alter incorrect ideas about decimals.  

Fortunately, expertise is even more persistent than misconceptions. On a test 
following an A1 code, 90% of A1 students rested as A1 and the best estimate from 
Steinle (2004) is that 80% of A1 students always retest as A1. This means that about 
20% of the DCT2 “experts” achieve this status by less than lasting understanding 
(e.g. by using a rule correctly on one occasion, then forgetting it).  

Figure 5b shows an interesting phenomenon. Whereas persistence in the L codes 
decreases with age (Figure 5b shows L1 as an example), persistence in the S and A2 
codes is higher amongst older students. This might be because the instruction that 
students receive is more successful in changing the naive L ideas than S ideas but it is 
also likely to be because new learning and classroom practices in secondary school 
incline students towards keeping S and A2 ideas. The full data analysis shows that 
this effect occurred in nearly all schools, so it does not depend on specific teaching.  
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Figure 5a: Persistence in L, S and U 
codes after 1, 2, 3 or 4 semesters 

(adapted from Steinle, 2004, Fig. 6.5) 

Figure 5b: Persistence in A2, L1, S3 and S5 
over one semester by grade of current test 

(adapted from Steinle, 2004, Fig. 6.1) 
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Proximity to expertise: which town is the best place to be? 
A final question in describing students’ journeys is to find which town is the best 
place to be. In other words, from which non-A1 code is it most likely that a student 
will become an expert on the next test? Figure 6 shows the best estimates of Steinle 
(2004) from the longitudinal data. For both primary and secondary students the A 
codes and the U codes have the highest probabilities.  The case of the A codes will be 
discussed below.  The vast majority of students in U (“unclassified”) do not respond 
to DCT2 with a known misconception: they may be trying out several ways of 
thinking about decimals within one test, or simply be guessing. Figure 5a shows that 
the U coarse code is the least persistent, and the data in Figure 6 shows that there is a 
relatively high chance that U students will be expert on the next test. It appears that it 
is worse to have a definite misconception about decimals than to be inconsistent, 
using a mix of ideas or guessing. Perhaps these students are more aware that there is 
something for them to learn and are looking for new ideas. 
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Figure 6:  Chance that the next test is A1, given there is a change of code, for primary 
and secondary cohorts. (Codes ordered according to combined cohort proximity.)  

 

Students in the L codes generally have only a low chance of moving to expertise by 
the next test. This bears out predictions which would be made on our understanding 
of the thinking behind the L codes.  Since L1 identifies students who generally think 
of the decimal part of the number as another whole number of parts of indeterminate 
size, L1 is rightly predicted to be far from expertise. The L2 code (see Table 2) 
consists of at least two groups: one who graft onto L1 thinking an isolated fact about 
numbers with a zero in the tenths columns and a more sophisticated group of students 



Stacey 

 

PME29 — 2005 1- 31 

with some place value ideas. Is the much greater chance of L2 students becoming 
expert over L1 students attributable to both or to the more sophisticated thinkers 
only? This is an example of a question that needs a more refined test than DCT2.  

In the above section on persistence, I commented that the S codes behave differently 
in primary and secondary schools. This is again the case in Figure 6. Whereas 
primary students in S codes have a better chance than L students to become experts, 
this is not the case in secondary school. This is not because S students are more likely 
to stay in S, because the analysis has been done by removing from the data set those 
students who do not change code. Exactly what it is in the secondary school 
curriculum or learning environment that makes S students who change code more 
likely to adopt ideas which are not correct, is an open question.  

The A codes have very high rates of progression to A1. This is of course good, but 
there is a caution. As noted above, students who have tested as A1 on one test 
generally stay as A1 on the next test, but 10% do not (see for example, students 
400704005 and 600703029 from Table 3). The A2 and A3 codes are over-
represented in these subsequent tests. This indicates to us that some of the A1 
students are doing well by following partly understood and remembered versions of 
either of the two expert rules, possibly so partial as to simply make a decision on the 
first one or two decimal places (e.g. by analogy with money), truncated or rounded. 
In a “tricky” case such as the comparison 4.4502/4.45, these partially remembered 
rules fail. Truncating or rounding to one or two decimal digits gives equal numbers 
and to carry out the left-to-right digit comparison rule, the 0 digit has to be compared 
with a blank. Poorly understood and remembered algorithms are likely to fail at this 
point, resulting in ad hoc guessing. As students complete subsequent tests in A1, A2 
and A3, moving between them, we see examples of Brown and VanLehn’s (1982) 
“bug migration” phenomenon. There is a gap in students’ understanding or in their 
memorised procedures, and different decisions about how to fill this gap are made on 
different occasions. Our work with older students (e.g. Stacey et al, 2001c) shows 
that these problems, evident in comparisons such as 4.45/4.4502, remain prevalent 
beyond Grade 10. The movement between the A codes is evidence that a significant 
group of the DCT2 “experts” have little place value understanding.  

The study of student’s thinking especially in the A and S codes has highlighted 
difficulties associated with zero, both as a number and as a digit, that need attention 
throughout schooling (Steinle & Stacey, 2001). Zeros can be visible or invisible and 
represent the number between positive and negative numbers, or a digit. As a digit, 
zero operates in three ways numbers; to indicate there are zero components of a given 
place value, as a place holder to show the value of surrounding digits, and also to 
indicate the accuracy of measurement (e.g. 12 cm vs 12.0 cm) although the latter 
interpretation has not been explored in our study. Improved versions of the decimal 
comparison test, especially for older students, include more items involving zeros in 
all of these roles, and allow the comparisons to be equal (e.g. 0.8 with 0.80). 
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HOW IS A DETAILED MAP OF LEARNING USEFUL?  
The research work in the 1980s using comparison of decimals identified three 
“errorful rules”. The map of the territory of learning decimals at that stage therefore 
divided it into four regions (expertise and three others). DCT2 can diagnose students 
into 12 groups (the 11 of the longitudinal study and one other).  As we interviewed 
students who tested in different codes on DCT2 and examined responses to the sets of 
items more closely, we came to realise that several ways of thinking lay behind some 
of our codes (e.g. L2, S3), which opened up the possibility of making further 
refinements to DCT2 to separate these groups of students. We also discovered other 
ways of thinking that DCT2 did not properly identify, such as problems with 0. We 
refined DCT2 to better identify some of these groups. However, the important 
question which is relevant to all work on children’s thinking is how far it is useful to 
take these refinements.  How fine a mapping tool will help students on the journey? 

For teaching, it is common for people to say that only the coarsest of diagnoses is 
useful. The argument is that busy teachers do not have the time to carefully diagnose 
esoteric misconceptions, and in any case would be unable to provide instruction 
which responded to the information gained about an individual student’s thinking. I 
agree. Our experience in teachers’ professional development indicates that they find 
some knowledge of the misconceptions that their students might have to be extremely 
helpful to understand their students, and to plan their instruction to address or avoid 
misinterpretations. Hence they find that the coarse grained diagnosis available for 
example from the Quick Test and Zero Test (Steinle et al, 2002) is of practical use.  

However, in many countries, we will soon be going beyond the time when real-time 
classroom diagnosis of students’ understanding is the only practical method. The 
detailed knowledge of student thinking that has been built up from research can be 
built into an expert system, so that detailed diagnosis can be the province of a 
computer rather than a teacher. Figure 7 shows two screen shots from computer 
games which input student responses to a Bayesian net that diagnoses students in real 
time and identifies the items from which they are most likely to learn. Preliminary 
trials have been promising (Stacey & Flynn, 2003a). Whereas all students with 
misconceptions about decimal notation need to learn the fundamentals of decimal 
place value, instruction can be improved if students experience these fundamental 
principles through examples that are individually tailored to highlight what they need 
to learn. Many misconceptions persist because students get a reasonable number of 
questions correct and attribute wrong answers to “careless errors”. This means that 
the examples through which they are taught need to be targeted to the students’ 
thinking. An expert system can do this (Stacey et al, 2003b). 
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In Hidden Numbers, 
students pick the relative 
size of two numbers, 
revealing digits by opening 
the doors. This task reveals 
misconceptions e.g. when 
students select by length or 
open doors from the right. 
An expert system diagnoses 
thinking and provides tasks 
for teaching or diagnosis.   

 

The Flying Photographer 
has to photograph animals 
(e.g. platypus) from an 
aeroplane, given decimal 
co-ordinates (e.g. 0.959). 
This task uses knowledge of 
relative size, not just order.  
An expert system tracks 
responses (e.g. if long 
decimals are always placed 
near 1) and selects new 
items to highlight concepts.  

Figure 7.  Screen shots from two games which provide diagnostic information to an 
expert system which can diagnose students and select appropriate tasks. 

LESSONS ABOUT LEARNING 
An overview of the journey 
The longitudinal study has examined students’ progress in a specific mathematics 
topic, which complements other studies that have tracked growth in mathematics as a 
whole or across a curriculum area.  The overall results demonstrate the substantial 
variation in ages at which expertise is attained, from a quarter of students in Grade 5 
to about three quarters in Year 10. The good alignment of data from the longitudinal 
study and the random sample of TIMSS-R shows that we can confidently recommend 
that this topic needs attention throughout the grades in most secondary schools. The 
fact that about 10% of students in every grade of secondary school (fig. 2) are in the 
non-expert A codes (A2 and A3) shows that many students can deal apparently 
expertly with “ordinary” decimals, which conceals from their teachers and probably 
from themselves, their lack of understanding of fundamental decimal principles.   

Moreover, the fact that many students retain the same misconception over long 
periods of time (e.g. about 20% in the coarse codes over 2 years, and around 30% in 
some fine codes over 6 months) demonstrates that much school instruction does not 
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make an impact on the thinking of many students. Our study of proximity to expertise 
provides empirical support for the notion that it is harder to shake the ideas of 
students who have a specific misconception than of those who do not; again this 
points to the need for instruction that helps students realise that there is something for 
them to learn, in a topic which they may feel they have dealt with over several years. 

One important innovation of this study is to look not just at the prevalence of a way 
of thinking at one time, but to provide estimates of how many students are affected in 
their schooling, which provides a different view of the practical importance of 
phenomena. 

How the learning environment affects the paths students take 
Another important result of this study is that in the different learning environments of 
primary and secondary school, students are affected differently by various 
misconceptions. For example, the S misconceptions in primary school are relatively 
quickly overcome, being not very persistent and with high probability of preceding 
testing as an expert, but this is not the case in secondary school.  

The very careful study of the responses to DCT2 and later comparison tests has 
revealed a wide range of students’ thinking about decimals.  As demonstrated in 
earlier studies, some students (e.g. L1) make naïve interpretations, overgeneralising 
whole number or fraction knowledge. Others simply add to a naïve interpretation 
some additional information (e.g. some L2, and see below). We have proposed that 
some false associations, such as linking numbers with whole number part of 0 with 
negative numbers, arise from deep psychological processes (Stacey et al, 2001a). 
Other students (e.g. some A2) seem to rely only on partially remembered rules, 
without any definite conceptual framework.  We explain the rise in the prevalence 
and persistence of S and non-expert A codes in the secondary school mainly through 
reinforcement from new classroom practices, such as rounding to two decimal places 
and interference from new learning (e.g. work with negative numbers). This shows 
that other topics in the mathematics curriculum, and probably also other subjects, 
affect the ideas that students develop and the paths that they take among them.  

Learning principles or collecting facts 
Although understanding decimal notation may appear a very limited task, just a tiny 
aspect of a small part of mathematics, full understanding requires mastery of a 
complex web of relationships between basic ideas. From the perspective of the 
mathematician, there are a few fundamental principles and many facts are logically 
derived from them. From the point of view of many learners, however, there are a 
large number of facts to be learned with only weak links between them. This is 
demonstrated by the significant size of codes such as A2 (e.g. with secondary 
students confident only with tenths, without having made the generalisation of 
successive decimation). Teaching weakly linked facts rather than principles is 
inherent in some popular approaches, such as teaching one-place decimals first, then 
two-place decimals the next year, without exposing what we call the “endless base 
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ten chain”.  Artificially high success in class comes by avoiding tasks which require 
understanding the generalisation and principles, and concentrating on tasks with 
predictable surface features (e.g. Brousseau, 1997; Sackur-Grisvard et al, 1985).  

For mathematics educators, the challenge of mapping how students think about 
mathematical topics is made considerably harder by the high prevalence of the 
collected facts approach. As the case of decimal numeration illustrates, we have 
tended to base studies of students’ thinking around interpretations of principles, but 
we must also check whether that current theories apply to students and teachers who 
are oriented to the collected facts view, and to investigating how best to help this 
significant part of the school population.  

Tracing the journeys of students from Grade 4 to Grade 10 has revealed many new 
features of how students’ understanding of decimals develops, sometimes progressing 
quickly and well, but for many students and occasionally for long periods of time, not 
moving in productive directions at all. The many side-trips that students make on this 
journey point to the complexity of the learning task, but also to the need for improved 
learning experiences to assist them to make the journey to expertise more directly.   
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