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Fractions are among the most complex mathematical concepts that children 
encounter in their years in primary education. One of the main factors contributing 
to this complexity is that fractions comprise a multifaceted notion encompassing five 
interrelated subconstructs (part-whole, ratio, operator, quotient and measure). 
During the early 1980s a theoretical model linking the five interpretations of 
fractions to the operations of fractions and problem solving was proposed. Since then 
no systematic attempt has been undertaken to provide empirical validity to this 
model. The present paper aimed to address this need, by analysing data of 646 fifth 
and sixth graders’ performance on fractions using structural equation modelling. To 
a great extent, the analysis provided support to the assumptions of the model. Based 
on the findings, implications for teaching fractions and further research are drawn.  

INTRODUCTION 
Teaching and learning fractions has traditionally been problematic. In fact, it is well 
documented that fractions are among the most complex mathematical concepts that 
children encounter in their years in primary education (Newstead & Murray, 1998). It 
has also been asserted that learning fractions is probably one of the most serious 
obstacles to the mathematical maturation of children (Behr, Harel, Post & Lesh, 
1993). During the last three decades researchers and scholars have identified several 
factors contributing to students’ difficulties in learning fractions. In particular, it has 
been proposed that the obstacles that students encounter in developing deep 
understanding of fractions are either inherent to the nature of fractions or are due to 
the instructional approaches employed to teach fractions (Behr et al., 1993; Lamon, 
1999). To date there is consensus among researchers that one of the predominant 
factors contributing to the complexities of teaching and learning fractions lies in the 
fact that fractions comprise a multifaceted construct (Brousseau, Brousseau & 
Warfield, 2004; Kieren, 1995; Lamon, 2001).  

Kieren (1976) was the first to propose that the concept of fractions consists of several 
subconstructs and that understanding the general concept depends on gaining an 
understanding of each of these different meanings of fractions as well as of their 
confluence. Kieren initially identified four subconstructs of fractions: measure, ratio, 
quotient, and operator. In his original conceptualization, the notion of the part-whole 
relationship was considered the seedbed for the development of the other 
subconstructs; thereby he avoided identifying this concept as a separate, fifth, 
subconstruct claiming that this notion is embedded within all other subconstructs. In 
the following years, Behr, Lesh, Post and Silver (1983) further developed Kieren’s 
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ideas recommending that the part-whole relationship comprise a distinct subconstruct 
of fractions. They also connected this subconstruct with the process of partitioning. 
Moving a step forward, they proposed a theoretical model linking the different 
interpretations of fractions to the basic operations of fractions and to problem solving 
(Figure 1). The solid arrows presented in this proposed model suggest established 
relationships among fractional constructs and operations, whereas the dashed arrows 
depict hypothesized relationships.  

 
 
 
 
 
 
 
  

Figure 1: Behr’s and associates’ theoretical model linking the five subconstructs of 
fractions to the different operations of fractions and to problem solving  

Closer examination of the diagram presented in Figure 1 reveals the following. First, 
the part-whole subconstruct of rational numbers, along with the process of 
partitioning, is considered fundamental for developing understanding of the four 
subordinate constructs of fractions. This assumption justifies why the part-whole 
notion has occupied the lion’s share of curricula across different countries and has 
been the traditional inroad to introduce fractional concepts in primary grades (Baturo, 
2004; Lamon, 2001). Second, the diagram suggests that the ratio subconstruct is 
considered as the most “natural” to promote the concept of equivalence and, 
subsequently, the process of finding equivalent fractions. Moreover, the operator and 
measure subconstructs are regarded as helpful for developing understanding of the 
multiplication and addition of fractions, respectively. Finally, understanding of all 
five subconstructs of fractions is considered a prerequisite for solving problems in the 
domain of fractions.   

Though the model has been excessively cited in the following years (Carpenter, 
Fennema & Romberg, 1993), to the best of our knowledge, no systematic attempt has 
been undertaken since mid 1980s to provide empirical validity to the model. The 
present study aimed to address this theoretical and research deficiency. Specifically, 
the purpose of the study was to empirically test the five theoretical assumptions of the 
model alluded to above and investigate the extent to which any additional 
associations between the concepts and operations embedded in the model are 
empirically supported.  
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THE DEVELOPMENT OF THE TEST  
A test on fractions was constructed guided by existing theory and research on rational 
numbers. An additional requirement in designing the test was its alignment with the 
curriculum that was operative in Cyprus, where the study was conducted. Table 1 
presents the specification table that guided the construction of the test and the items 
used for examining students’ performance on each of the concepts and operations 
included in the theoretical model. Items in bold letters represent problem-solving 
tasks related to each of the subconstructs of fractions, since it was decided to use 
problems related to these subconstructs, rather than general problems on fractions.  

CONCEPTS ITEMS OPERATIONS ITEMS 
Part-whole /partitioning 1-8, 9 Equivalence  34-43 
Ratio 10-14, 15 Additive operations 44-46 
Operator 16-18, 19  Multiplicative operations 47-50   
Quotient 20-22, 23-24    
Measure 25-31, 32-33   

Table 1: Specification table of the test used in the study 
The first five items of the part-whole subconstruct asked students to identify the 
fractions depicted in discrete or continuous representations. The remaining three 
items were associated with unitizing and reunitizing, which are directly related to the 
partitioning notion of the part-whole relationship (Baturo, 2004). The part-whole 
problem-solving task (item 9) asked students to reconstruct the whole given a part of 
it. The subsequent five items requested students to compare ratios, based either on 
quantitative (10-12) or qualitative information (13-14). Item 15 referred to boys and 
girls sharing different numbers of pizzas; an item frequently used in studies on ratios 
and proportions (Marshall, 1993). The following two items asked students to specify 
the output quantity of an operator machine given the input quantity and the fraction 
operator. Item 18 was related to the notion of operator as a composite function (Behr 
et al., 1993), whereas item 19 asked student to indicate the factor by which number 9 
should be increased to become equal to 15. In line with previous studies (Lamon, 
1999), the three subsequent items, which were related to the concept of quotient, 
examined students’ ability to link a fraction to the division of two numbers; the two 
problems of this category were related to the partitive and quotitive interpretation of 
division (items 23-24, correspondingly). In accord with previous studies (Hannula, 
2003; Lamon, 1999; Marshall, 1993), the items of the measure subconstruct 
examined students’ performance on identifying fractions as numbers and locate them 
on number lines. The two problems of this category asked students to find a fraction 
that was within two given fractions, and identify among a number of fractions the one 
that was closer to number one. Finally, the remaining 17 items were associated with 
operations on fractions. Seven of these items (41-45 and 48-49) examined students’ 
procedural fluency in these operations, whereas the remaining ten were related to the 
conceptual understanding of these operations (e.g., estimating the result of different 
operations on fractions).    
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METHODS 
The items of the test were content validated by three experienced primary teachers 
and two university tutors of Mathematics Education. Based on their comments, minor 
amendments were made particularly where some terms used were considered as 
unfamiliar to primary pupils. The final version of the test (available on request) was 
administered to 340 5th graders and 306 6th graders (301 boys and 345 girls). The test 
items were split into two subtests which were administered to students during two 
consecutive schooldays; students had eighty minutes to work on each subtest.  
Structural equation modeling and, specifically, maximum likelihood method, was 
used to test the hypotheses of the theoretical model (Kline, 1998). Goodness of fit of 
the data to the model was decided by using three fit indices: scaled x2, Comparative 
Fit Index (CFI), and Root Mean Square Error of Approximation (RMSEA).  

FINDINGS 
The theoretical assumptions of the model were tested by using EQS. As reflected by 
the iterative summary, the goodness of fit statistics showed that the data did not fit 
the model very well (x2=9110, df=2129, x2/df=4.30, CFI=.57, and RMSEA=.07). 
Subsequent model tests revealed that the model fit indices could be improved by 
modifying the model in ways that on the whole were consonant with both theory on 
fractions and the development of the test. Specifically, items 18 and 23 were also 
linked to multiplicative operations, since both were solved by applying a 
multiplicative operation. Items 29-31 were also explained by the process of finding 
equivalent fractions, a relationship that could be attributed to the fact that the 
foregoing process provided scaffold in solving these tasks. The initial analysis also 
revealed that the associations of the four subordinate subconstructs of fractions with 
the problem solving were not significant; nor the association between the measure 
subconstruct and the additive operation of fractions. All these relationships were 
eliminated from subsequent analyses. On the contrary, the multiplicative operations 
of fractions were found to be associated with the quotient subconstruct, which can be 
explained taking into account that the preceding subconstruct is closely related to the 
division of fractions. The nine factor model that emerged after these modifications 
had a very good fit to the data (x2=1892.55, df=1184, x2/df=1.598, CFI=.95 and 
RMSEA=.030). Its goodness of fit was even better compared to a series of other 
models comprising of one to eight factors, thereby indicating that the emerging 
model was in alliance with parsimony principle (Kline, 1998). Figure 2 presents the 
model that emerged from the analysis; the loadings of each variable on the nine 
factors are presented below the model.  
The following observations arise from Figure 2 and Table 1. First, all fifty items were 
correlated to the factors they were initially supposed to be loaded to, providing 
support to the construct validity of the test. However, beyond being associated with 
the measure notion, the three items that concerned locating fractions on number lines 
(items 29-31) were also related to finding equivalent fractions; their loadings in the 
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latter case were much higher than in the former one. This finding can be partly 
attributed to the fact that in two of the three items the denominator of the fractions 
that students were requested to locate on number lines was a sub multiple of the 
spaces into which the given number lines were divided. Yet, one could also suggest 
that this finding points to the requirement that students master the equivalence of 
fractions in order to be able to manipulate number lines efficiently.  

 

Figure 2: Path model linking the five subconstructs of fractions to the operations of 
fractions and to problem solving  

Second, the data provided support to the assumption that the part-whole interpretation 
of fractions and the partitioning process constitute a foundation for developing an 
understanding of the four subordinate interpretations of fractions. Specifically, Factor 
1 explained about 98% of the variation of the factors related to the ratio and the 
operator personalities of fractions (given that the percentage of the variation 
explained is equal to the square of the regression coefficients presented in Figure 2). 
Yet, one cannot ignore the fact that Factor 1 explained a much smaller percentage of 
the variation of the quotient and the measure notion of fractions (about 5% and 8%, 
respectively). Third, the data provided empirical support to the hypothesis that 
mastering the notion of fractions as ratios contributes predominantly to finding 

EQUATIONS*: Part-whole: V1=.25F1, V2=.46F1, V3=.28F1, V4=.26F1, V5=.24F1, 
V6=.42F1, V7=.52F1, V8=.38F1 Ratio: V10=.38F2, V11=.44F2, V12=.25F2, 
V13=.34F2, V14=.29F2, Operator: V16=.49F3, V17=.58F3, V18=.21F3+.37F8, 
Quotient: V20=.51F4, V21=.42F4, V22=.72F4, Measure: V25=.46F5, V26=.98F5,
V27=.98F5, V28=.93F5, V29=.11F5+.32F6, V30=.11F5+.40F6, V31=.08F5+.42F6, 
Equivalence: V34=.40F6, V35=.76F6, V36=.72F6, V37=.76F6, V38=.81F6, 
V39=.74F6, V40=.72F6, V41=.52F6, V42=.43F6, V43=.50F6, Additive operations: 
V44=.62F7, V45=.34F7, V46=.61F7, Multiplicative operations: V47=.69F8, 
V48=.43F8, V49=.55F8, V50=.55F8, Problem solving: V9=.58F9, V15=.45F9, 
V19=.41F9, V23=.32F9+.22F8, V24=.59F9, V32=.43F9, V33=.50F9 (*errors were 
omitted). 
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equivalent fractions, since Factor 2 explained a great proportion of the variation of 
the sixth factor (about 73%). Developing an understanding of the operator 
subconstruct was also found to explain about a quarter of the variation of students’ 
performance on the items associated with the multiplicative operations on fractions.  
Fourth, the model that emerged deviated from the theoretical model in three aspects: 
(a) the effect of the measure subconstruct on the additive operations of fractions was 
not statistically significant; however, a statistically significant association between 
the part-whole subconstruct and the additive operations emerged; (b) the associations 
of the four subordinate notions of fractions with problem solving were not 
statistically significant; on the contrary, the part-whole relationship was found to 
explain a great percentage of the variation of problem solving; and (c) the quotient 
subconstruct of fractions was found to explain about 20% of the variation of students’ 
performance on the items related to the multiplicative operations of fractions.  
In general, the model of Figure 2 verified three of the five examined hypotheses: (a) 
the part-whole interpretation explained a proportion of the variation of the four 
subordinate subconstructs of fractions; (b) the ratio notion was associated with 
equivalence, and (c) the operator concept was linked to the multiplicative operations 
of fractions. Yet, two hypotheses failed to be empirically validated. In particular, the 
four subordinate notions of fractions were not statistically related to problem solving, 
nor was the measure subconstruct related to the additive operations of fractions. 
Nevertheless, the study supports two additional paths not included in the theoretical 
model: one linking the quotient subconstruct to the multiplicative operations and the 
other linking the part-whole relationship to the additive operations of fractions.   

DISCUSSION   
The findings of the study provide empirical support to the fundamental role of the 
part-whole subconstruct in building understanding of the remaining constructs of 
fractions; thereby, they justify the traditional instructional approach in using this 
notion as the inroad to teaching fractions (Baturo, 2004; Kieren, 1995; Marshall, 
1993). However, one cannot overlook the fact that the part-whole interpretation of 
fractions explains different percentages of the variation of the four subordinate 
concepts of fractions: almost all the variance of the ratio and the operation 
subconstructs and only a very small proportion of the variance of the measure and the 
quotient concepts. Three reasons seem to explain this finding. First, core ideas, such 
as comparing quantities, are embedded in all three former subconstructs of fractions, 
whereas they are not required for developing understanding of the latter couple of 
subconstructs (Lamon, 1999). Second, the measure and the quotient interpretations of 
fractions could be explained by other concepts not included in the model, such as the 
notion of the unit fraction, which is considered as contributing predominantly to 
building meaning for these subconstructs (Behr et al., 1983; Marshall, 1993). And 
third, students might encounter significant difficulties in gaining an insight into the 
concepts of measure and quotient, which cannot be surpassed even by developing an 
understanding of the part-whole “personality” of fractions. Whatever the reason is, 
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this finding validates the claim that, the part-whole interpretation of fractions should 
be considered as a necessary but not sufficient condition for developing an 
understanding of the remaining notions of fractions (Baturo & Cooper, 1999; 
Brousseau et al., 2004). Thereby, though the findings of the study justify the 
preponderance of the part-whole interpretation of fractions in teaching rational 
numbers, they also underline the need for emphasizing the other subconstructs of 
fractions, and especially those that are not so highly related to the foregoing notion.  
The study also provides support to the assumption that mastering the five 
interpretations of fractions contributes towards acquiring proficiency in the 
operations of fractions. This finding can be partly attributed to the fact that the items 
used for measuring students’ performance on the operations of fractions required 
both procedural fluency and conceptual understanding of these operations; yet it also 
spotlights that when teaching fractions, teachers need to scaffold students to develop 
a profound understanding of the different interpretations of fractions, since such an 
understanding could also offer to uplift students’ performance in tasks related to the 
operations of fractions. Thereby, instead of rushing to provide students with different 
algorithms to execute operations on fractions, the findings of the present study, in 
accordance with previous studies (Lamon, 1999; Brousseau et al., 2004) lend 
themselves to support that teachers should place more emphasis on the conceptual 
understanding of fractions. The study also suggests that, the teaching of the different 
operations of fractions should be directly linked to specific interpretations of 
fractions. In particular, the findings of study indicate that the teaching of equivalent 
fractions could be reinforced by learning ratios, whereas the operator and the quotient 
subconstructs could support developing a conceptual understanding of the 
multiplicative operations on fractions. Likewise, the associations between the part-
whole interpretation and the additive operations of fractions should be highlighted 
during instruction, in order to promote learning of the latter processes.   
Finally, one cannot ignore the fact that only a very small percentage of the variation 
of items related to number lines was explained by the measure subconstruct of 
fractions; this finding supports Lamon’s (1999) recommendation that researchers 
employ items beyond locating fractions on number lines to measure students’ 
understanding of fractions. In alignment with previous studies, it also suggests that 
the number line comprises a difficult model for students to manipulate (Baturo & 
Cooper, 1999), and that teachers should help students master other notions (such as 
the equivalence of fractions), before rushing to introduce this model in their teaching.  
It goes without saying that further research is needed to cross-validate the model 
emerged in this study. Specifically, studies could follow at least three different 
directions. First, the relationships included in the theoretical model and were verified 
in the present study need to be further examined. Second, further studies need to 
verify the modifications introduced in the theoretical model, and especially the fact 
that only the part-whole relationship was found to be associated with problem 
solving. Finally, provided that the associations among the five subconstructs of 
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fractions were verified, future research could also be directed towards identifying 
core ideas that permeate the whole domain of fractions and offer significantly to 
building understanding of all the five subconstructs included in the theoretical model.  
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