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Traditional argument theories focus on how the structure of statements determines 
their contribution to an argument. Such theories are useful in analysing arguments as 
products, or for analysing the sub-arguments that are generated during an 
argumentation. This paper outlines a method for analysing an argumentation as a 
process, focusing on the social interactions between pairs of Year 8 students and the 
teacher-researcher in the context of geometric reasoning.  

CONJECTURING, JUSTIFYING AND ARGUMENTATION 
Over recent decades concern has been expressed that school mathematics focuses on 
product rather than process, with the result that many students are unable to justify or 
explain their reasoning. In 1991, for example, the Australian Education Council 
asserted that 

the systematic and formal way in which mathematics is often presented conveys an 
image of mathematics which is at odds with the way it actually develops. Mathematical 
discoveries, conjectures, generalisations, counter-examples, refutations and proofs are all 
part of what it means to do mathematics. School mathematics should show the intuitive 
and creative nature of the process, and also the false starts and blind alleys, the erroneous 
conceptions and errors of reasoning which tend to be a part of mathematics. (p. 14) 

Mathematics curriculum statements in many countries (see, for example, National 
Council of Teachers of Mathematics, 2000) are now emphasising the need for 
students to engage in conjecturing and to justify their reasoning.  

Argument and argumentation 
An argument may be defined as a sequence of mathematical statements that aims to 
convince, whereas argumentation may be regarded as a process in which a logically 
connected mathematical discourse is developed. Krummheuer (1995) views an 
argument as either a specific sub-structure within a complex argumentation or the 
outcome of an argumentation: “The final sequence of statements accepted by all 
participants, which are more or less completely reconstructable by the participants or 
by an observer as well, will be called an argument” (p. 247). We can therefore 
distinguish between argumentation as a process and argument as a product. 
Krummheuer notes that argumentation traditionally relates to an individual 
convincing a group of listeners but may also be an internal process carried out by an 
individual. He uses the term ‘collective argumentation’ to describe an argumentation 
accomplished by a group of individuals. 
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Some researchers, for example, Boero, Garuti, Lemut, and Mariotti (1996), assert that 
it is only by engaging in conjecturing and argumentation that students develop an 
understanding of mathematical proof. Boero et al. use the term ‘cognitive unity’ to 
signify the continuity that they assert must exist between the production of a 
conjecture during argumentation and the successful construction of its proof: 

During the production of the conjecture, the student progressively works out his/her 
statement through an intensive argumentative activity functionally intermingled with the 
justification of the plausibility of his/her choices. During the subsequent statement-
proving stage, the student links up with this process in a coherent way, organising some 
of the justifications (‘arguments’) produced during the construction of the statement 
according to a logical chain. (p. 113) 

Boero et al. claim that the reasoning which takes place during the argumentation 
plays a crucial role in the subsequent proof construction—“it allows students to 
consciously explore different alternatives, to progressively specify the statement [of 
the conjecture] and to justify the plausibility of the produced conjecture” (p. 118). 

Critics of this conjecturing/argumentation approach to proof assert, however, that the 
natural language of students’ argumentation is in conflict with the logic associated 
with deductive reasoning. Balacheff (1991), for example, regards argumentation in 
the mathematics classroom as an invitation to convince, by whatever means the 
students choose. He asserts that argumentation implies the freedom to convince by 
whatever means one chooses and hence that there is a contradiction between the 
natural language of students’ argumentation and the logic associated with deductive 
reasoning: 

The aim of argumentation is to obtain the agreement of the partner in the interaction, but 
not in the first place to establish the truth of some statement. As a social behavior it is an 
open process, in other words it allows the use of any kind of means; whereas, for 
mathematical proofs, we have to fit the requirement for the use of some knowledge taken 
from a common body of knowledge on which people (mathematicians) agree.  
(p. 188−189) 

More recently, Balacheff (1999) again makes the strong assertion that argumentation 
is an obstacle to the teaching of proof because of this inherent conflict between 
mathematical proof [démonstration], which must “exist relative to an explicit axiom 
system”, and argumentation, which implies freedom to choose how to convince:  

The sources of argumentative competence are in natural language and in practices whose 
rules are frequently of a profoundly different nature from those required by mathematics, 
and carry a profound mark of the speakers and circumstances. (p. 3) 

Responding to Balacheff’s views on argumentation and proof, Boero (1999) focuses 
on the distinction between ‘proving’ as a process, that is, argumentation, and ‘proof’ 
as a product. He notes that from this perspective that the nature of arguments used by 
students depends on the establishment of a culture of theorems in the classroom, on 
the nature of the task, and the specific kinds of reasoning emphasised by the teacher. 
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Boero regards Balacheff’s (1999) reference to “the freedom one could give oneself as 
a person in the play of an argument” as inappropriate, as strong teacher intervention 
should ensure that students’ arguments are based on sound mathematical logic. 
Hanna (1995) also emphasises that teacher intervention must be a part of any learning 
methods which encourage students to interact with each other. She asserts, though, 
that where classroom practice is informed by constructivist theories, evidence 
indicates that in many cases teachers are not intervening:  

… teachers tend not to present mathematical arguments or take a substantive part in their 
discussion. They tend to provide only limited support to students, leaving them in large 
measure to make sense of arguments by themselves. (p. 44) 

ANALYSING THE STRUCTURE OF ARGUMENTS  
Argument theories such as those of Toulmin (1958) provide a theoretical framework 
for analysing the structure of written arguments, particularly deductive arguments, as 
well as the structure of the reasoning that occurs during a process of argumentation. 
Toulmin asserts that the foundation for the argument (data) and the conclusion based 
on this data must be bridged by a warrant that legitimises the inference. Toulmin 
describes warrants as “inference-licences”, whose purpose is to show that “taking 
these data as a starting point, the step to the original claim or conclusion is an 
appropriate and legitimate one” (p. 98). Toulmin notes that his model for an 
argument layout is focusing on a micro-argument: “when one gets down to the level 
of individual sentences” (p. 94). Micro-arguments form part of the larger context of a 
macro-argument. Krummheuer (1995), for example, applies Toulmin’s model to an 
argument where the conclusions from two subordinate arguments form the data for 
the main argument. 

PROVIDING A CONTEXT FOR ARGUMENTATION 
As part of a research study of the role of argumentation in supporting students’ 
deductive reasoning in geometry (see Vincent (2005); Vincent, Chick & McCrae, 
2002), 29 above-average Year 8 students at a private girls’ school in Melbourne, 
Australia were presented with a range of conjecturing/proving tasks. Some of these 
tasks were pencil-and-paper proofs, some were computer-based (using Cabri 
Geometry II TM), and others involved the investigation of the geometry of appropriate 
mechanical linkages. For the linkage tasks, the students worked with physical models 
of the linkages as well as with teacher-prepared Cabri models. During the video-
recorded lessons, the students worked in pairs to formulate conjectures and to 
develop geometric proofs. In the context of this research, argumentation was viewed 
as a social process and the extent to which each participant benefited from engaging 
in an argumentation was influenced by the level of peer interaction. 

Deductive reasoning was a new experience for these students, and teacher 
intervention was of paramount importance in the argumentations. Some interventions 
were merely to clarify the content of the students’ statements, answer non-geometric 
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queries, or assist with software related difficulties. Other interventions, however, 
assisted the students in some way—re-directing the students’ thinking if they had 
reached an impasse (designated guidance), for example, “What other things do you 
know about parallelograms?”; correcting false statements (correction), and ensuring 
that the students’ arguments were based on sound mathematical logic. Boero (1999) 
notes that “the development of Toulmin-type … argumentations calls for very strong 
teacher mediation” (p. 1). Interventions which I termed warrant-prompts were 
intended to provoke deductive reasoning by asking the students to justify their 
statements. An example of a warrant-prompt is: “Why do you say that?” in response 
to a students’ claim: “Those two angles are equal”.  

In general, four different phases of activity could be identified in the argumentations. 
An initial observation phase generally commenced with task orientation, where the 
students familiarised themselves with the task by referring, for example, to the given 
data or noting how the mechanical linkage moved. Following this observation phase, 
or sometimes associated with it, was a data gathering that led into conjecturing and 
proving phases. The phases were not always distinct, and observations and data 
gathering often continued throughout the conjecturing phase, and statements of 
deductive reasoning occasionally occurred in the task orientation phase.  

ARGUMENTATION PROFILE CHARTS 
Toulmin’s model was used to analyse the structure of the students’ arguments. In 
order to provide a visual display of the features of each argumentation, however, I 
devised an argumentation profile chart (for example, see Figure 1). The charts were 
constructed as X-Y scatter graphs, with speaking turns on the x-axis. Each 
characteristic to be displayed—the two students and the teacher-researcher, the 
phases of the argumentation associated with each statement (task orientation, data 
gathering, conjecturing, proving), and the medium in which the students were 
working (computer environment, pencil-and-paper, or a physical model of a 
linkage)—was given a unique y-value.  

Figure 1 depicts the argumentations of two pairs of students, Jane and Sara, and Anna 
and Kate, during their first conjecturing-proving task—an investigation of Pascal’s 
angle trisector (referred to as Pascal’s mathematical machine to avoid disclosing its 
geometric function). The students had access to a physical model of the linkage as 
well as to a Cabri model, where they were able make accurate measurements and 
drag the linkage to simulate its operation. Although Anna and Kate’s argumentation 
is more condensed, the structure is similar in each case, with both pairs of students 
engaging in a large number of observations and requiring substantial guidance. In 
both argumentations, initial tentative steps of deductive reasoning were supported by 
further data gathering and conjecturing. Jane and Sara, however, made many 
unproductive observations and incorrect statements, for example, “… so these two 
[two angles which formed a straight line] added together would have to equal 90 or 
something like that” (Sara, turn 58). Both pairs of students moved between the 
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physical model, the Cabri model, and their pencil-and-paper drawings. Anna and 
Kate, however, did not return to the physical model once they began exploring the 
Cabri model. 

Anna and Kate: Pascal's Angle Trisector
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Jane and Sara: Pascal's Angle Trisector
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Figure 2 shows the argumentation profiles for the students’ fourth conjecturing-
proving task—a Cabri-based task in which the students investigated the joining of the 
midpoints of the sides of a quadrilateral.  

Anna and Kate: Quadrilateral Midpoints
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Figure 2 
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Jane and Sara’s argumentation contrasts sharply with that of Anna and Kate, who 
immediately recognised the parallelogram formed when the midpoints were joined. 
Anna and Kate completed their proof without the need for teacher guidance, although 
it was Kate who dominated the deductive reasoning. Jane and Sara, however, focused 
on other features of the figure and failed to notice the parallelogram until their 
attention was drawn to it by intervention at turns 37 and 44. They were also 
handicapped in their conjecturing and arguing by frequent incorrect observations and 
their lack of confidence with quadrilateral properties and relationships: 

69 Sara:  I think it’s … um … because the midpoint always stays the same and if 
the angles of the triangle are always joined to the shape … 

70 TR: Which triangle? 

71 Sara: I mean of the square … sorry … of this … the parallelogram … this 
parallelogram is always … it’s centred … it’s in the very centre of the 
whole shape because of the lines … therefore it stays there.  

DISCUSSION 
A comparison of Anna and Kate’s argumentation profile charts for their first 
conjecturing-proving task (Pascal’s angle trisector) and for their fourth task 
(Quadrilateral midpoints) demonstrates the development of the deductive reasoning 
ability of these two students. Further evidence for this development was provided by 
an analysis of their argumentations and written proofs for other tasks which they 
completed. The ability of Anna and Kate to engage in argumentation was largely due 
to their facility with the language of geometry and their understanding of basic 
properties of triangles and quadrilaterals. It was, however, the process of 
argumentation which provided these two students with a sense of ownership of their 
proof. During the argumentation, deductive reasoning statements became ordered so 
that production of the written proof followed naturally, supporting the claims of 
cognitive unity by Boero et al. (1996).  

By contrast, Jane and Sara were hindered by a poor knowledge of geometric language 
and properties and substantial teacher intervention was required. However, the 
process of argumentation did create an environment in which Jane and Sara were able 
to develop some understanding of the nature of deductive reasoning and to gain a 
sense of satisfaction from their proof construction.  

CONCLUSION 
Argumentation profile charts facilitate comparisons of the extent of collaboration 
between students during the argumentation; the efficiency of the students’ data 
collection, conjecturing and deductive reasoning; and the level of intervention 
required by different pairs of students, or by the same pair of students in different 
tasks. By focusing on interactions and the overall structure of an argumentation, that 
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is, on conjecturing and proving as a process, the argumentation profile chart can 
provide valuable insight into how students approach problem-solving tasks.  
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