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The broad goal of this report is to describe a form of knowing and a way of 
participating in mathematics learning that contribute to and further alternative views 
of transfer of learning. We selected an episode with an undergraduate student 
engaged in a number of different tasks involving a physical tool called “water 
wheel”. The embodied cognition literature is rich with connections between 
kinesthetic activity and how people qualitatively understand and interpret graphs of 
motion. However, studies that examine the interplay between kinesthetic activities 
and work with equations and other algebraic expressions are mostly absent. We show 
through this episode that kinesthetic experience can transfer or generalize to the 
building and interpretation of formal, highly symbolic mathematical expressions. 

INTRODUCTION 
How experiences and knowledge from one situation transfer or generalize to another 
situation has long been a topic of interest (e.g., Thorndike, 1906; Judd, 1908; 
Wertheimer, 1959). In recent decades researchers have posed alternatives to what 
now is commonly referred to as a classical or traditional view of transfer (Lobato, 
2003; Tuomi-Grohn & Engestrom, 2003). Many of these alternatives are grounded in 
situated and socioconstructivists perspectives rather than in behaviorist or 
information processing perspectives. For example, Hatano and Greeno (1999) argue 
that rather than treating knowledge as a static property of individuals that is correctly 
or incorrectly applied to new tasks (which is compatible with traditional views of 
transfer), more emphasis should be placed on the norms, practices, and social and 
material interactions that afford the dynamic and productive generalization of 
learning. Hatano and Greeno further argue that alternative views of transfer offer 
researchers insights into how “students may develop quite different forms of knowing 
when they learn in practices that involve different ways of participating” (p. 650, 
emphasis added).  

The broad goal of this report is to bring together a different form of knowing with a 
different way of participating in mathematics learning and in so doing contribute to 
and further alternative views of transfer. Classic forms of knowing include knowing-
how and knowing-that (Ryle, 1949). These forms of knowing tend to be static, purely 
mental, and compatible with traditional views of transfer that look for direct 
application of knowledge. A different distinction in forms of knowing that is 
potentially more useful for alternative views of transfer is that of knowing-with and 
knowing-without. Knowing-with characterizes aspects of meaning making as it 
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relates to developing expertise with tools. Knowing a mathematical idea with a tool, 
for example, (1) engages multiple and different combinations of dwelling in the tool, 
(2) invokes the emergence of insights and feelings that are unlikely to be fully 
experienced in other ways, and (3) is in the moment. The opposite of knowing-with is 
knowing-without. We all have had experiences of knowing-without embedded in 
feelings of something being alien, foreign, and belonging to others. The difference 
between knowing-with and without is not absolute but contextual (Rasmussen & 
Nemirovsky, 2003; Rasmussen, Nemirovsky, Olszewski, Dost, & Johnson, in press). 
These characteristics of knowing-with resonate with many of the features of Lobato’s 
(2003) actor-oriented perspective on transfer and Greeno, Smith, and Moore’s (1993) 
situated view of transfer.  

In addition to different forms of knowing, Hatano and Greeno (1999) direct our 
attention to different ways of participating in mathematics learning. In this work we 
draw on recent advances in embodied cognition that highlight the centrality and 
significance of learners’ gestures and other ways of kinesthetically participating in 
mathematical ideas. Nemirovsky’s (2003) review of embodied cognition distills two 
conjectures regarding the relationship between kinesthetic activity and understanding 
mathematics that help frame this research report. First, mathematical abstractions 
grow to a large extent out of bodily activities. Second, understanding and thinking are 
perceptuo-motor activities that are distributed across different areas of perception and 
motor action. We also note that the embodied cognition literature is rich with 
connections between kinesthetic activity and how people qualitatively understand and 
interpret graphs and motion (e.g., Nemirovsky, Tierney, & Wright, 1998; Ochs, 
Jacobs, & Gonzales, 1994). It is noteworthy, however, the absence of studies that 
examine the interplay between kinesthetic activities and work with equations and 
other symbolic expressions. Thus, the focused goal of this report is to investigate the 
ways in which kinesthetic activity can participate and transfer to work with 
conventionally expressed equations. 

LITERATURE REVIEW ON TRANSFER  
At the beginning of the century Thorndike (Thorndike, 1906; Thorndike & 
Woodworth, 1901) conducted the first series of “transfer studies.” Since then, the 
overall scheme of these studies became established: subjects who have had 
experience with a source or learning task are asked to solve a target or transfer task, 
and their performance is compared to a control group. In looking back at the many 
studies and debates on the notion of transfer of learning that were developed during 
the twentieth century, we will describe what we recognize as dominant themes and 
concerns in the literature. 

The aim of most of the transfer research has been to predict and identify the 
conditions under which transfer does or does not happen. On the one hand we 
intuitively know that in everyday life we are constantly "transferring” in the broad 
sense; that is, we are making connections to our past experience, bringing metaphors 
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to life, sensing a stream of thoughts populated by unexpected associations, and so 
forth. On the other hand, the results of transfer research have led many researchers to 
conclude that transfer is rare and difficult to achieve unless it is “near” or based on 
source and target situations that are markedly similar (Singley and Anderson, 1989). 
This mismatch between common expectations and the results of the transfer studies 
is, to this day (Anderson, Reder, & Simon, 1996; Lave, 1988), a centerpiece of the 
debates.  

In order to predict the occurrence of transfer and to conduct empirical corroboration, 
theorists postulated several different types of transfer mechanisms. These 
mechanisms have centered on the preservation of structures, that is, on the thesis that 
transfer takes place when certain structures present in the subject dealing with the 
source task are re-activated when dealing with the target tasks. Thorndike proposed 
that what one learns in a certain domain transfers to another domain only to the 
extent that the two domains share "identical elements."  

On the other hand, during the period dominated by information-processing 
approaches, the preservation of mental structures came to be seen as the key for the 
occurrence of transfer. The idea was that, rather than the features of the tasks 
themselves, what matters is how people conceptualize the tasks; in other words, the 
mental structures that subjects bring to bear when they deal with the tasks (Singley & 
Anderson, 1989).  

Transfer studies often cite the literature on “street mathematics” which examined the 
ways in which people in different cultures solve arithmetic problems from everyday 
life (e.g., Lave, 1988; Nunes, Schliemann, and Carraher, 1993; Saxe, 1982). We think 
these studies question the idea that there are some mathematical procedures that are 
optimal for everyone at all times. This research has repeatedly shown that people 
compose solutions to the problems they face by combining multiple approaches as 
well as the resources and demands of the situation at hand. There is nothing exotic 
about creating idiosyncratic procedures and merging practices, on the contrary it is 
common and widespread.  

As new teaching practices inviting students to invent algorithms are becoming part of 
schooling, it is increasingly clear that the diversity of approaches and dynamic 
composition of solutions can be as typical in the school as it is in the street. The old 
idea that there are some mathematical procedures that are optimal for everyone at all 
times is an artifact of cultural practices traditionally associated with schooling. The 
main issue made prominent by research on street mathematics is not, we believe, that 
school-based algorithms fail to transfer, but that people, rather than using pieces of 
knowledge as ready-made structures that get applied to new situations, compose 
solutions by making use of multiple approaches and tuning them to the resources and 
demands at hand. In this report we examine how prior kinesthetic experiences with a 
physical tool can offer students resources that can be generalized to work with 
symbolic equations. 
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METHOD 
We conducted a total of eight, 90- to 120-minute open-ended individual interviews 
with three students. In the interviews students engaged in a number of different tasks 
involving a physical tool called the water wheel. As shown in Figure 1, the water 
wheel consists of a circular plexiglass plate with 32 one-inch diameter plastic tubes 
around its edge. Each tube has a small hole at the bottom. The plate turns on an axle 
and is free to rotate. The tilt of the axle can be adjusted between 0 and 45 degrees 
from vertical. Water showers into the eight uppermost tubes from a curved pipe with 
holes along its underside.  

 
          Figure 1. The water wheel 

A computer interface permits users to graph angular velocity versus time, angular 
acceleration versus time, and angular velocity versus angular acceleration while the 
wheel is turning (Nemirovsky & Tinker 1993). Water showers into the tubes when 
they are carried underneath the shower pipe. As the wheel turns, the water gathered in 
each tube provides a torque around the axis of the wheel. Because each tube leaks 
water from the bottom, the amount of water in each tube decreases over time, until 
that tube again swings upward to the shower pipe to receive more water. With 
different choices of tilt angle, flow rate, bearing friction, and initial water 
distribution, the motion of the wheel exhibits a variety of periodic, almost periodic 
and chaotic motions, as well as period doubling and transitions into chaos. During 
periodic motion, water tends to accumulate in a bell-shaped distribution in the tubes, 
which students often call “the heavy spot” (see Figure 1). 

Touching and sensing the heavy spot was a critical and significant experience for 
students. For example, in the second interview “Jake” predicted that a certain graph 
of velocity versus acceleration would be circular in shape. Computer generated 
graphs of actual data, however, indicated the graph to be dimpled on the top and 
bottom, like an apple. Jake ultimately concluded that the apple shape had to be the 
case by physically touching and sensing the forces at play in the motion of the wheel 
(see Rasmussen & Nemirovsky, 2003 for more detail).  

Each student we interviewed had completed three semesters of calculus and had 
taken or was taking differential equations. The interviews used a set of preplanned 

shower pipe 

the heavy spot 

photogates A submersible pump sends water to 
the pipe, with a valve to regulate the 
flow. An oil bath between nested 
cylinders provides dynamic friction 
for the axis of rotation. Raising or 
lowering an oil reservoir varies the 
oil level in the cylinders. The 
angular velocity of the water wheel 
is measured by two photogates that 
detect the motion of a pattern of 
black lines on the wheel top.  
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tasks as a springboard for exploration of mathematical ideas that were of interest to 
the student, rather than as a strict progression of problems to complete. We also 
actively worked in the interviews to establish an environment in which the student 
felt comfortable exploring new ideas and explaining their thinking, however 
tentative. All interviews were videotaped and transcribed. Summaries of each 
interview were developed and compared across all interviews. In this report we focus 
on the learning of one student, Jake, in his third and final interview because it was 
most helpful in our understanding how kinesthetic activity with a tool can transfer to 
work with symbolic equations. 

MATHEMATICAL IDEAS INVESTIGATED 
The first two interviews focused on qualitative and graphical interpretations of 
motion while the third interview, which is the source of data for this paper, focused 
on interpretation of the system of differential equations that model the motion of the 
water wheel.  

We planned for students to engage in reasoning about a variety of different phase 
plane representations. A typical example of a phase plane is the R-F plane for a 
system of two differential equations dR/dt and dF/dt, which might, for example, 
model the evolution of two interacting populations of animals such as rabbits R and 
foxes F. For instance, consider the system of differential equations, dR/dt = 0.2R – 
RF, dF/dt = -F + 0.8RF, intended to model the population of rabbits and foxes. 
Students in modern approaches to differential equations are often required to interpret 
the meaning of the individual terms in the equations. For example, why is it the case 
that the first equation has a minus RF term while the second equation has plus RF 
term? Students in these interviews had engaged in similar analyses in their 
differential equations course for equations like dR/dt and dF/dt and had developed a 
number of interpretive strategies. One strategy was to view the RF terms as an 
indication of what happens to the populations when the two species interact. Another 
strategy was to interpret the equations when either R or F is zero. An information 
processing approach would judge successful (or not) transfer in terms of the extent to 
which these interpretive strategies were employed in the novel task with the water 
wheel. 

The phase plane analyses that we planned to use with the water wheel centered on 
graphs in the angular velocity-angular acceleration plane, coordinated with time 
series graphs, and with the motion of wheel. In the third interview we invited students 
to engage in interpretive analyses of the following system of three differential 
equations that model the motion of the water wheel: dX/dt = σ(Y - X), dY/dt = -Y + 
XZ, dZ/dt = R - Z – XY. The variables X, Y, and Z are dimensionless combinations 
of physical variables, each with a fundamental meaning. X represents angular 
velocity, Y represents the left-half right-half water imbalance, and Z represents the 
top-half bottom-half water imbalance. If more water is in the right half of the wheel, 
then Y is positive. A negative value for Y indicates that more water is in the left half 
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of the wheel (such as the instant in time shown in Figure 1). Similarly, a positive Z 
value means that more water is located in the top half of the wheel. The parameter R 
essentially relates to the pump flow rate and tilt while the parameter σ relates to the 
amount of friction (oil level). All of this was explained to the students in the 
interview. 

The -Y term in the equation dY/dt = -Y+XZ accounts for the fact that water flows out 
of the tubes in such a way that any differences in their left-right distribution tend to 
nullify. Both sides tend to have less and similar amounts of water. This happens 
faster if Y is bigger. From this perspective, dY/dt might be understood as the rate at 
which the left-right imbalance is evening out. Jake’s knowing Y with the heavy spot 
cultivated a different perspective on dY/dt. As we elaborate in the next section, 
Jake’s earlier kinesthetic engagement with the water wheel’s “heavy spot” afforded 
him novel and productive ways to make sense of various terms in the differential 
equations.  

ANALYSIS AND DISCUSSION  
We often see students designing graphs to produce narratives of perceptuo-motor 
events, but the use of standard symbolic notations often seems less likely to elicit 
such direct unfolding of interpretation. An important contribution we make in this 
report is to clarify and document that kinesthetic experiences can play the role of 
“bridges” that experientially bring together partial results obtained by symbol 
manipulation with certain “states of affairs” that students have engaged with 
physically. In the following example, which is typical of Jake’s work with the 
equations, kinesthetic experiences anchor his interpretations of why the different 
terms in the differential equations make sense (or not).  

His analysis of the differential equation dX/dt = σ(Y–X) began with an attempt to 
interpret the right hand side of the first equation as a whole. He reasons out what 
happens to the angular acceleration (since that is what he understands dX/dt to mean) 
when the amount of damping increases. As Jake worked through this approach, he 
began to tease out how the individual terms in the right hand side of the first equation 
might make sense to him. To do so, he returned to the idea of a “heavy spot,” which 
he had introduced in earlier investigations, mainly of periodic motion. In this way, 
anchored in a special case, he built interpretations that will hold in general. The 
following excerpt picks up this conversation with Jake reflecting on whether it makes 
sense for the equation to include a positive Y term rather than a negative one (–Y).  

Jake:  OK. Now, the positive term of Y, at least, uh, seem to make sense because, if 
the [holds his hands out, palms up], if it’s the more imbalanced [Chris draws a 
circle on the board next to the equations], the, uh, more [makes a half rotation 
gesture], uh, the higher the acceleration. Because, if it’s much more heavier on 
this side [cups hand over right side of the circle diagram on the board] than this 
side [cups hand over left side of the circle], then it seems to make sense that the 
pull due to this much heavier side [cups right side of circle]. Seems to be, uh, 
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much stronger and, therefore, it [gestures with a grabbing and pulling motion 
downward] seems to accelerate, uh, much more faster.  

Chris: Mmmm. So, that’s when Y is positive. [Jake: Right]. How about when Y is 
negative?  

Jake:  OK, yes. That’s what I was going refer to. Um. Y, Y is negative in a situation 
where the, uh, uh, the heavier side is, on this side [points to left side of the 
circle]. And, um, and, if there’s. So, the pull is this way [gestures down], 
therefore, the acceleration is negative [gestures in a counterclockwise swirling 
motion] instead of positive [gestures in a clockwise swirling motion]. 

As Jake began his explanation, Chris drew a circle on the board next to the 
differential equations. Jake’s gestures (noted in the transcript) transform this circle 
into a diagram of the water wheel, with a heavy spot implicitly in evidence. For 
example, Jake cups a portion of this circle with his hand, as if he were grasping for 
the heavy spot. Jake’s gesture, cupping his hand as if he had taken hold of the heavy 
spot, suggests a form of being the wheel, in the sense that forces and rotational 
movement are brought forth through the way he works with the circle diagram of the 
water wheel drawn on the board. In this way, his physical experience, interpreted 
through his concept of the “heavy spot,” anchors his interpretation of the first 
equation. In a similar way, his physical experience, combined with key ideas that he 
has built in order to reflect on that experience, help Jake make sense of the remaining 
two equations. Other examples will be rendered in the presentation of this paper. 

FINAL REMARKS 
Representations, such as equations and graphs, are indispensable for mathematical 
thinking and expression. It is one thing to know, for example, that the slope of the 
graph of a certain function obeys a certain equation, while it is another thing to sense 
bodily the need to slow down and the different ways of slowing down. While these 
aspects can be dissociated, and in fact they often are (e.g., solving an equation 
without any kinesthetic sense of the motion it describes), they can be related in 
manifold and complex ways. It is possible that this widespread dissociation leads 
students to uncritically accept mistaken results obtained through formal calculation, 
because the latter tends to be performed without the guidance of intuitive 
expectations. In this report we showed that kinesthetic experience can transfer or 
generalize to the building and interpretation of formal, highly symbolic mathematical 
expressions. This existence proof has the potential to open new ground for research 
on embodied cognition and transfer. 

This work has been supported in part by the National Science Foundation (Grants REC-
0087573 & REC-9875388). All opinions and analysis expressed herein are those of the 
authors and do not necessarily represent the position or policies of the funding agency.  
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