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In its empirical part this paper establishes a general weak understanding of the 
process of applying a mathematical model. This is also evident in the way teachers 
regard the application of alternative sharing in their own problem solving and in 
relating to children's answers. The theoretical part analyses problems that are 
considered as applications of proportional reasoning. It suggests that the rationale 
for applying a proportion model varies and includes, for example, cases with a 
scientific rationale and others with a social one. In some problems there are no 
degrees of freedom in applying proportion, but in other cases this model should not 
be taken as "engraved in stone". This analysis is supported by examples of alternative 
sharing in Talmudic laws or bankruptcy interpreted by game theoretic models. 

THEORETICAL BACKGROUND 
Modeling 
This research expands the existing knowledge of the nature of mathematical 
modeling by offering an analysis of application rationale. The term modeling refers 
here to applying a mathematical model in a problem solving situation. As a less 
"automatic" act, modeling can be defined as the process of organizing and describing 
a situation or a phenomenon by using a mathematical model (or models) or 
"mathematizing" the situation by perceiving it through mathematical lenses (Greer, 
1993).  

Following the re-thinking of math education goals the interest in modeling processes 
increased, recognizing the importance of modeling expertise as a goal, and noticing 
that a good modeling activity, in turn, adds meaning to the applied mathematical 
model, increasing its power and enriching children's mathematical concepts. This 
meant that the nature of school problems and classroom practice had to change. 

Some researchers showed that classroom norms were responsible for the fact that 
children do not use realistic considerations in problem solving (Reusser & Stebler, 
1997; Greer, 1997; Verschaffel, De Corte & Borghart, 1997). Children and pre-
service teachers in several different countries were given problems that called for use 
of everyday knowledge, such as the fact that even a very fast runner cannot keep up 
his hundred meter speed when running a whole kilometer. In conventional classroom 
conditions, and even when children were given some hints on the special nature of 
these problems, children did not use realistic considerations. However, when the 
didactical contract (Brousseau, 1997) was changed, children changed their problem 
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solving habits (Verschaffel & De Corte, 1997; Verschaffel, Greer, & De Corte, 
2002). 

Modeling standard problems 
Our earlier research (Peled & Hershkovitz, 2004) suggests that a more inquisitive 
modeling attitude should be used not only in specially designed problems of the type 
composed by Verschaffel et al. (2002), but become a common practice even in 
standard problems. Peled and Hershkovitz (ibid) asked teachers and students to solve 
a conventional proportional reasoning problem. Most of the teachers applied 
proportional reasoning. A few of them made some drawings and gave a different 
answer. Class discussion revealed that teachers who solved the problem (correctly) 
using proportional reasoning engaged in an almost automatic application of 
proportion without deliberation on the reason why this model fit the given situation. 
The discussion and comparison of alternative teachers’ and children’s solutions made 
teachers analyze the situation and enrich their understanding of ratio and proportion. 

This research triggered our further investigation of modeling in standard school 
problems. We noted that teachers and textbook writers create sets of problem types 
they consider should be solved by using a certain mathematical model leaving no 
option for alternative solutions and leading students to view the connection between 
mathematical models and situations as an undisputed truth.  

Doubting certainty in model application 
Our concern in this study goes beyond the gap that exists between school 
mathematics and everyday mathematics. We focus on the assumptions behind 
applying a certain mathematical structure and analyse their nature. The following 
example will demonstrate what we mean by that. 

The Lottery Problem:  
Two friends, Anne and John, bought a $5 lottery ticket together. Anne paid $3 and John 
paid $2. Their ticket won $40. How should they share the money?  

A problem of this type appears in textbooks in the ratio and proportion chapter as an 
example of a situation in which an amount should be shared using a given ratio. In 
this case, the $40 sum is expected be split into two amounts using a 3:2 ratio. 

Ron, a seventh grader, suggested 3 different solutions to the Lottery Problem 
(converted here from the original IS to $): 

Solution 1:  40:2=20 Each child gets $20. 

Solution 2:  One child (the one who paid $2) gets $19 and the other (the one who paid 
$3) will get $21 (although the difference is $2 and not $1). 

    2   3 

Solution 3:  One will get $16 and the other 24 because 40:5=8   

 3x8=24, 24 to the child who paid $3 
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  2x8=16, 16 to the child who paid $2 

Ron:  In my opinion, the first solution is the most fair, but the third is most right 
because of the ratio.    

Ron, aware of classroom norms, knows that the teacher expects him to give the third 
solution, even if it doesn't feel so right to him. But is proportional sharing really the 
"right" (and unique) model? Why?  

It should be noted that similar answers were given by pre-service teachers in a more 
complex money-sharing situation described by Koirala (1999) in a problem involving 
the purchase of shoes in a "3 for 2" sale. Rather than figuring the cost for each of the 
two friends who are making one purchase by taking care of giving each of them the 
same percent off, some pre-service teachers suggest different kinds of splits. For 
example, some (the author identifies them as students with good mathematical 
understanding) think that dividing the saving evenly is fair. Koirala (ibid) seems to 
think that there is one correct answer, using the same-percent-off split. In fact, as the 
title of his article implies, he is worried that academic mathematics might be lost by 
legitimizing alternative solutions. We do not agree with his point of view. 

What is the basis for using proportional sharing? Is it inherent in the situation? Can 
we use another mathematical model? In the theoretical analysis we will contrast this 
situation with other situations in showing that the fitting of proportion in this problem 
is done on a relatively weak basis. Our purpose is to develop and then encourage a 
meta-analysis of the modeling process that deals with the modeling assumptions, 
their nature, and the degree of certainty with which we apply a mathematical model. 

FINDINGS 
Although we split the findings report into a theoretical part and an empirical part, the 
two parts were conducted simultaneously. The empirical findings start with data that 
establishes alternative answers in a money sharing situation, and presents attitudes 
towards these different ways of mathematizing the situation. It continues with a short 
description of class discussion that was conducted after an initial theoretical analysis 
was done. Our analysis of this discussion and additional workshop discussions 
resulted in a refinement of the theoretical analysis. 

Empirical findings 
We detail here a part of the data collected including children's answers and teachers' 
reactions, and summarize one of the discussions we conducted. 

A group of 24 seventh graders and a group of 43 elementary school teachers were 
given the original version of the Lottery Problem. They were asked to solve the 
problem and then react to the following children's answers: 

Aviv's answer:  40:2=20 Each one should get 20 IS. 
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Danit's answer:  Anne should get 21½ IS and John should get 19½ IS, because Anne 
invested 3 IS and John invested 2 IS, the difference is 1 IS therefore the 
difference in their winning shares should also be 1 IS. 

Yaron's answer: Anne should get 24 IS and John should get 16 IS, because 40:5=8 and 
3x8=24 and 2x8=16.  

The reaction distribution for each of the two groups is depicted in Table 1. 

 Aviv (equal)  Danit (diff.)  Yaron (prop) 

* + - +/- + - +/- + - 

Teachers 

n=43 

 

7 

 

23 

 

13 

 

1 

 

36 

 

6 

 

43 

 

0 

Students 

n=24 

 

12 

 

12 

 

 

 

14 

 

10 

 

 

 

16 

 

8 

* + regard answer as correct  – as incorrect  +/- correct and incorrect 

Table 1: Teacher and student reactions to ways of money sharing. 

As can be seen in Table 1, some of the teachers said that Aviv's answer or Danit's 
answer were both correct and incorrect. In their explanation they argued that the 
given solution might be correct socially or morally but incorrect from a mathematical 
point of view. Some typical answers: "It is their right to share the money anyway 
they choose, but in principle they should share their winnings using the 3:2 ratio" or 
"From a moral point of view equal sharing is great, but from a mathematical 
perspective the sharing ratio should be equal to the investment ratio". There were also 
some comments such as: "On a second thought, nowhere in the problem does it say 
that they will receive [money] according to their investment ratio, so it is possible to 
accept the equal share option".  

These (and additional) findings motivated our efforts to develop an analytical tool for 
modeling. Following an initial theoretical analysis, we conducted several student and 
teacher workshops where we brought up the issue of modeling rationale.  

In one of our first discussions with mathematics education graduate students the 
Lottery Problem was presented in 3 different versions (the effect of different story 
conditions is discussed in the theoretical analysis): 

1. The original version with a $40 win.    2. A million dollars (actually IS) win.  

3. As in version #2 with the additional information that Anne says: I only have $3, 
implying that she could not have bought a ticket if it were not for John's $2 
contribution. 

Each student was given one of the three versions and then asked to react to a variety 
of children's solutions. Then the Mixture Problem (shown in the theoretical analysis) 
was presented and the students were asked to compare the problems. Although 
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students exhibited different reactions as a result of getting the 3 problem versions, 
and although they expressed positive attitude towards children's non-proportional 
distributions, the instructor (the first author) felt that the students did not fully 
understand the differences between the Lottery Problem and the Mixture Problem. As 
a result, she introduced a third situation that does not involve any chemical reaction.  

The new situation involved a car assembly line, where each single car needs N parts 
type A and K parts type B. In this situation a constant ratio, N:K, exists between the 
number of parts independently of any given quantity of cars. As a result of this 
discussion, the Assembly Problem (detailed in the following section) was composed. 

Theoretical analysis 
One way to highlight and identify the nature of a process is by comparing it in 
different cases. We did that by composing a problem, the Mixture Problem, that is 
different in context from the Lottery Problem and yet supposedly (we will refer to the 
use of this word later) has the same structure. At a later point in the study, following 
class discussions, we composed a third problem, the Assembly Problem. 

The Mixture Problem:  
Ron started painting his garden fence in green that he got by mixing 3 cans of yellow 
paint with 2 cans of blue paint. When he ran out of paint, he calculated that he needed 40 
more cans to finish the fence. He also decided that he would like to mix yellow and blue 
and get the same shade of green that he had had before. How many of the 40 cans should 
be yellow and how many should be blue?  

The Assembly Problem: 
In a certain car assembly line each car has to be equipped with large cushions for the 2 
front seats and smaller ones for the 3 back seats. A load of parts arrived for a certain 
amount of cars. It included a total of 40 cushions which were indeed used in assembling 
the cars. How many of them were large cushions?  

Although we took care of composing the problems to be analogical in structure (the 
need to revise the definition of analogical structure will be raised in our work), we 
claim that they are very different. In the Lottery Problem proportional sharing is a 
result of the assumption that it is fair to have the same profit for each dollar invested. 
However, in the Mixture Problem proportion is used because this is how colors 
behave chemically when they are mixed. The Assembly Problem does not require a 
moral or a scientific excuse and as will be further analysed, the use of a mathematical 
model in this case is not only straightforward but also very stable.  

Resistance to change in problem conditions 
The differences between the three problems become apparent by looking at the 
solution’s "resistance" to variations in story details. If, for example, John and Anne 
win a million dollars, will we still expect them to use a 3:2 sharing ratio? And what if 
Anne only had $3 and would not have been able to buy the $5 ticket without John's 
contribution?  
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Several questions are elicited by these problem variations: Who decides how money 
should be shared? Is there some normative social agreement that it would be fair to 
distribute the money proportionally? What if John wants more than his proportional 
share and goes to court, what does the law say about such cases? 

The resistance to change criterion applies to the mixture problem in a different way: 
Sometimes in mixing very large amounts the chemical behavior does not follow the 
same pattern as in smaller amounts. Greer (1997) refers this phenomenon in cooking, 
where doubling the amount to be cooked does not necessarily mean that all receipt 
elements preserve the original ratio. The mathematical model for mixing different 
amounts depends on the chemical and physical mechanisms that are involved in the 
process. Some questions may prove pertinent here as well: How was a certain 
mixture formulae created in the first place? Was it an outcome of experimental 
observations resulting in a phenomenological connection? Or was it perhaps the 
result of a theoretical analysis of some chemical relations? 

While the mathematical model for the Lottery Problem and the Mixture Problem 
might depend on problem conditions, this is not the case for the Assembly Problem. 
The ratio between the total number of large cushions and small ones that are used in 
the process is constant and independent of the amount of assembled cars. (As a 
matter of fact even this situation is not completely "clean"… To avoid a quality 
control issue that would involve unfit parts, the number of which does depend on 
sample size, the problem refers to the used parts only). 

Thus, at this point, we have three different cases (mixture, sharing and assembly) at 
different locations on the “strength of application” axis (a temporary description): 
Assembly situations are located on the “very certain” side, moral-social situations on 
the “less certain” side and scientific situations somewhere in between, not too far 
from assembly situations. 

To use or not to use proportion: Learning from other disciplines 
Focusing on the specific mathematical model of proportion, our theoretical analysis 
takes some of its ideas from other disciplines in several ways: We interviewed 
specialists such as lawyers and scientist in industrial plants in an effort to understand 
the actual fitting of a mathematical model.  

It is interesting to note that when we asked a lawyer to solve the Lottery Problem, her 
first reaction was surprisingly similar to Ron’s answers and she suggested a 
proportional distribution of the money. On further prompting she admitted that this is 
not the way it would work in real practice. She explained that her first answer was 
based on identifying the problem as a school problem that should be answered as 
taught in school. 

We also looked into ways people solve similar situations in everyday cases, and into 
solution procedures suggested by disciplines that deal with such problems. One of the 
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cases involves Talmudic laws. As is shown in the following example, it offers a 
different solution. 

Mishnah 3 in chapter 10 of the volume Ketubot (a Ketuba is a document signed by 
the groom listing what he will pay his bride in case of death or devorce) deals with a 
case where a man dies leaving 3 widows. In their Ketubot he had promised to give 
the first woman 100 gold coins, give the second 200 coins, and the third 300 coins. 
Unfortunately, what he left is smaller than the sum of the promised amounts. Rather 
than splitting it using a 100:200:300=1:2:3 ratio, the Mishna rules that money 
distribution (in our terms: the mathematical model that is applied) depends on the 
given amounts. For example, if the whole inheritance is 100 coins, it is equally 
distributed. If it is 200 coins, then the second and third wives get 75 coins and the 
first gets 50 coins. 

For years these laws seemed inconsistent and their rationale was not known, until 
Aumann and Maschler (1985) developed an explanation based on game theory and 
the distribution of gains suggested by Shapley Value (satisfying the properties of 
efficiency, fairness and consistency) (Castrillo & Wettstein, 2004). This rationale can 
be applied in different cases (as in bankruptcy) where existing assets are smaller than 
the total claims. 

DISCUSSION 
This study followed our earlier realization (Peled & Hershkovitz, 2004) that the 
application of proportion in a standard problem is done automatically, with hardly 
any motivation to explore the situation or the reason a specific mathematical model 
should be applied.  

The empirical findings show that in problems that look like conventional proportion 
problems most teachers apply a proportion model even in cases that would have 
called for alternative solutions in reality. Some of the teachers reluctantly accept 
children's alternative solutions saying that they might be morally fair but 
mathematically wrong. 

Following these results we concluded that teachers need an analytical tool that would 
make them aware of the differences between situations with regard to the reasons for 
applying a model. A tool that would identify the modeling rational, establish the 
degree of certainty for applying a mathematical model, and help indicate where 
alternative solutions can be legitimate even in the eyes of math educators such as 
Koirala (1999) who do not want to loose academic mathematics. 

Our theoretical analysis describes the direction we take in constructing this tool. We 
show examples of problems that look analogical in structure but use different 
contexts. These problems stand for different types of application rationale and can be 
located at different places on a scale that represents the amount of certainty in using 
the relevant mathematical model. The Assembly Problem represents a straight case of 
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proportion while the Mixture Problem is a case for a scientific investigation and the 
Lottery Problem is a case for social norms and existing social laws.   

We also found that game theory and Talmudic laws support our claim that the status 
of proportional distribution of assets (as depicted in the Lottery Problem) is different 
from the status of corresponding modeling in a scientific problem (as in the Mixture 
Problem). Several Talmudic laws suggest a non-proportional solution in cases that 
would probably have been solved in textbooks by applying proportional reasoning.  

In our continued research we intend to refine the theoretical analysis, apply and 
validate it in our work with teachers in an effort to improve their understanding (and 
subsequently their students' understanding) of the modeling process. 
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