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This paper investigates prospective elementary and secondary school teachers’ 
understanding of proof in a case where the truth set of an open sentence is broader 
than the set covered by a valid proof by mathematical induction. This case breaks the 
boundaries of students’ usual experience with proving tasks. The most important 
finding is that a significant number of students from both groups who recognized 
correctly the validity of the purported proof thought that it was not possible for the 
truth set of the open sentence to include any number outside its domain of discourse 
covered by the proof. The discussion of student difficulties provides insights into the 
development of instructional practices in teacher preparation programs aiming to 
uncover these aspects of students’ knowledge fragility and address them accordingly.  

Proof is a defining feature of mathematics and, in current school reform 
recommendations in various countries, is considered a fundamental aspect of 
instructional programs in all grade levels. However, to have success in the goal to 
make proof central to all students’ mathematical experiences, prospective teachers 
need to have solid understanding of this mathematical concept. If teacher preparation 
programs are to develop effective instructional practices that will help prospective 
teachers cultivate proof in their classrooms, it is essential that these practices be 
informed by research that illuminates prospective teachers’ understanding of proof. 
Despite the importance of this kind of research, only few studies have investigated in-
service or preservice teachers’ knowledge of proof (Knuth, 2002; Martin & Harel, 
1989; Movshovitz-Hadar, 1993; Simon & Blume, 1996; Stylianides, Stylianides, & 
Philippou, 2004). Also, these studies have focused more on the logical components of 
different proof methods than on other important features of the proving process, such 
as the relationship among the domain of discourse D and truth set U of an open 
sentence, and a proof that purports to show that the sentence is true in D.  

This paper contributes to this research area, focusing on the proof method of 
mathematical induction. Specifically, we examine what might be some common 
difficulties that prospective teachers have in dealing with a proof by mathematical 
induction that is not as encompassing as it could be (D is a proper subset of U). Based 
on anecdotal evidence that students’ normal experience is of being given 
opportunities to engage in ‘universal’ proofs (D = U), this study aims to advance the 
field’s understanding of possible issues of knowledge fragility by exposing 
prospective teachers to a case that falls outside the boundaries of what appears to 
constitute ‘standard practice’ for them. 
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METHOD 
The data for this report are derived from a larger study that aimed to examine the 
understandings of proof held by the undergraduate seniors of the departments of 
Education and Mathematics at the University of Cyprus. The participants were 70 
education majors (EMs) and 25 mathematics majors (MMs). The EMs, prospective 
elementary teachers, constituted the 50% of the seniors of the Department of 
Education during the academic year 2000-01. All of them were taking one particular 
class to which they were allocated randomly. The MMs, prospective secondary 
school mathematics teachers, were all the seniors of the Department of Mathematics. 

Consider the following statement: 
For every natural number n ≥ 5 the following is true: 1 • 2 • ... • (n – 1) • n > 2n (*) 
Study carefully the following proof for the above statement and answer the 
questions. 
Proof: 
I check whether (*) is true for n = 5:   
1 • 2 • 3 • 4 • 5 = 120 > 25 = 32.                                           True. 

I assume that (*) is true for n = k:   1 • 2 • ... • (k – 1) • k > 2k      (**) 

I check whether (*) is true for n = k + 1: 

1 • 2 • ... • (k – 1) • k • (k + 1) > 2k
  • (k + 1)                         (using (**)) 

                                                > 2k  • 2                                  (since k + 1 > 2) 

                                                = 2k+1                                     True.     

Therefore (*) is true for every n ≥ 5.         

(A) Choose the best response for the above proof:  

1. The proof is invalid. 
2. The proof shows that the statement is always true. 
3. The proof shows that the statement is true in some cases. 
4. I have no opinion. 

(B) Use the space below to explain your thinking. 
………………………………………………………………………………………………………
……………………………………………………………………………………………………… 
(C) State what happens in the special cases where: 
n = 3                      A. The inequality is true.              B. The inequality is not true.   
n = 4                      A. The inequality is true.              B. The inequality is not true. 
n = 6                      A. The inequality is true.              B. The inequality is not true. 
n = 10                    A. The inequality is true.              B. The inequality is not true. 

Figure 1: The test item. 
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The program of study at the Department of Education includes several mathematics 
courses that emphasize logical thinking. These courses provide EMs with a fair 
amount of mathematical knowledge about different types of proof including proof by 
mathematical induction. The preparation of the MMs focuses primarily on 
mathematical content and abstract thinking. 

All 95 participants responded to a specially designed test that included items on 
different methods of proof: empirical/inductive proof, proof by counterexample, 
proof by contradiction, proof by contraposition, proof by the use of computer, and 
proof by mathematical induction. The data from the test were supplemented by semi-
structured interviews with a purposeful sample (Patton, 1990) of 11 subjects (eight 
EMs and three MMs). The interviews were used to investigate further students’ 
thinking and illuminate patterns that arose from the analysis of the tests. 

In this paper we focus only on the test item that appears in Figure 1. This item 
included a statement and a proposed proof for that statement, and was asking the 
participants to evaluate the validity of the proof and explain their thinking. The 
subjects were additionally asked to state whether the sentence (inequality marked 
with *) in the statement to be proved is true or false in four particular cases: n = 3, 4, 
6, and 10. The purported proof is valid; the best response to Part A is choice ‘2.’ The 
truth set U of the inequality is {nn ∈ N, n�4}), but the domain of discourse is taken 
as D = {nn ∈ N, n�5} that does not include n=4. This set up of the test item created 
a rich context within which we were able to advance our primary goals.  

RESULTS 
Table 1 summarizes the student responses to Part A of the item. The values represent 
percentages (rounded to the nearest integer) within major. The vast majority of MMs 
(92%) said that the proof showed that the statement is always true, while the rest 
(8%) noted that the proof is invalid. Unfortunately, the students who selected the 
latter option did not explain their thinking; therefore, we cannot examine further their 
reasoning. Regarding the responses of the EMs to the same question, approximately 
half of them (54%) said that the proof showed that the statement is always true, 
almost one out of three (29%) noted that the proof showed that the statement is true 
in some cases, 13% considered the proof as invalid, and 4% expressed no opinion. 

Of particular interest is the way in which the students justified their responses. Some 
EMs who supported the validity of the proof faced difficulties in formulating a 
mathematically accurate explanation. The responses of the students EM24 and EM50 
illustrate these difficulties and in addition raise the issue of whether the students’ 
belief about the validity of the proof was well grounded on reason or not. 

EM24:  The proof shows that the statement is always true. Most of the possible cases 
have been checked and, therefore, we can conclude that the statement is true in 
general. 
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EM50:  The statement holds. However, the way mathematical induction is applied is not 
the best possible, because it has not proved that the statement is also true for n=6 
(since 6 is greater than 5) before proceeding with n=k. 

On the other hand, the majority of MMs could justify their choice, even though their 
arguments were mostly limited to saying that the proposed proof followed correctly 
the steps of the induction method. The argument of the student MM10 is indicative. 

Response Option Education Mathematic
s 

The proof is invalid 

The proof shows that the statement is always true 

The proof shows that the statement is true in some cases 
I have no opinion 

13 
54 

29 
4 

8 
92 

0 
0 

Total 100 100 

Table 1: Percentages for each response option in Part A of the test item by major. 
MM10:  You used the method of mathematical induction. You checked all the steps of 

the method and you concluded that they are applied correctly. Therefore, we can 
conclude that the statement always holds. By saying ‘always’ we mean ‘always’ 
as it is indicated in the context of the statement, that is, for n�5. 

The last comment of MM10 about the interpretation of the word ‘always’ with 
respect to the domain of discourse of the statement in the test item lies at the heart of 
the concept we wanted to investigate and marks a point that caused considerable 
trouble to students. Specifically, the data suggest that many EMs considered that the 
proposed proof showed the statement to be true in some cases, because they thought 
that when we say that a statement is ‘always’ true we mean that (a) the sentence in 
the statement is true for all natural numbers (the most commonly met case in high 
school and even college mathematics), or (b) the sentence is true for all natural 
numbers that belong to its truth set (in this particular case, {nn ∈ N, n�4}). 

EM51:  The proof shows that the statement is true in some cases, because if we check 
some other numbers, e.g., 3, the statement is false. 

EM9:  The proof shows that the statement is true in some cases. The statement is 
always true for n�5. I don’t know whether it is true for n<5. 

The same thinking that led some students to conclude that the proposed proof showed 
that the statement is true in some cases, led others to consider the proof as invalid.  

EM20:  The proof is invalid. The testing of cases should begin from the first natural 
numbers: 1, 2, 3, 4. The statement is also true for n=4. 

EM49:  The proof is invalid because the statement is true for n�4. 

EM52:  The proof is invalid because the statement is false for n=4. 

The student EM20 seems to believe that the validity of a proof by mathematical 
induction depends on whether or not the proof establishes the truth of the 
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mathematical relationship under consideration on the entire set of natural numbers 
rather than on the specific set to which the relationship refers. The students EM49 
and EM52 rejected the validity of the proposed proof based on opposite reasons. 
EM49 rejected the proof because he found a value for n (=4) outside the domain of 
discourse for which the inequality was satisfied. He seemed to believe that the proof 
was invalid because it was not as encompassing as it could be, that is, it did not cover 
the largest subset of natural numbers for which the inequality was true. EM52 failed 
to see that the inequality was satisfied for n=4 and considered that this violated the 
assertion ‘the proof shows that the statement is always true.’ He therefore appears to 
think that a valid proof would show the truth of the inequality over a broader set than 
its domain of discourse, possibly the set of all natural numbers. 

 n = 3 n = 4 n = 6 n = 10 
Education 83 56 87 91 
Mathematics 96 64 100 96 

Table 2: Percentages of correct responses to Part C of the test item by major. 

Part C of the test item helps investigate further students’ understanding of the relation 
between the domain of discourse of the statement to be proved and the truth set of the 
inequality. Table 2 summarizes the percentages of correct responses to each of the 
special cases in the test item by student major (the values are rounded to the nearest 
integer). The highlight of the table is the failure of many students from both majors to 
realize that the inequality is true for n=4; the percentages of success were 56% and 
64% for EMs and MMs, respectively. Given the simplicity of the calculations 
required to check the inequality for n=4, it is plausible to assume that the students 
reached this conclusion based on an erroneous reasoning. This reasoning was most 
probably associated with the fact that number 4 was not included in the domain of 
discourse of the statement. The difference in the percentages of success between the 
first two special cases, n=3 and n=4, may be attributed to the fact that the latter 
belongs to the truth set of the inequality whereas the former does not. A student who 
believed that the inequality could not hold for values outside the domain of discourse 
of the proved statement would accidentally get the first right and the second wrong. 
The higher percentages of success for the other special cases, n=6 and n=10, were 
expected given that many students accepted the validity of the proposed proof and 
these cases belonged to the domain of discourse of the proved statement. Also, the 
calculations were not difficult for the students who chose to carry them out. 

Table 3 presents a detailed analysis of the results obtained from parts A and C of the 
test item. In particular, the table provides five response types, each of which 
corresponds to a different combination of student responses to the two parts.  

A significant number of students from both majors, 38 EMs and 23 MMs, recognized 
the validity of the purported proof, thus responding correctly to Part A of the test 
item. From these students, only 15 EMs and 13 MMs responded correctly to all four 
special cases of Part C (Response Type 0). From the same group of students, three 
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EMs and one MM said that the inequality is true for all special cases (Response Type 
1). This response suggests that the students believed that the proof showed the truth 
of the inequality for values outside its domain of discourse (possibly all natural 
numbers). Almost all other students who responded correctly to Part A of the test 
item (18 EMs and eight MMs) said that the inequality is false for n=3 and n=4, and 
true for the other two special cases (Response Type 2). This response type is most 
likely associated with the misconception that the truth set of the inequality cannot 
include natural numbers outside its domain of discourse in the proved statement.  

Description of Response Types and Frequencies by Major Response 
Type Part A of the test itema Part C of the test itemb 

0 The proof shows that the statement 
is always true. (38, 23) 

The inequality is false for n = 3, and 
true for n = 4, 6, and 10. (15, 13) 

1 The proof shows that the statement 
is always true. (38, 23) 

The inequality is true for all special 
cases. (3, 1) 

2 The proof shows that the statement 
is always true. (38, 23) 

The inequality is false for n = 3 and 4, 
and true for n = 6 and 10. (18, 8) 

3 The proof is invalid. (9, 2) The inequality is false for all special 
cases. (2, 0) 

4 The proof shows that the statement 
is true in some cases. (20, 0) 

The inequality is false for n=3, and 
true for n = 4, 6, and 10. (8, 0) 

Table 3: Frequencies of selected student responses to parts A and C of the test item. 
a The first number in each parenthesis in this column represents the number of EMs who responded 
the specified way in Part A, and the second represents the corresponding number of MMs. 
b The numbers in each parenthesis in this column represent the numbers of students who responded 
the specified way in parts A and C of the item that appear in the same row of the table. The first 
represents the number of EMs and the second the number of MMs. 

The remaining two response types are associated only with EMs. Specifically, from 
the nine EMs who considered the purported proof as invalid, two said that the 
inequality is false for all four special cases (Response Type 3). These students most 
likely believed that, because the proof ‘failed’ to prove the statement, the truth set of 
the inequality is the empty set. Finally, from the 20 EMs who said that the purported 
proof shows that the statement is true in some cases, eight said that the inequality is 
false for n=3 and true for the other three special cases (Response Type 4). These 
students most likely thought that the domain of discourse of the inequality in the 
statement to be proved should be the same with its truth set. 

Some of the interviews shed further light on students’ thinking regarding the 
investigation of the special cases. For example, student EM38, whose response in the 
test belonged to Response Type 0, had difficulty understanding the ‘mismatch’ 
between the domain of discourse of the statement to be proved in the test item and the 
truth set of the inequality. However, after some probing from the interviewers (the 
first two authors), EM38 appeared to have grasped the relation between these two 
sets in the context of the given proof (‘I’ denotes the interviewers). 
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I:  Do you find problematic the fact that the statement says that the inequality holds 
for all n�5, but you said here [pointing to his test] that the inequality also holds 
for n=4? 

EM38:  Oh… Perhaps we have indeed… Seeing what happens for n=4 together with the 
fact that I considered the statement to be true, I believe that there is a problem 
here. Perhaps the source of the problem is that the proof doesn’t specify the value 
of k. I assumed that k is greater than or equal to 5 and this might be the reason I 
said the statement is always true. 

I:  Now that you have the opportunity to think about this problem again, which of 
the multiple-choice options [referring to Part A of the test item] would you 
choose? 

EM38:  I wouldn’t choose this option [he refers to choice ‘1’ of Part A] because the 
statement holds for n�5. The issue here is whether the statement also holds for 
some values smaller than 5. 

I:  Do you mean to say that proving the inequality for n�5 excludes the possibility 
of the inequality to also hold for smaller values of n? 

EM38:  Oh… yes. The statement doesn’t say ‘only for n�5’! Therefore, it leaves open the 
possibility for other values. Consequently the statement is true. 

The student EM38 constantly refers to the correctness or not of the statement rather 
than to the validity of the purported proof as asked in Part A of the test item. The 
student seems to believe that there is a strong link between the truth of the statement 
and the validity of the proof, namely, that the two go together.  

DISCUSSION 
In this study, we examined prospective teachers’ understanding of proof in a case 
where the truth set of the open sentence in the statement that was to be proved by 
mathematical induction was broader than the set covered by a valid proof. The 
analysis of student responses in the test item suggests that a significant number of 
students of both majors who recognized the validity of the purported proof thought 
that it was not possible for the truth set U of the inequality to include any number 
outside its domain of discourse D. These students incorrectly considered the 
inequality to be false for n=4, and said that the inequality was true only for the two 
values that belonged to D (n=6 and n=10). The response of a considerable number of 
EMs that the purported proof shows that the statement is true in some cases seemed 
to have been influenced by the belief that the domain of discourse of the sentence in 
the statement to be proved should always coincide with its truth set. These students’ 
observation that the inequality was true for n=4 (i.e., 4∈U), coupled with their 
knowledge of the fact that 4∉D, seemed to have interfered with their ability to 
evaluate appropriately the validity of the purported proof. 

The results of our analysis highlight difficulties that prospective teachers seem to 
have in dealing with a proof that is not as encompassing as it could be, thereby 
uncovering possible aspects of knowledge fragility. The investigation of what might 
have caused this fragile knowledge requires further research. One possibility is that 
knowledge fragility has its roots in didactic contracts that possibly prevail in high 
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school and even college mathematics and that promote inappropriately the conception 
that proofs are always as encompassing as possible.  

A related important direction for future research concerns how mathematics teacher 
educators can organize instruction so that prospective teachers’ difficulties in proof 
surface and become the objects of reflection. Movshovitz-Hadar (1993) suggests one 
possible way to help prospective teachers reconsider their knowledge, see its 
problematic aspects, and realize the need for developing a deeper understanding: 

[A]ctivities designed for student teachers should be aimed at accelerating the process of 
crystallization of their knowledge of particular mathematics notions, such as 
mathematical induction, by putting them in problem-solving situations which will make 
them confront their present knowledge and examine it carefully through social interaction 
with their peers. This process is supposed to reduce the fragility of knowledge. (p. 266) 

The test item used in this study has the potential to support the development of 
learning opportunities that can facilitate the crystallization of prospective teachers’ 
knowledge, as it sets up a situation that breaks the boundaries of what seems to 
constitute students’ normal experience. For example, mathematics teacher educators 
can use this test item to engage prospective teachers in thinking about whether it is 
necessary for a valid proof to cover the truth set of an open sentence in its entirety. 
To manage successfully discussions around issues of this kind, mathematics teacher 
educators need to be able to anticipate prospective teachers’ common conceptual 
difficulties. A research-based knowledge about these difficulties can support the 
design of instructional practices aiming to help prospective teachers improve their 
understanding of proof. Prospective teachers’ written and oral responses discussed in 
this paper can contribute toward this direction.  
Author Note 
This paper is based on the senior thesis of the first two authors conducted at the University 
of Cyprus, under the supervision of the third author; the order of authorship of the first two 
authors is alphabetical. 
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