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This is a qualitative study of 22 9th graders performing generalizations on a task 
involving linear patterns. Our research questions were: What enables/hinders 
students’ abilities to generalize a linear pattern? What strategies do successful 
students use to develop an explicit generalization? How do students make use of 
visual and numerical cues in developing a generalization? Do students use different 
representations equally? Can students connect different representations of a pattern 
with fluency? Twenty-three different strategies were identified falling into three 
types, numerical, figural, and pragmatic, based on students’ exhibited strategies, 
understanding of variables, and representational fluency.  

BACKGROUND 
In 1999, with a grant from the Noyce Foundation, San Jose State University and 30 
school districts formed a Mathematics Assessment Collaborative (MAC) in an effort 
to balance state-sponsored multiple-choice tests and to provide multiple measures to 
evaluate students. The MAC exams are summative performance assessments in 
grades 3-10. The exams are hand scored using a point rubric and audited for 
reliability. Student papers are returned to teachers for further instruction and 
programmatic review. In developing this model system of performance assessment, 
the MAC spent a year writing Core Ideas for each grade level tested, adapting the 
National Council of Teachers of Mathematics Standards (NCTM, 2000). The 
assessments are written to match these Core Ideas. MARS results are correlated to 
state test results and analyzed by various demographic characteristics of students. In 
2003, over 60,000 students were tested by the MAC. 
At the eighth and ninth grades, one of the Core Ideas tested is that of patterns, 
relations and functions. Students are asked: to generalize patterns using explicitly 
defined functions; and, understand relations and functions and select, convert flexibly 
among, and use various representations for them. Over the five years of MARS data 
collections, we have found a similar pattern; while students are quite successful in 
dealing with particular cases of patterns in visual and tabular form, they have 
considerable difficulty in using algebra to express relationships or to generalize to an 
explicit, closed formula for a linear pattern. Summary data are shown in Table 1. To 
gain more insights, we embarked on an in-depth study of a small number of 9th grade 
students to pinpoint more specifically why they have difficulties in forming 
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 1999 2000 2001 2002 2003 
 9th 8th 8th 9th 8th 9th 8th 9th 
Ability to 
deal with 
particular 

80% 87% 72% 80% 74% 71% 56% 54% 

Ability to 
generalize 

15% 21% 22% 12% 21% 17% 5% 9% 

  Table 1: 8th and 9th Grade Results on Patterns and Functions Items 
generalizations so we could help teachers find ways to ameliorate deficiencies in this 
critical area. Specifically, our research questions were: 1) What hinders students’ 
abilities to generalize a linear pattern? 2) What strategies do successful students use 
to develop an explicit generalization? 3) How do students make use of visual and 
numerical cues in developing a generalization? Do students use different 
representations equally? 4) Can students connect different representations of a pattern 
with fluency? 5) What can we glean from student work that will inform and improve 
instruction? 

THEORETICAL FRAMEWORK  
In everyday situations, children are naturally predisposed to performing 
generalizations. As bricoleurs, children use whatever is available to them to induce 
patterns from objects despite developmental physiological constraints and their 
limited social knowledge, experiences, and expertise (DeLoache, Miller, & 
Pierroutsakos, 1998). Contrary to either Piaget’s (1951) or Bruner’s (1966) view that 
children need powerful hypothetical analytic skills or that they must attain a certain 
level of conceptual and abstract development prior to being able to induce patterns 
from objects, developmental psychologists show that children certainly could on the 
basis of similarity. Medin, Goldstone, and Gentner (1993) perceive similarity as an 
initial organizing principle, and that similarity is not known a priori and it is not static 
(Smith & Heise, 1992). It is, however, variable as it is based on children’s ability to 
compare objects and determine what counts as meaningful and relevant features. 
Medin and Schaffer (1978) claim the significance of context in induction (i.e., a 
particular sample is a member of a pattern if it resembles some or all of the 
previously known samples in the pattern). Rosch (1978) demonstrates the role of 
typicality in assessing for similarity (i.e, a specific instance is a member of a class of 
objects if it appears to the observer as a typical example and if it resembles the 
known prototype examples of the class). What is significant for us in this study is 
Gentner’s (1989) classification of three kinds of similarity, namely: analogy, literal 
similarity, and mere-appearance matches. They differ from one another in terms of 
the role attributes and relations play in similarity. Attributes “describe properties of 
entities,” while relations “describe events, comparisons, or states applying to two or 
more entities” (p. 209). Analogical similarity focuses on relations and is not object-
dependent; mere-appearance matches focus on object attributes and descriptions; 
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literal similarity is an overlap between analogy and mere-appearance matches as it 
utilizes commonalities that exist between attributes and relations. Gentner (1989) 
claims that young children and novices rely on mere-appearance matches and literal 
similarity. Also, a relational shift has been documented whereby young children 
would perform similarity on objects while older children and adults would induce 
relations with minimal need for surface support.  
Küchemann’s (1981) study highlights the ease with which beginning algebra students 
could associate letters as representing particular values versus letters as representing 
relationships: while these students could correctly deal with particular instances in a 
table of values that implicitly describe some mathematical relationship involving two 
quantities, they are unable to easily deal with the additional tasks of generalizing by 
way of pattern recognition and predicting by way of determining values for the larger 
cases. A related study by Stacey and Macgregor (2000) provides us with a 
characterization of the mathematical thinking employed by beginning algebra 
students on tasks involving pattern formulation: 1) Beginning algebra students could 
see valid patterns emerging from a given table of values; however, some of those 
patterns could not be easily translated symbolically. 2) Beginning algebra students 
perceive patterns as being generated by procedural rules for combining and obtaining 
numbers in either sequence of dependent and independent values, and not functional 
relationships. 3) Beginning algebra students have difficulty assigning correct 
representational meanings to the variables. 4) Beginning algebra students’ verbal and 
algebraic solutions are correlated in such a way that those who could clearly 
articulate their patterns tend to have greater success at writing the correct rules in 
symbolic forms. Stacey and Macgregor further insist that students’ facility with the 
properties of numbers and operations could assist them in obtaining a correct 
description of rules and relationships. Also, students need to know the structural 
nature of rules such as having only one simple rule for a given table of values.  

METHODS 
Twenty-two ninth grade students (11 males, 11 females) in a beginning algebra 
course in a public school in an urban setting participated in the study. The students 
had completed the task (see Figure 1) in December 2002 and were given the same 
task in May 2003 during an individual interview by the second author that was audio-
taped; interviews lasted about 20-30 minutes. Each participant was asked to read the 
problem and asked to think aloud as they solved the problem. The tapes were then 
transcribed by a graduate student and analyzed by both authors. The first level of 
analysis involved several individual readings of each transcript to identify patterns in 
strategies used for each of the six questions on the item. Then several follow-up 
discussions and cross-checking followed. 

RESULTS 
Twenty-three different strategies were used, as shown in Table 2 . The most common 
strategies are described more fully with portions of transcripts. Of course students 
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used more than one strategy as they solved different portions of the task. Ten of the 
strategies in the table are primarily visual in nature: 1, 4, 5, 9, 13, 14, 18, and 20-22.  
Marcia is using black and white square tiles to make patterns. 

 

 

 

 

 Pattern 1   Pattern 2   Pattern 3 

1.  How many black tiles are needed to make Pattern 4? _______________ 
Marcia begins to make a table to show the number of black and white tiles she is using. 

 Pattern Number  1 2 3 4 
 Number of White Tiles 16 24 
 Number of Black Tiles 5 9 
 Total    21 33 
2.  Fill in the missing numbers in Marcia’s table. 
3.  Marcia wants to know how many white tiles and black tiles there will be in the tenth 
pattern, but she does not want to draw all the patterns and count the squares. 
Explain or show another way she could find her answer. 
4., 5., & 6.  Using W for the number of white tiles and P for the pattern number, write 
down a rule or formula linking W with P. 
 Using B for the number of black tiles and P for the pattern number, write down a rule or 
formula linking B with P. 
 Now, using T for the total number of tiles and P for the pattern number, write down a 
rule or formula linking T with P. 

Figure 1: Tiling Squares Problem 

Visual Grouping Strategy (S1). Edward provided a prime example of a strategy of 
counting each “arm” of the pattern and then multiplying to get the total.  

I looked at pattern 3 and I saw the three pattern, three tiles, that are on each side so I 
thought I looked at the pattern two and it just added one so I multiplied four times four 
with all the sides and just added one in the middle [for pattern 4]. 

Visual Growth of Each Arm Strategy (S4). This strategy is similar to #1 except 
students used an additive rather than multiplicative approach to get the total number 
of tiles. 
Counting ELLs and Adding 4 Center Squares (S14). To find the number of white 
tiles in pattern #1, Alajandro saw four groups of three white tiles forming an L shape 
around the center black cross with an additional 4 center white squares on each side.  

You can see here, like, it’s three, three, three, three, plus twelve, and four, and the same 
here [referring to the next pattern]. The thing is you just add four more and if you are 
doing a table you just add 8, that’s 16, 24, 32, 40.  
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 Strategies No. Strategy Description Strategies No. Strategy Description 

2 Numerical use of finite 
differences in table 

1 Visual grouping by counting each 
arm; multiplicative relationship 

6 Random trial and error 4 Visual growth of each arm; additive 
method of counting 

6’ Systematic trial and error 5 Visual symmetry 

7 Numerical finite 
differences to generalize to 
closed formula 

9 Figural proportioning into pillars; add 
4 for external and 4 for internal 
squares 

8 Implicit recursion 13 Concentric visual counting 

10 Confusing dependent and 
independent variables 

14 Counting Ell shapes and adding 4 
center squares 

11 Extending the table 18 Chunking 

12 Missing independent 
variable 

20 Counting by one 

15 Adding two formulas for 
black and white 

21 Visual finite differences after random 
count 

16 Incorrect use of 
proportionality 

V
is

ua
l 

 

22 Visual finite differences after 
systematic count by 3s 

17 Get a formula and 
substitute to get 10th term 

DG* 3 Unable to generalize 

N
um

er
ic

al
 

  19 T in terms of B and W *Disjunctive Generalization 

Table 2: All Strategies Identified in Solving Tiling Squares Task 

Numerical Use of Finite Differences in Table Strategy (S2). Even some of the 
students who could not generalize, such as Rosendo, were adept at using finite 
differences in the table. This was obviously a strategy they had been taught. Rosendo 
showed her work on the paper by drawing a loop connecting the 5 and 9 in the table, 
then the 9 and the blank, which she filled in with 13. 

Marcia is using black and white square tiles to make patterns. How many black tiles are 
needed to make Pattern 4? Um, you keep adding 4, 4 plus [5] I think with the pattern. 

Trial and Error Strategy (S6/S6’). If one combines the systematic and unsystematic 
trial and error approach, this was a common strategy. Interestingly, there were two 
students who used Strategy #2, Finite Differences, yet did not transfer that 
information into their attempt to generalize to a formula. A third, Jennifer, did not use 
the table, but was able to get a formula through a guess and check strategy.  

S:   Black is 4n + 1. 
Interviewer:  How did you decide 4n + 1? 
S:  I started off with more like 2 and that didn’t work so then I tried to 

make 5 work and I did the same thing with 2, 3, and 2 and then when I 
tried it with 4, and I tried to figure a number to make 5 so I add 1, and I 
tried it on 2 and it still gave me the number. 
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Individual Patterns. We next graphed each student’s strategies on parts 1-6 of the 
task in Excel so we could examine trends over the course of the task as it ramped up 
from specific to general. Two examples of graphs are shown here for illustration. 
Katrina (Figure 2) began the problem with visual strategies, then changed to 
numerical use of finite differences to get a general formula, which she used to find 
the values for the 10th pattern. For part 6, the total number of tiles, she indicated to 
add the number of black and white tiles but did not produce a closed formula.  
Rani (Figure 3) also began with a visual strategy, then transitioned into using finite 
differences and extended the table to answer part 3. However, Rani had to construct 
the table all the way out to the 10th pattern number in order to correctly answer part 3. 
Thereafter, he used trial and error to try to get to a generalization but was unable to 
do so. For example, in part 4: 

I:  What makes it difficult to figure out that formula?  
S: Because I can’t find what links them to like equal 16 and then 24 or add up to 

make it. Number of white tiles goes up by 8. I don’t know how I would link to the 
number of patterns. 

Group Patterns. Because of our particular interest in students’ ability or inability to 
generalize, we focused our attention on part 3 of the task, which is the transition point 
between the specific and the general. In fact, 12 students used Strategy #17, in 
addition to other strategies, for this part of the task: they tried to get a formula that 
they could use to find the number of white and black tiles in the 10th pattern. Of those 
12, four students were unsuccessful in forming a generalization; one used purely 
numerical strategies, while the other three used visual or combined visual/numerical 
strategies. The other eight students were successful in generalizing; of those, three 
used purely numerical strategies to lead them to a generalization, while the other five 
used visual or visual/numerical. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2: Katrina’s Solution Path       
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Figure 3: Rani’s Solution Path 

Inability to Generalize (S3). Table 3 below shows the results on generalization of 
the 22 students. Two of the 13 classified as unable to generalize had no success on 
any part of the problem, while the rest were able to do the first three parts of the task. 

Category Number 
Able to generalize all parts 5 
Able to generalize partially 4 
Unable to generalize 13 

Table 3: Summary of Results on Generalization 

Of the remaining 11 who were unable to generalize, all but one started with a visual 
strategy but transitioned to a numerical one. At that point, they generally did not 
return to the visual cues at all, even when they got stuck using their numerical 
strategies. The most common numerical strategy was to extend the table. One student 
confused the roles of the independent and dependent variables, and another left out 
the independent variable. The four students who were able to generalize partially did 
parts 4 and 5 correctly but completed part 6 by indicating in words or symbols (e.g., 
B+W) to add the number of black and white tiles; that is, they did not find an explicit 
formula for the total number of tiles in terms of the pattern number as asked for in the 
task. 

DISCUSSION 
This study is consistent with findings from an earlier study we conducted with 
preservice elementary teachers (Rivera & Becker, 2003) as well as work done by 
Küchemann (1981) and Stacey & Macgregor (2000). Overall, students’ strategies 
appeared to be predominantly numerical. In this study we identify three types of 
generalization based on similarity (numerical, figural. and pragmatic) in accord with 
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findings by Gentner (1989) in which children were shown to exhibit different 
similarity strategies when making inductions involving everyday objects. Students 
who use numerical generalization employ trial and error as a similarity strategy with 
no sense of what the coefficients in the linear pattern represent. The variables are 
used merely as placeholders with no meaning except as a generator for linear 
sequences of numbers, with lack of representational fluency. Students who use 
figural generalization employ perceptual similarity strategies in which the focus is on 
relationships among numbers in the linear sequence. Variables are seen as not only 
placeholders but within the context of a functional relationship. Students who use 
pragmatic generalization employ both numerical and figural strategies and are 
representation-ally fluent; that is, they see sequences of numbers as consisting of both 
properties and relationships. We see that figural generalizers tend to be pragmatic 
eventually. Finally, students who fail to generalize (disjunctive generalizers) tend to 
start out with numerical strategies; however, they lack the flexibility to try other 
approaches and see possible connections between different forms of representation 
and generalization strategies. 
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