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MATHEMATICAL MODELLING WITH 9-YEAR-OLDS 
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 Queensland University of Technology 

This paper reports on the mathematical modelling of four classes of 4th-grade 
children as they worked on a modelling problem involving the selection of an 
Australian swimming team for the 2004 Olympics. The problem was implemented 
during the second year of the children's participation in a 3-year longitudinal 
program of modelling experiences (i.e., grades 3-5; 2003-2005). During this second 
year the children completed one preparatory activity and three comprehensive 
modelling problems. Throughout the two years, regular teacher meetings, workshops, 
and reflective analysis sessions were conducted. The children displayed several 
modelling cycles as they worked the Olympics problem and adopted different 
approaches to model construction. The children’s models revealed informal 
understandings of variation, aggregation and ranking of scores, inverse proportion, 
and weighting of variables.  

INTRODUCTION 
With the increased importance of mathematics in our ever-changing global market, 
there are greater demands for workers who possess more flexible, creative, and 
future-oriented mathematical and technological capabilities. Powerful mathematical 
processes such as constructing, describing, explaining, predicting, and representing, 
together with quantifying, coordinating, and organising data, provide a foundation for 
the development of these capabilities. Also of increasing importance is the ability to 
work collaboratively on multi-dimensional projects, in which planning, monitoring, 
and communicating results are essential to success (Lesh & Doerr, 2003).  

Several education systems are thus beginning to rethink the nature of the 
mathematical experiences they should provide their students, in terms of the scope of 
the content covered, the approaches to student learning, ways of assessing student 
learning, and ways of increasing students’ access to quality learning. One approach to 
addressing these concerns is through mathematical modelling (English & Watters, 
2004). Indeed, a notable finding across studies of professionals who make heavy use 
of mathematics is that a facility with mathematical modelling is one of the most 
consistently needed skills (Gainsburg, 2003; Lesh & Zawojewski, in press).  

Traditionally, students are not introduced to mathematical modelling until the 
secondary school years (e.g., Stillman, 1998). However, the rudiments of 
mathematical modelling can and should begin much earlier than this, when young 
children already have the foundational competencies on which modelling can be 
developed (Diezmann, Watters, & English, 2002; Lehrer & Schauble, 2003). This 
paper addresses the mathematical modelling processes of children from four classes 
of nine-year-olds (4th-grade), who are participating in a three-year longitudinal 
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program of modelling experiences. The children commenced the program in their 
third-grade, where they completed preparatory modelling activities prior to working 
comprehensive modelling problems (English & Watters, in press).  

MATHEMATICAL MODELLING FOR THE PRIMARY SCHOOL 
The problem-solving experiences that children typically meet in schools are no 
longer adequate for today’s world. Mathematical problem solving involves more than 
working out how to go from a given situation to an end situation where the “givens,” 
the goal, and the “legal solution steps” are specified clearly. The most challenging 
aspect of problems encountered in many professions today involve developing useful 
ways of thinking mathematically about relevant relationships, patterns, and 
regularities (Lesh & Zawojewski, in press). In other words, problem solvers need to 
develop more productive ways of interpreting and thinking about a given problematic 
situation. Interpreting a situation mathematically involves modelling, where the focus 
is on the structural characteristics of the situation, rather than the surface features 
(e.g. biological, physical or artistic attributes; English & Lesh, 2003).  

The modelling problems of the present study require children to generate 
mathematical ways of thinking about a new, meaningful situation for a particular 
purpose (e.g., to determine which set of conditions is more suitable for growing 
certain types of beans; English & Watters, 2004). In contrast to typical school 
problems, modelling tasks do not present the key mathematical ideas “up front.” 
Rather, the important mathematical constructs are embedded within the problem 
context and are elicited by the children as they work the modelling problem. The 
problems allow for multiple approaches to solution and can be solved at different 
levels of sophistication, thus enabling all children to have access to the important 
mathematical content.  

The problems are multifaceted in their presentation and include background 
information on the problem context, “readiness questions” on this information, 
detailed problem goals, tables of data, and supporting illustrations. In turn, the 
problems call for multifaceted products (models). The nature of these products is 
such that they reveal as much as possible about children's ways of thinking in 
creating them. Importantly, the models that children create should be applicable to 
other related problem situations; to this end, we have presented children with sets of 
related problems that facilitate model application (English & Watters, in press).  

The problems require the children to explain and justify their models, and present 
group reports to their class members. Because their models are to be sharable and 
applicable to classes of related situations, children have to ensure that what they 
produce is informative, “user-friendly,” and clearly and convincingly conveys the 
intended ideas and ways of operating with these. Because the problems are designed 
for small group work, each child has a shared responsibility to ensure that their 
product does meet these criteria. 
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RESEARCH DESIGN AND APPROACH 
Multilevel collaboration, which employs the structure of the multitiered teaching 
experiments of Lesh and Kelly (2000) and incorporates Simon’s (2000) case study 
approach to teacher development, is being employed in this study. Such collaboration 
focuses on the developing knowledge of participants at different levels of learning. 
At the first level, children work on sets of modelling activities where they construct, 
refine, and apply mathematical models. At the next level, classroom teachers work 
collaboratively with the researchers in preparing and implementing the child 
activities. At the final level, the researchers observe, interpret, and document the 
knowledge development of all participants (English, 2003). Multilevel collaboration 
is most suitable for this study, as it caters for complex learning environments 
undergoing change, where the processes of development and the interactions among 
participants are of primary interest (Salomon, Perkins, & Globerson, 1991).  

Participants 
Four 4th-grade classes (9 years) participated in the second year of this study, after 
having also participated in the first year. One of the four class teachers had also been 
involved in the first year of the study, whereas the remaining three teachers were new 
to the study. The classes represented the entire cohort of fourth graders in a school 
situated in a middle-class suburb of Brisbane, Australia. The school principal and 
assistant principal provided strong support for the project’s implementation.  

Procedures and activities 
At the beginning of the year, a half-day professional development workshop was held 
with the teachers where we outlined the project and negotiated plans for the year. The 
four teachers involved in the first year of the study also provided input by sharing 
their experiences and highlighting what they had learned about implementing 
modelling activities, as well as describing student learning that had occurred.  

An initial preparatory activity (focusing on reading and interpreting data) and three 
modelling problems were implemented during the year. The first modelling activity 
was conducted in winter over four weeks and focused on “Skiing for the First Time.” 
The second problem focused on the “Olympics,” which was pending at the time of 
the activity, and the third was conducted during a theme on weather and required the 
children to decide where to locate a resort in a region subject to Cyclones. 

The Olympics problem was undertaken with children working in groups of three or 
four in four 40-minute lessons conducted over two weeks. Audio-taped meetings 
were held with teachers to plan the lessons beforehand and to analyse outcomes 
immediately on conclusion of the activity. The children weer presented with an initial  
readiness activity containing background information on the history of the Olympics 
and a table of data displaying the men’s world 100 metre freestyle records from 1956 
to 2000. The children were to answer a number of questions about the information 
and data. They were then presented the main modelling problem comprising (a) the 
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data displayed in Table 1; (b) the accompanying information: We (Australia’s Olympic 
Swimming Committee) need to make sure that we have selected our best swimmers. The 
Olympic Swimming Committee has already selected the women’s swim team. However, they 
are having difficulty in selecting the most suited swimmers for competing in the men’s 100m 
freestyle. The Olympic Swimming Committee has collected data on the top seven (7) male 
swimmers for the 100m freestyle event. The data collected (see Table 2; Table 1 in this 
paper) show each of the swimmer’s times over the last ten (10) competitions. It has been 
decided by the Olympic Swimming Committee to have you as part of their selection team; 
and (c) the problem goal: Being selectors for the Olympic Swimming Committee, you need 
to use the data in Table 2 to develop a method for selecting the two (2) most suited 
swimmers for the Men’s 100m Freestyle event. Write a report to the Olympic Swimming 
Committee telling them who you selected and why. You need to also explain the method you 
used in selecting these swimmers. The selectors will then be able to use your method in 
selecting the most suited swimmers for the other swimming events.  

Data Collection and Analysis 
Each of the four teachers was fitted with a radio microphone and videotaped during 
the lesson so that her dialogue with children could be monitored. A second video 
camera captured critical events as they occurred or was focused on selected groups of 
students to monitor student interactions. Audio recordings of conversations among 
children and with teachers complemented video data. Other data sources included 
classroom field notes, children’s artefacts (including their written and oral reports), 
and the children’s responses to their peers’ feedback in the oral reports. In our data 
analysis, we employed ethnomethodological interpretative practices to describe, 
analyse, and interpret events (Erickson, 1998). 

FINDINGS 
From our analysis of the children's transcripts as they worked the modelling problems 
and reported to their peers, we identified a number of different approaches to model 
development. These included: (a) focusing on personal best times (PBs) only, with 
some groups also considering the extent of a swimmer’s variation from his PB; (b) 
tallying the number of winning races for each swimmer in each event, and comparing 
the totals; (c) aggregating the two or three lowest times of each swimmer and 
comparing the totals; (d) assigning scores (and weighted scores) to the two lowest 
times of each swimmer and aggregating the scores; (e) in addition to [d], assigning 
weighted scores to the two lowest PBs, aggregating all the scores, and then ranking 
the totals (refer Figure 1); and (f) before working with the data, eliminating those 
swimmers with the most number of DNCs (“Did Not Compete”). Page limit prevents 
us from providing detailed accounts of the children’s developments, however, it is 
important to note that the groups displayed several cycles of modelling as they 
worked the problem. That is, they interpreted the problem information, expressed 
their ideas as to how to meet the problem goal, tested their approach against the given 
criteria, revisited the problem information, revised their approach, implemented a 
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new version, tested this, and so on. We consider just a couple of the above modelling 
approaches in this paper. 

A Focus on Personal Best Times (PBs) 
Lana’s group chose to focus on the swimmers’ PBs from the outset, but did consider 
other options in justifying their decision. Initially, the group thought they might “add 
up the amounts,” to which one member responded, “Yeah, and whoever has the 
smallest…” Later on, when the group revisited this option, Lana felt this was not 
feasible because “what I’m arguing is, well, I’m not really arguing, what I’m saying 
is … we can’t add up the totals because there are so many Did Not Competes, and 
they’ve got uneven amounts, so that wouldn’t be fair.” Another child responded, 
“And they would get a lot lower (total).”  

In comparing the swimmers’ PBs, the group members clarified their interpretation of 
this notion: “Don’t you want the lowest time, whatever? The lowest time is the fastest 
swimmer.” “Because that means they don’t take as long to swim.” As the group were 
considering the swimmers’ PBs, they also noted an error in the data (Ashley Callus’ 
PB was higher than his score for the 2001 Pan Pacs.) The group spent quite some 
time arguing about how to resolve this dilemma but decided to accept the error.  

In reflecting on their focus on PBs, three of the group members questioned the 
reliability of these data. In the transcript below, the children are starting to think 
about trends in the data and swimmers’ variation from their PBs.  

Kelly continued her argument that “It doesn’t just Kelly: Yeah, but Lana they might 
just one day swim really, really well, like…they might have just had a really, 
really good day, yeah, or week or whatever. 

Lana: Yeah, I know... 
Kelly: They might be a really good swimmer and then they sort of you know they 

might have had an injury and gone back but their not as good, so…it might have 
changed.  

Sam: Yeah it might help to stop swimming, and like start… 
Tony: What we would have to do is look at the latest times, compare those, and then 

we will know.  
Kelly: Yeah but see in the Olympics, you don’t all get into the Olympics. So, obviously 

they weren’t… 
Lana: Oh but he’s saying latest times, so everyone’s latest times would be in different 

place really…  
depend on their PB, I mean you might be a really good swimmer…your PB might, 
like, change…because your personal best is your best but changes all the time.” The 
group also spent time considering the PBs in relation to the level of the competition 
in which these were attained (e.g., a PB earned at the 2000 Olympics was more 
significant than one at the Telstra Australian Championships). Here the children were 
displaying an informal understanding of weighted variables, however, they did not 
pursue this further.  
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Children in another class were also aware of the limitations of relying solely on PBs, 
and began to consider possible variations from a given PB. After one group presented 
their report, a boy asked, “How come you just compared their personal best because 
they don’t do that all the time?” In subsequent class discussion the children explained 
that the swimmers’ most recent times should be considered, “because they could have 
been slow when they first started, and they could have got stronger…and now they’re 
going faster and faster.” The children also commented that the swimmers “could get 
slower and slower,” or “they could just stay on their personal best,” or “they could go 
faster and then slower and then fast.”  

Assigning Scores and Ranking 
We consider here how James’ group developed their model. First, they considered 
each row of Table 1 in turn, and awarded a score of 2 to the swimmer with the lowest 
time and a score of 1 to the swimmer with the second lowest time. They then added 
each swimmer’s scores and recorded these in their own table (see the first row of 
Figure 1). As James explained, “Some people got the most amount of points...like, 
some people both got first…because they need two people, so whoever came first, 
they would have both got two points.” Second, the group considered the PBs of each 
of the swimmers and awarded 2 points to the lowest PB and one point to the second 
lowest (see the second row of Figure 1). The group then aggregated each swimmer’s 
scores to find the “total rank.” Ian Thorpe and Michael Klim were thus selected.  

Other groups only assigned one point to the swimmer with the lowest time in each 
swimming event and tallied the points to determine the two swimmers to be selected. 
Ashley’s group explained, “Our selection is Ashley Callus and Ian Thorpe because 
they both had the most winning streaks. We looked at all the competitions and we put 
a tally on the fastest time and then we counted them up.” Ashley’s group did not 
consider the swimmers’ PBs.  

 Ashley 
Callus 

Michael 
Klim 

Eamon 
Sullivan 

Ian Thorpe Todd 
Pearson 

Grant 
Hackett 

Adam 
Pine 

Rank 10 10 0 11 4 1 1 
PB 0 2 0 1 0 0 0 
Total Rank 10 12 0 12 4 1 1 

Figure 1: The table created by James’ group  

CONCLUDING POINTS 
The present study is providing young primary school children with opportunities to 
develop powerful mathematical ideas and processes through mathematical modelling. 
A modelling problem is a realistically complex situation where students engage in 
mathematical thinking (beyond that of the traditional school problem) and generate 
conceptual tools needed for some purpose (Lesh & Zawojewski, in press). Modelling 
problems foster and reveal children’s mathematical thinking thus enabling teachers to 
capitalise on the insights gained into their children's mathematical developments. 
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Table 1: Swimming Times Recorded for the Men’s 100m Freestyle 

 
 
Competition 

Ashley 
CALLUS 
(PB: 
48.43 
secs) 

Michael 
KLIM 
(PB: 
47.98 
secs) 

Eamon 
SULLIVAN 
(PB 50.06 
secs) 

Ian 
THORPE 
(PB: 
48.11 
secs) 

Todd 
PEARSON 
(PB: 48.45 
secs) 

Grant 
HACKETT 
(PB: 48.67 
secs) 

Adam 
PINE 
(PB: 
48.68 
secs) 

2004 Telstra 
Swimming 
Grand Prix 

51.50 secs 
50.44 
secs 

50.35 secs 49.23 secs 50.19 secs 51.42 secs 
51.87 
secs 

2004 Telstra 
Olympic Team 
Swimming 
Trials 

49.31 secs 
49.78 
secs 

50.06 secs 48.83 secs 49.78 secs 50.40 secs 
50.24 
secs 

2003 Telstra 
FINA World 
Cup 

48.06 secs 
50.12 
secs 

50.24 secs 48.94 secs 48.83 secs DNC 
49.67 
secs 

2003 Telstra 
Australian 
Championships 

49.07 secs DNC 51.86 secs 49.07 secs 49.29 secs 50.32 secs 
50.69 
secs 

2002 Pan Pacs DNC 
48.44 
secs 

52.43 secs 48.98 secs 49.64 secs 48.67 secs 
48.93 
secs 

2002 Telstra 
Swimming 
Grand Prix 

51.12 secs 
48.58 
secs 

51.32 secs 48.11 secs 48.45 secs 51.90 secs 
51.62 
secs 

2001 Telstra 
FINA World 
Cup 

48.43 secs 
48.43 
secs 

51.74 secs 48.81 secs 50.80 secs DNC 
48.90 
secs 

2001 Pan Pacs 47.81 secs 
49.13 
secs 

53.73 secs 50.79 secs 50.30 secs 51.93 secs 
49.46 
secs 

2001 Telstra 
Australian 
Championships 

49.46 secs 
49.53 
secs 

55.12 secs 49.05 secs 49.67 secs 51.69 secs 
50.27 
secs 

2000 Telstra 
FINA World 
Cup 

49.62 secs 
47.98 
secs 

DNC 49.99 secs 48.98 secs 51.42 secs 
48.68 
secs 

2000 Olympic 
Games 

DNC 
48.56 
secs 

DNC DNC DNC DNC DNC 

Note:  DNC means did not compete; PB means personal best 
Modelling problems are designed to ensure that the product generated embodies the 
mathematical ideas and processes that children constructed for dealing with the 
problem situation. In the case of the Olympics problem, the children’s creations 
revealed informal understandings of variation, aggregation and ranking of scores,   
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inverse proportion (the lower the time, the faster the swimmer), and weighting of 
variables—all of which are not normally part of the 4th-grade curriculum.  
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