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In an undergraduate level mathematical problem-solving course, we conducted an 
experiment with a different methodology in the teaching of mathematical series 
problems to twenty-eight prospective secondary mathematics teachers. We 
supplemented the typical series instruction from an arithmetic focus to what we call a 
geo-arithmetic focus, one that focuses both on visual and analytic skills. What 
resulted were some inspiring revelations among these future high school teachers. 
We present the culminating geo-arithmetic series task, describe our interpretative 
methodology, and report the cases of three case-study students who reported, as a 
result of these tasks, initial cognitive dissonance, rich discussions in their learning 
groups, and ramifications for changes in their future teaching practices. 

MOTIVATION 
Mathematics students in sixth-century B.C. Greece concentrated on four very 
separate areas of mathematics (called mathemata): arithmetica (arithmetic), harmonia 
(music), geometria (geometry), and astrologia (astronomy). “This fourfold division of 
knowledge became known in the Middle Ages as the ‘quadrivium’” (Burton, 1997, p. 
88). To these early Greeks, arithmetic and geometry were as separate as music and 
astronomy. Mathematicians soon realized that arithmetic and geometry are not 
separate, and that some intriguing mathematics lies at their intersection. This report 
attempts to explore the beauty and richness of viewing one problem from a geo-
arithmetic perspective. 

Studies (e.g., Vinner, 1989) have consistently shown that students' mathematics 
understanding is typically analytic and not visual. Two possible reasons for this are 
when the analytic mode, instead of the graphic mode, is pervasively used in 
instruction, or when students or teachers hold the belief that mathematics is the 
skillful manipulation of symbols and numbers. It is clear from the literature (e.g., 
Lesh, Post, & Behr, 1987; Janvier, 1987; NCTM, 2000) that having multiple ways – 
for example, visual and analytic – to represent mathematical concepts is beneficial. 

Our argument is not that one student’s representational scheme is superior to another, 
only that students often construct vastly different personal and idiosyncratic 
representations that lead to different understandings of a concept. Because student-
generated representations provide useful windows into students’ thinking, it is 
productive for teachers to value these personal representations. Moreover, there is a 
belief among mathematics educators (e.g., Janvier 1987; Lesh, Post, & Behr, 1987) 
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that students benefit from being able to understand a variety of representations for 
mathematical concepts and to select and apply a representation that is suited to a 
particular mathematical task. The National Council of Teachers of Mathematics 
(NCTM) reinforces this belief: “Different representations support different ways of 
thinking about and manipulating mathematical objects. An object can be better 
understood when viewed through multiple lenses” (2000, p. 360).  

Recently, Aspinwall and Shaw (2002) reported their work with two students with 
contrasting modes of mathematical thinking – Al, whose mode was primarily visual, 
and Betty, whose mode was almost entirely symbolic. Their assertion was that 
students often construct vastly different personal and idiosyncratic representations, 
which lead to different understandings of concepts. Given problems presented 
graphically, Betty generally found it nearly impossible to think about the problem in 
graphical terms; thus, she translated from the graphic representations to symbolic 
representations, or equations, in order to make sense of the problems. Once she 
completed analytic operations on the symbols, she translated the problem back to the 
graphic representations required for the tasks. Al, however, operated directly on the 
graphic representations without having first to translate to symbolic representations. 
Betty and Al showcased two very different ways of solving problems, but the study 
suggested that if students could move freely between the visual (geometria) and the 
symbolic (arithmetica), their mathematical understanding would be much richer and 
their problem-solving abilities more robust.  

Krutetskii (1976) distinguished among three main types of mathematical processing 
by individuals: analytic, geometric, and harmonic. A student who has predominance 
toward the analytic relies strongly on verbal-logical processing and relies little on 
visual-pictorial processing. Conversely, a student who has predominance toward the 
geometric relies strongly on visual-pictorial processing predominating over above-
average verbal-logical processing. A student who has predominance toward the 
harmonic relies equally on verbal-logical and visual-pictorial processes. Several 
aspects of Krutetskii's position are of relevance in our interpretation of the ways that 
our students, comprising both analytic and geometric, processed mathematical series 
problems demonstrated geometrically. The use of Krutetskii’s categories permitted us 
to explore their thinking in the context of their cognitive processing. 

The National Council of Teachers of Mathematics (NCTM, 2000) states that problem 
solving with an array of creative problems is an essential component in students’ 
construction of meaningful mathematical content. “In high school, students’ 
repertoires of problem-solving strategies expand significantly because students are 
capable of employing more-complex methods and their abilities to reflect on their 
knowledge and act accordingly have grown” (p. 334). The following is one of those 
creative problems that we developed to generate students’ interests and to engage 
them in discussing mathematical content as well as geo-arithmetic issues of learning 
and teaching. 
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MATHEMATICAL PROBLEM 
The teacher stands at the front of the room with a bag and begins to remove four 
cubes, with side lengths from 1 cm to 4 cm. After ensuring all the students see the 
four cubes, the teacher returns the cubes to the bag, shakes the bag, then slowly 
withdraws from the bag … the four cubes? No, she withdraws not four cubes but one 
single square with side length 10 cm. The students were amazed by this extraordinary 
feat of conversion of 4 cubes into a square. (For them, it represented a conversion of 
three-dimensional cubes into a two-dimensional square.)  

From an arithmetic perspective, this problem can be represented by the following 
equation, 13  + 23 + 33 + 43  = 102. One student remarked that the conversion was true 
when using 1, 2, or 3 cubes as well. Another student asked, “Does placing 
consecutively larger cubes into the magic bag always produce a square with this 
intriguing property; that is, does this equality always hold:  13  + 23 + 33 + � � � + n3 = 
(1 + 2 + 3 + � � � + n) 2 ?” A mathematical induction approach is sufficient to show that 
this relationship is true for any natural number, n. We leave these familiar induction 
steps for the reader. 

From a geo-arithmetic perspective, we can look at this generalized problem in a 
richer way. First we consider the square, in Figure 1, with size (1 + 2 + 3 + � � � + n) x 
(1 + 2 + 3 + � � � + n). We divide this large square into smaller squares and rectangles, 
and calculate the areas of these squares and rectangles based on their dimensions – 
lengths and widths. But we will add the areas separately based on their placement in 
groups that we will designate as the Diagonal, Bricked, Vertical-Line, Dotted-Line, 
and Horizontal-Line regions. Finally, we will demonstrate that the sum of each of 
these regions is a cube so that the area of the square is the sum of the cubes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Generalized problem, regions of the square 
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Sum of the Diagonal Region 
1 = 13 

Sum of the Bricked Regions 
1x2 + 2x2 + 2x1 = 2(1+2) + 2x1 = 2((2x3)/2) + 2x1 = 2(3+1) = 2x22 = 23 

Sum of the Vertical-Line Regions 
1x3 + 2x3 + 3x3 + 3x1 + 3x2 = 3(1+2+3) + 3(1+2) = 3[(3x4)/2] + 3[(2x3)/2] = 

3[(3x4+2x3)/2] = 3x3(4+2)/2 = 32x3 = 33 

Sum of the Dotted-Line Regions 
1(n-1) + 2(n-1) + 3(n-1) +…+ (n-1)(n-1) + 1(n-1) + 2(n-1) + 3(n-1) +…+ (n-2)(n-1) = 

(n-1)(1+2+3+…+(n-1)) + (n-1)(1+2+3+…+(n-2)) = 

[(n-1)(n-1)n]/2 + [(n-1)(n-2)(n-1)]/2 = [(n-1)2n]/2 + [(n-1)2(n-2)]/2 = 

[(n-1)2(n+n-2)]/2 = [(n-1)2(2n-2)]/2 = [(n-1)22(n-1)]/2 = (n-1)3 

Sum of the Horizontal-Line Regions 
1n + 2n + 3n +…+ n(n-1) + nn + 1n + 2n + 3n +…+ n(n-1) = 

n(1+2+3+…+n) + n(1+2+3+…+n-1) = n[(n(n+1)/2] + n[(n-1)(n)/2] = 

n2(n+1)/2 + n2(n-1)/2 = n2[(n+1)+(n-1)]/2 = n2(2n)/2 = n3 

Now, we have as the sum of the areas of the subdivided square: 

+  Sum of the Diagonal Region:  13 

+  Sum of the Bricked Regions:  23 

+  Sum for the Vertical-Line Regions: 33  + …  

+  Sum for the Dotted-Line Regions: (n − 1) 3 

+  Sum for the Horizontal-Line Regions: n3  

=  Area of the square:    (1+2+3+…+n)2 = 13  + 23 + 33 + � � � + n3 

A series of other geo-arithmetic problems, similar to this one, was presented to the 
students over a period of 6 weeks, culminating with the problem above. During the 
entire semester, students were negotiating these ideas within the small groups of the 
class, and although many students had valuable insights, we report the thinking of 
three students as they seemed representative of the students as a whole.  

METHODOLOGY 
Twenty-eight students (pre-service high school mathematics teachers) from one 
senior-level mathematical problem solving class participated in the study. Analyzing 
their responses to Presmeg’s (1986) theoretical framework, we determined that some 
students were non-visual and that others tended to process information visually. Of 
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the three students we chose for interviews, one was visual (Emily) and two non-
visual (Ryan and Sara). Students in the class responded to written and oral tasks and 
questions, and the case studies consisted of students’ responses to questions about the 
classroom activities. In general, the aims of our study were to arrive at a 
comprehensive understanding of the role of students’ personal and idiosyncratic 
representations in their learning and to develop general theoretical statements about 
their learning processes.  

We explored students’ thinking on tasks designed to probe their different ways of 
understanding and representing series problems. Using multiple sources of qualitative 
data (e.g., audiotapes of interviews with students, transcripts of those tapes, 
researchers’ fieldnotes, worksheets of case study students, and two researchers’ 
journals), case study analyses were undertaken to identify patterns and changes in 
students’ understanding. In particular, we report how their work on these series 
problems presented geo-arithmetically influenced the ways they thought about 
teaching. Analyses of taped sessions included coding of transcripts. We triangulated 
the data to identify common and distinct strands.  

STUDENTS’ EXPLORATIONS 
As we began investigating these students’ geo-arithmetic concepts, assertions in three 
domains arose from the data: Cognitive Perturbation, Learning Group Dynamics, and 
Pedagogical Implication. We discuss each of these below with data that support each 
assertion. 

Cognitive Perturbation 
Perturbation, although often characterized as negative, is an essential cognitive 
component of change; to learn and grow, teachers must face cognitive dissonance 
(Shaw & Jakubowski, 1991). Such dissonance may cause frustration, but can also 
lead to reflection. We found this task caused students a great deal of reflection as the 
task was geo-arithmetic and students tended to have a preference toward either the 
geometric (visual) or the arithmetic (analytic). Thus, non-visual students experienced 
cognitive dissonance thinking about the visual components, and, similarly, visual 
students thinking about the analytic (arithmetic) part of the problem saw this as a 
perturbation. 

Ryan, the non-visual thinker above, was initially frustrated by our asking him to 
solve the series problems geometrically; he said he had always thought “in 
equations.” Ryan said that being confronted with problems presented visually had 
altered the way he thought about mathematics and his future role as a teacher. But 
Emily stated that she was  

extremely visual. I have to see things done out; I am sometimes not confident in my 
mathematical abilities, my algebra skills. I know what I am doing but I am afraid [of 
mistakes]. If I can do it visually, I know I am on the right track.  
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She claims that she has a good “3-D mind” and that her “last resort is to write an 
equation out.” She confessed that she looks at problems in creative ways and ways 
that are “out of the norm.” She asserts it “is easier for me to conceptualize it that 
way.” Though Emily was comforted by the blended visual/analytic problem, just 
because it was partly visual, she found herself mentally challenged as she tied 
together the visual and analytic aspects of the problem. She said, “I was struggling 
with the problem algebraically, I did not feel confident in myself.” 

Ryan said his first approach was to try to write an equation; but Emily’s approach 
was much different. When we asked Emily whether she thought these series 
problems were algebraic or geometric in nature, she said, “It was a blend for me. You 
needed to know the algebra behind it, but you had to have that geometry, spatial 
sense, in order to see the problem.” When we asked her how she thought about the 
problem presented above, she responded, “With the series problems, I had to picture 
a physical cube, with them lined up next to each other, and figure it out from there.” 

Sara reported that she found that the inductive proof to be easy, but had “a hard time 
visualizing it.” She said she would “never have thought about the geometric aspect of 
it.” She also stated that it “was confusing to me, and I would still solve them 
algebraically and then convert it.” Recollecting the problem later, after we had given 
the students cubes for modeling the problems, she said,  

“Once we had the manipulatives, … I can remember working with the actual blocked 
cubes, colored blocked to build the cubes and then see how they unfolded to make the 
square. And when I actually had hands-on something to work with, it was a little easier 
for me to see it, because I wasn’t having to depend on my spatial sense.”   

Here she notes that having physical manipulatives was an aid to her understanding as 
she had difficulties with mentally picturing the problem. Though the manipulatives 
were beneficial to her, she still relied on the analytic as her absolute,  

And I still think even though the visual representations were effective, they’re not a proof 
to me. I would still have to do it algebraically for it to verifiably be true in every case. 

Learning Group Dynamics 
During group activity, Ryan reported he was able to see how some students process 
information geometrically as he worked through the problems. What was striking was 
that as a result of the group activities, he felt he would be a better teacher in relating 
to visual and non-visual learners. “They taught me how to think about a problem so 
that if you are trying to reach someone who does not think just in numbers, well, you 
can help the student to see the problem visually.”   

Sara was also influenced by working within her groups. She said,  
It showed me that there are more visual aspects to math than I ever would have 
thought…. In the past I tended to rely on algebraic methods to solve problems and now I 
might be more willing to look at it visually and to think about whether or not my answer 
makes sense geometrically and visually. 
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Sara contrasted the way her group partner worked the problem, “She was very visual 
and I was very non-visual, but together we somehow always seemed to find a 
solution… we could always find some way to make sense for both of us.” She valued 
working with someone who was a visual thinker,  

I think that if I didn’t have someone like that to work with, who looked at it completely 
different, I would’ve kept trying the same things over and over and over again, and never 
have found a solution. 

Pedagogical Implication 
Our students reported that the activities had altered the way they thought about their 
future careers in teaching high school. Ryan’s experience with the geo-arithmetic 
problem “opened my eyes to a new way of seeing things that I had never been 
exposed to before. I consider myself to be not just a better problem solver, but a 
better teacher seeing how other students are going to see things.” Furthermore, he 
explained,  

Before, I was only thinking of the equations, and I thought everyone else was too. My 
idea was that everyone was going to learn by my [symbolic] teaching. I wasn’t open to 
visual teaching. Now I’m thinking differently, out of my comfort zone. 

Emily reflected on her future teaching practice, “Before these problems, I would have 
had to just go by the book, teach by breaking the equations down into smaller parts 
algebraically.” As a result of doing these geo-arithmetic problems, she asserted,  

I want to try to incorporate this (visual aspects) into my teaching, into as many lessons as 
possible. Because I now know I am that kind of thinker (visual), I know there are others 
like me. Based on this I want to try to accommodate all the different kinds of thinking. I 
will have to teach it purely algebraically for those who don’t think visually. I want to try 
to incorporate as much visual as I can, and that will help the algebra (analytic) people to 
see it differently too. Maybe I can create a future engineer. And the people who are visual 
need to know the numbers, how the equations work and not have to see it visually. 

Emily clearly saw a need to provide a balanced approach in teaching students both 
the analytic and the visual components of problems. Sara stated that, 

In teaching, definitely, I think that I would use more visual aspects, because at least for 
me as a student it was easier to see why things made sense, because you could visually 
look at it and tell, as opposed to algebraic methods where you had to think about it and 
see if it reasoned out.  

Since Sara states that she is non-visual, we asked Sara specifically, “What are the 
ramifications for the non-visual students if she presented something visually?” Sara 
responded,  

I think you would have to show it the algebraic way, the inductive way, the proof way, 
and then show it visually to kind of illustrate why it works. And I think that, at least for 
me, as a non-visual thinker, it still made sense for me to look at it visually. 
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CONCLUSIONS 
We believe students develop mathematical power by learning to recognize an idea 
embedded in a variety of different representational systems and to translate the idea 
from one mode of representation to another. A positive result of multiple 
instructional representations of concepts is that students who are prospective teachers 
learn to construct and to present representational schemes with which they might not 
be comfortable. 

The geo-arithmetic problems had positive implications for each student in class and 
in particular, the three students that have been mentioned in this paper. The problems, 
along with the group interactions caused students to reflect on how they think, 
whether it be predominantly visual or analytic. They were able to see from their 
colleagues that not everyone thinks they way they do. The pedagogical discussions 
were rich in that these prospective teachers began to describe how they might deal 
with various modes of students’ representations in their own classes, especially 
students who may have a predominance that differs from theirs. The authors intend to 
continue to investigate how geo-arithmetic problems positively perturb prospective 
mathematics teachers in their own thinking about mathematics learning and what 
impact these problems may have on their pedagogical content knowledge.  
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