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This paper explores an element of mathematics for teaching (MfT), specifically 
‘interpreting and judging students’ mathematical productions’. The research 
reported draws from a wider study that includes an examination of MfT produced 
across teacher education sites in South Africa. We show that this element of MfT is 
privileged across sites, evidence that it is valued in teacher education practice. Its 
production varies, however, enabling elaboration of this element of MfT. 

INTRODUCTION 
A distinguishing feature of mathematics teacher education is its dual, yet deeply 
interwoven, objects: teaching (i.e. learning to teach mathematics) and mathematics 
(i.e. learning mathematics for teaching (MfT)) – the subject-method tension. These 
dual objects, and their inter-relation are writ large in in-service teacher education 
(INSET) programs where new and/or different ways of knowing and doing school 
mathematics combine with new and/or different contexts for teaching. Such are the 
conditions of continuing professional development in South Africa. Post apartheid 
South Africa has seen a proliferation of formal (i.e., linked to accreditation) and 
informal INSET programs. Debate continues as to whether and how these programs 
should integrate or separate out opportunities for teachers to (re)learn mathematics 
and teaching. Programs range across this spectrum, varying in degree to which 
opportunities for teachers to learn are embedded in problems of (mathematics 
teaching) practice, and so opportunities for learning more of their specialized 
knowledge, MfT.  

In the QUANTUM research project, we are currently studying mathematics and 
mathematics education courses in three mathematics teacher education sites where 
the programs differ in relation to their integration of mathematics and teaching. The 
goal is not to measure impact of these different approaches, but rather, through in-
depth investigation of practices within these courses, to understand what and how 
mathematics and teaching come to be (co)produced across and within these settings. 
We are thus examining practices inside teacher education. Specifically, and this is 
discussed further below, we are investigating how and what knowledge(s) are 
appealed to as elements of MfT come to be legitimated in pedagogic discourse. 
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Our focus in this paper is on one privileged MfT practice evident across all three 
sites: working with learners’ mathematical productions. Learners’ mathematical 
productions, and teachers’ engagement with these, have been a prevalent theme in 
mathematics education research and widely reported in PME. In this paper we 
assume the importance of teachers being able to do this work. The concern, rather, is 
with the mathematical entailments of this work and its elaboration in teacher 
education practice. Our examination of the practices across three sites reveals that 
while the notion of working with (interpreting, analyzing, judging) student 
mathematical thinking is common, it emerges and is approached in quite different 
ways, illuminating this element of MfT in interesting ways. Our observations are a 
function of a particular analytic tool, and its underlying theoretical orientation both of 
which are elaborated below. We begin with a brief discussion of QUANTUM – the 
wider research project.  

THE  QUANTUM PROJECT 
The overarching ‘problem’ under scrutiny in QUANTUM1 is mathematics for 
teaching (MfT), its principled description and related opportunities for teachers’ 
learning. We regard the mathematical work of teaching as a particular kind of 
mathematical problem-solving2 - a situated knowledge, shaping and being shaped by 
the practice of teaching. More specifically we are concerned with the mathematics 
middle and senior school teachers need to know and know how to use (i.e. the 
mathematical work they do) in order to teach mathematics well in diverse classroom 
contexts in South Africa; and with how, and in what ways, programs that prepare 
and/or support mathematics teachers provide opportunities for learning MfT. 
Elsewhere (Adler, Davis & Kazima, 2005), we have problematised the renewed focus 
on subject knowledge for teaching in mathematics education, its development from 
Shulman’s seminal work on pedagogic content knowledge, how it remains 
underdescribed, and how mathematics teacher education practice, as well as school 
teaching practice, is a productive empirical site in the project.  

In our earlier work (Adler & Davis, 2004) we exemplified a pedagogic practice 
where learners are expected to engage with novel mathematics problems, and showed 
that meanings can and do proliferate. The teacher has considerable mathematical 
work to do as s/he navigates between varying learner responses, and what would 
constitute a robust mathematical solution. S/he needs to figure out how to mediate 
between these interpretations, and the mathematical notion(s) and dispositions she 
would like all learners in the class to consolidate.  S/he needs to figure out suitable 
questions to ask learners, or comments to make. Both have mathematical entailments.   

Ball, Bass and Hill (2004, p.59) describe these mathematical practices as elements of 
the specialised mathematical problems teachers solve as they teach. These elements 

                                                      
1 For more detail on QUANTUM see Adler & Davis (2004) 
2 We thank Deborah Ball for this description – personal communication, Adler and Ball. 
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include the ability to “design mathematically accurate explanations that are 
comprehensible and useful for students” and “interpret and make mathematical and 
pedagogical judgements about students’ questions, solutions, problems, and insights 
(both predictable and unusual)”. They posit a more general feature, “unpacking”, as 
an essential and distinctive feature of “knowing mathematics for teaching”.3 We have 
already noted the extensive work in the field of mathematics education on learners’ 
constructions of mathematical ideas and related work on misconceptions (e.g. Smith,  
DiSessa, & Roschell, 1993). There has been far less attention, in our view, to the 
kinds of mathematical and pedagogical judgements teachers make as they go about 
their work on student productions4, hence our methodology and focus.  

Our overarching theoretical orientation is elaborated in Davis, Adler, Long & Parker 
(2003) and Adler & Davis (2004). Briefly, the tool emerges from our use of Basil 
Bernstein’s sociological theory of pedagogy. We recruit Bernstein’s (1996) 
proposition that the whole of the pedagogic device (distribution of knowledge; rules 
for the transformation of knowledge into pedagogic communication) is condensed in 
evaluation.  In other words, any pedagogy transmits evaluation rules. Additionally, 
evaluation is activated by the operation of pedagogic judgement by both teacher and 
student. 

In QUANTUM we are looking at evaluative events across teacher education 
programs, on the assumption that these would reveal the kind of mathematical and 
teaching knowledge that comes to be privileged. Figure 1 presents a network of part 
of the tool5 we are using, and includes the codings we refer to in the next section. We 
have highlight categories of the network pertinent to our focus in this paper. The 
network reflects our dual and simultaneous focus on mathematics and teaching as 
specialised activities, and how they emerge as objects of study over time in each of 
the courses.  Each course, all its contact sessions and related materials, were 
analysed, and chunked into what we have called evaluative events. These are marked 
by punctuations in pedagogic discourse, when meanings are set through pedagogic 
judgement. Space limitations prevent description of the full network, and the 
systematic chunking done. 

                                                      
3 In Adler & Davis (2004) we report QUANTUM: Phase 1. We focused on formal assessment tasks 
across math and math education courses in 11 institutions in South Africa. A key ‘finding’ is that 
across courses, formal assessments of unpacked mathematics in relation to teaching were very 
limited. 
4 A very recent study by Karin Brodie (Brodie 2005) has explored teacher moves as they engage 
learner thinking. Her analysis provides an important description of this work of mathematics 
teaching.  
5 Missing here is an additional set of columns on subject positions. These are significant in their 
relation to particular notions and how they unfold over time, and are the focus of a different paper. 
See Adler, Davis, Kazima, Parker & Webb, forthcoming. 
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ACTIVITY
(e.g., Mathematics; Teaching)

Evaluative Event
(aimed at the production of a knowledge object)

Existence Reflection NecessityMovement of
pedagogic
judgement

Legitimating
appeals

Mathematics Mathematics
Education

Everyday
experience /
knowledge

CurriculumAuthority

 

Figure 1: Network describing the movement of pedagogic judgement 

Suffice it to say that for each event, we coded first whether the object was a 
mathematical (M) and/or teaching (T) one, or both, and then whether elements of the 
object(s) were assumed known, rather than being focus of study (and were then coded 
either m or t). The additional branches in the network emerge through a 
recontextualisation of Hegel’s theory of judgement (1969). We recruit from Hegel the 
proposition that judgement in general, and hence pedagogic judgement in particular, 
is itself constituted by a series of dialectically entailed judgements (of Existence, 
Reflection, Necessity, and the Notion). Here we are working with the idea that in 
pedagogic practice, in order for something to be learned, to become known, it has to 
be represented. Initial orientation to the object, then, is one of immediacy – it exists 
in some initial (re)presented form, and can only be grasped as brute Existence. 
Pedagogic interaction (Reflection) then produces a field of possibilities for the object, 
and through related judgements made on what is and is not the object (Legitimating 
Appeals), so possibilities are generated (or not) for learners to grasp the object 
(Necessity).6  In other words, the legitimating appeals can be thought of as qualifying 
reflection. An examination of what is appealed to and how appeals are made in the 
teaching of mathematics delivers up insights into how MfT is being constituted in 
teacher education.   

WORK ON LEARNER MATHS ACROSS THREE COURSES 
Table 1, p.8 provides summary information about the course on each site. The last 
three rows provide a description of the analysis of our data set, particularly in relation 
to where and how legitimating appeals are made. Each course is for in-service 
teachers, and part of a larger program towards a qualification. Two courses are aimed 
at Senior Secondary teachers, one at junior secondary; two are level 6 

                                                      
6 All judgement, hence all evaluation, necessarily appeals to some or other locus of legitimation to 
ground itself, even if only implicitly.   
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(undergraduate) and 1 level 7 (post graduate) courses. They share similar goals (to 
provide learning experiences that will enable and improve mathematics teaching), 
with the Level 7 course having an additional academically oriented goal.  

The Algebra concepts and methods course (Site 1) is concerned with algebraic 
thinking at the Grades 7 – 9 level. The underlying assumption in this course, guided 
by the teachers being primary trained, is that the teachers were unlikely to be adept in 
algebraic thinking, though they would, like their learners have learned algebraic rules 
as recipes. They thus needed to learn this way of thinking mathematically. They also 
needed to learn how to teach this in Grade 7 – 9 classes. These dual goals were 
integrated in a pedagogic practice that provides experiences for teaching/learning 
algebra that model the pedagogic practice teachers could/should use in their own 
classrooms. Teachers could then learn the mathematics needed and at the same time 
experience how it should be taught. In each of the course sessions dealing with 
patterns, teachers were given three or four possible formulae that could be generated 
from a given sequence as if these were produced by learners. Teachers were asked to 
visualize and explain how each different learner was thinking. In sessions dealing 
with algebraic rules and operations, teachers were informed of typical learner errors 
(explained as a result of learning ‘recipes’), and provided a way of dealing with these 
errors. For example, in order to clarify and prevent wrong application of laws of 
indices, learners could be shown how and why the rule worked (i.e. test it) through 
substitution of appropriately selected (small) numbers. As indicated in Table 1, 
legitimating appeals are made to mathematics and everyday life. It is interesting, 
firstly, that there are moments were everyday experience is appealed to for 
legitimating mathematical knowledge (specifically algebraic thinking); and secondly 
when the appeal is mathematical, it is restricted to numerical examples appropriate to 
learners at Grades 7 – 9.   

In Site 2, The Professional Practice in Mathematics Education course provides a 
structured guide to an action research project teachers are to do. One element of the 
structured guide is what is referred to as a hypothetical learning trajectory (HLT) – a 
global teaching practice that includes ways of eliciting student knowledge, generating 
possible student responses, and analysing student work. As preparation for the 
weekend session where this aspect of their research was in focus, teachers were 
meant to bring examples from their own practice where they had elicited student 
thinking and analysed it. The course materials carried reading on misperceptions. 
Few teachers brought their preparation7. With only some having these available for 
reflection in the session, the lecturer produced an example of an HLT based on 
decimal fractions so that all teachers had some object to reflect on. In other words, 
she provided a model or demonstration of an HLT and related learner productions. 
Hence the coding of the legitimating appeals in relevant events in this course being 
described in Table 1 as either teachers’ own experience, or a demonstration/assertion 
                                                      
7 In all three courses, there were sessions were lecturers commented on the importance of the 
teachers doing the preparation work required.  



Adler, Davis, Kazima, Parker & Webb 

 

2-6 PME29 — 2005 

by the lecturer (authority). The interesting issue here is that the practice that emerges 
is a function of both the assumptions in the course, and how the teachers respond to 
demands on them8.  

In the course in Site 3 on Mathematical Reasoning, there were 9 events, over three 
sessions, with one session entirely on misconceptions. Teachers’ experience is the 
initial resource called in in the introductory session – they were given a task (A 
learner says that x2 + 1 cannot be zero if x is a real number. Is s/he correct?) and 
asked to reflect on the kinds of misconceptions their learners were likely to make as 
they did the task. They were also required to read Smith et al’s paper on 
misconceptions.  These together begin to generate a wide field of possible meanings. 
As the session progresses, the notion of misconceptions is evaluated by appeals to 
research in mathematics education (classification of misconception types, empirical 
and theoretical arguments), mathematics itself (complex numbers, justification as 
testing single cases, justification as generalized argument), curriculum levels (at 
which complex numbers can be engaged), and records of teaching (a videotape of 
another teacher working with the same task). It is important to remember that this 
course is a graduate course. Teachers are thus expected to engage teaching and 
mathematics (indeed are apprenticed into) discursively. It is nevertheless interesting 
that it is in this course too where advanced mathematical work is drawn on in the 
production of MfT in relation to school learners’ work.  

DISCUSSION 
As a study set up to explore the (co)production of mathematics and teaching, we 
expected legitimating appeals to shift between these two domains. We were 
surprised, however, at the spread of appeal domains both in relation to mathematics, 
and to teaching. Across the three courses, appeals included mathematics as would be 
expected. We were interested to see how this was constrained in pedagogical practice 
when teaching was being modelled. Mathematics here was then restricted to the 
levels at which learners would be learning. And there were expected appeals to 
mathematics education as a disciplinary field, though in effect, in only one of the 
courses. Ideas about misconceptions in the other two remained at the level of 
examples provided in the course notes or by the lecturer, and recognized by teachers 
from their own experience. It is also of interest, that in relation to learners’ thinking, 
there was only one instance of an appeal to curriculum knowledge. This was in Site 3 
where learners’ responses to the task were considered relative to curriculum levels. 

As emphasized at the beginning of this paper, our concern here is neither to compare 
nor judge of the mathematical and teaching practices in these three courses. It is 
rather to understand how and why they work as they do. Space limitations prohibit 

                                                      
8 We note here that, as the course progresses, the lecturer is increasingly aware of the difficulties in the 
approach, and adaptations needed for the teachers to progress with their action research.  
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further discussion here. In the presentation of this work, we will reflect further on the 
questions that arise from our progress so far. 
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Table 1 Site 1 Site 2 Site 3 

Course topic Algebra concepts and 
methods 

Professional practice in 
mathematics education 

Teaching and learning 
mathematical reasoning 

Qualification  Level 6: ACE Advanced 
Certificate in Education 

Level 6: ACE  Level 7: Hons degree in 
Math Education 

Time and texts 7 X 2 hr contact 
sessions; Course booklet 

Distance learning: 
written materials;  bi-
weekly w/end sessions; 
10 weeks  

7 X 3 hr contact sessions; 
course reader 

# students 25 25 30 

Comments on 
teachers 

Experienced elementary 
teachers upgrading 
initial diploma to degree 
level, with qualifications 
to teach through Grade 9 

Experienced secondary 
teachers upgrading from 
initial 3 year diploma, to 
degree equivalent 
qualification.  

Experienced secondary 
teachers extending 4 year 
qualification to Honours– 
first level graduate study 

Integration of M 
and T 

Mathematics and teach 
integrated within a 
course. 

Math and math ed 
courses separated, with 
maths courses taught in 
the Maths Department 

M and T courses 
Separated, each with 
strong ‘eye’ on other. 
Most taught by maths ed 
staff. Geom taught by 
tertiary math lecturer 

Assumptions and 
relation to 
practice 

Algebra is focus of 
course. Algebra is taught 
to teachers as they would 
be expected to teach it to 
Grade 7 – 9 learners. 
Embedding in practice is 
thus through modelling 
the practice. 

Improving knowledge 
and practice through 
systematic reflection on 
own teaching 
experience. Embedding 
in practice is 
hypothetical, assuming 
teachers can generate 
problems and related 
records of practice 

Mathematics teaching 
treated as a discursive 
practice, that can and 
should be studied. 
Embedding in practice is 
studying research in the 
field, and records of 
practice generated from 
outside of teachers 
themselves.  

Events, appeals 
and mathematical 
entailments 

10 events identified; 
appeals mainly to math, 
restricted, however, to 
the level of learners. 
MfT algebra restricted to 
testing rules with 
appropriate numerical 
examples, and so a level 
of mathematical work 
that remains at the level 
of the learners. 

 4 events where appeals 
are to teachers’ own 
experience at the start, 
and in the end to the 
lecturer modelling 
/demonstrating a 
particular instance 
(generated by the 
lecturer) of an HLT and 
related learner work. 

9 events where appeals 
are to Mathematics itself, 
including advanced 
mathematics (complex 
numbers) and 
justifications; to 
curriculum (what learners 
are expected to know at 
what levels); to research 
in mathematics 
education; as well as 
initially to teachers own 
experience. 
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A COMPARISON BETWEEN TEACHERS’ AND PUPILS’ 
TENDENCY TO USE A REPRESENTATIVENESS HEURISTIC 

Thekla Afantiti Lamprianou, Julian Williams and Iasonas Lamprianou 

University of Manchester 

 
This study builds on a previous research on children’s probability conceptions and 
misconceptions due to the representativeness heuristic. Rasch measurement 
methodology was used to analyse fresh data collected when a 10-item instrument 
(described by Afantiti Lamprianou and Williams, 2002, 2003) was administered to a 
new sample of 754 pupils and 99 teachers. A hierarchy of responses at three levels is 
confirmed for the teachers’ sample, but a hierarchy of two levels is constructed for 
the pupils’ responses. Each level is characterised by the ability to overcome typical 
‘representativeness’ effects, namely ‘recency’, 'random-similarity', 'base-rate 
frequency' and ‘sample size’. Less experienced teachers had a better performance on 
the instrument. The educational implications of our findings are discussed.  

INTRODUCTION AND BACKGROUND 
This paper builds on previous work on pupils’ understandings and use of the 
representativeness heuristic in their probabilistic thinking (Afantiti Lamprianou and 
Williams, 2002, 2003). One of the aims of the Afantiti Lamprianou and Williams 
study was to contribute to teaching by developing assessment tools which could help 
teachers diagnose inappropriate use of the representativeness heuristic and other 
modes of reasoning based on the representativeness heuristic. The misconceptions 
based on the representativeness heuristic are some of the most common errors in 
probability, i.e. pupils tend to estimate the likelihood of an event by taking into 
account how well it represents its parent population (how similar is the event to the 
population it represents) and how it appears to have been generated (whether it 
appears to be a random mixture).  

Williams and Ryan (2000) argue that research knowledge about pupils’ 
misconceptions and learning generally needs to be located within the curriculum and 
associated with relevant teaching strategies if it is to be made useful for teachers. 
This involves a significant transformation and development of research knowledge 
into pedagogical content knowledge (Shulman, 1987). Pedagogical Content 
Knowledge (PCK) “goes beyond knowledge of subject matter per se to the dimension 
of subject matter knowledge for teaching” (Shulman, 1986, p.9). Pedagogical Content 
Knowledge also includes the conceptions and preconceptions that students bring with 
them to the learning. If those preconceptions are misconceptions, teachers need 
knowledge of the strategies most likely to be fruitful in reorganizing the 
understanding of learners. Many studies have found that teachers’ subject knowledge 
and pedagogical content knowledge both affect classroom practice and are modified 
and influenced by practice (Turner-Bisset, 1999). 
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Along the same lines, Norman (1993) stresses that “there is little in research literature 
documenting either what teachers know or the nature of their knowledge” (Norman, 
1993, p.180). What is more, Hadjidemetriou and Williams (2002) found that some 
teachers harbour misconceptions themselves (Hadjidemetriou and Williams, 2002). 
Godino, Canizares and Diaz (n.d.) conclude in their research that very frequently 
teachers do not have the necessary preparation and training in probability or statistics 
in order to teach efficiently; they also concluded that student teachers may have 
various probabilistic misconceptions themselves and this might affect their teaching. 

Bearing that in mind, the instrument that was piloted and calibrated to the pupils in 
our study mentioned above (Afantiti Lamprianou and Williams, 2002, 2003) was 
now administered to a new sample of pupils and teachers. The administration of this 
diagnostic instrument to the teachers aimed to investigate (a) whether teachers’ 
probabilistic thinking was affected by the ‘representativeness’ heuristic and (b) 
whether teachers were aware of these common misconceptions or of the significance 
of the representativeness heuristic. This was achieved by asking the teachers not only 
to answer the items themselves, but also to predict the common errors and 
misconceptions their pupils would be likely to make on each item, in the manner of 
Hadjidemetriou and Williams (2002) for a similar instrument assessing graphicacy. 
Finally, the results of the analyses of the teachers’ and pupils’ responses are 
compared. 

METHOD 
Ten items were used to construct the instrument (reached at http://lamprianou.no-
ip.info/pme29/). The items identify four effects of the representativeness heuristic; 
the recency effect, the random-similarity effect, the base-rate frequency effect and 
the sample size effect. Most of the items have been adopted with slight modifications 
of these used in previous research (Green, 1982; Kahneman, Slovic and Tversky, 
1982; Shaughnessy, 1992; Konold et al, 1993; Batanero, Serrano and Garfield, 1996; 
Fischbein and Schnarch, 1997; Amir, Linchevski and Shefet, 1999). Other items were 
developed based on findings of previous research. 

The items were divided into three parts. The first part consisted of multiple-choice 
answers and the respondents were asked to choose an option. In the second part the 
respondents were asked to give a brief justification for their choice by answering the 
open-ended question ‘Explain why’. Part three was only available in the Teacher 
version of the instrument and asked teachers to predict which common errors and 
misconceptions they would expect pupils to make on each question. 

Since all items had both a multiple-choice and an open-ended question, a common 
item Partial Credit analysis (Wright and Stone, 1979; Wright and Masters, 1982) was 
run. One mark was given for the correct multiple-choice answer and another one for 
the correct explanation of the open-ended question for each of the ten items.  
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The calibrated instrument was administered to 754 pupils and 99 teachers from 
schools in the NW England. For purposes of comparison, the same analysis (i.e. the 
Rasch analysis described above) was run for the pupils’ and the teachers’ datasets. 

RESULTS FOR THE TEACHERS’ SAMPLE 
The results of the Partial Credit analysis for the teachers’ sample indicated that the 
data-model fit was appropriate. For example, Item 6 (Random Similarity Effect) had 
the largest Infit MNSQR (1.16) which is considered to be appropriate for all practical 
intents and purposes of this study. The item reliability index was 0.95 with a 
separation index of 4.57. Less than 5% of the respondents had fit statistics indicating 
poor model-data fit and this is also acceptable for empirical data. The average ability 
for the teachers was 0.46 (SD=1.01). The ability measures ranged from -3.12 to 2.45 
logits. The average raw score was 8.8 (out of 20 maximum possible marks) with a SD 
of 4.1 but this is difficult to interpret because of the missing responses.  

Figure 1 illustrates the ability distribution of the teachers and the difficulty of the 
items broken down by sub-item (e.g. 3.1 denotes the multiple choice part of item 3 
and 3.2 indicates the ‘Explain why’ part of the same item). According to Figure 1, the 
test and sample can be interpreted as falling into a hierarchy of three levels. At level 
1, approximately -3.0 to -0.5 logits, teachers can succeed on answering correctly 
questions that tested for the recency effect items (Q1, Q2 and Q3) and also the 
multiple-choice parts of two Random Similarity Effect items (Q4.1 and Q5.1). At 
level 2 (approximately from -0.5 to 1 logits), teachers attain higher performance and 
they can explain their answers to the Random Similarity question 4.2 and also answer 
correctly the Base Rate Effect questions (Q7 and Q8). Fewer teachers manage to 
attain level 3 by answering the hardest Random Similarity questions (Q5.2 and Q6) 
and the Sample Size effect questions (Q9 and Q10). 

Overall, the inexperienced teachers were statistically significantly more able than the 
more experienced teachers in the sense that they had larger average Rasch measures. 
The largest difference was between the secondary inexperienced and primary 
experienced teachers. The secondary inexperienced teachers were, on average, at the 
borderline between Level 2 and Level 3. However, the primary experienced teachers 
were on the borderline between Level 1 and Level 2.  

By averaging the ability estimates of those teachers who made an error, we are able 
to plot errors on the same logit scale in the table. No teachers gave responses to the 
multiple-choice parts of questions 1-6 (Recency and Random Similarity effects). 
Teachers who gave responses indicating the Base Rate (questions Q7 and Q8) 
misconceptions had a rather low ability. Answers indicating misconceptions based on 
the Sample Size effect (questions Q9 and Q10) were given by a more able group of 
teachers.  

The teachers were not very successful in describing the most common errors and 
misconceptions that their pupils were likely to make (this refers to the third part of 
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the items which asked the teachers to predict the common errors and misconceptions 
of the pupils on each question). Just above 50% of the teachers mentioned that they 
expected the answers of their pupils on questions Q1, Q2 and Q3 to be influenced by 
the negative recency effect (62.2% for Q1, 51.6% for Q2, 58.5% for Q3). Around 
85% of the respondents expected their pupils’ responses to questions Q7 and Q8 to be 
influenced by the Base Rate effect (83.8% in Q7 and 86.7% in Q8). Very few 
respondents, however, acknowledged that their pupils’ thinking would be influenced 
by the Random Similarity effect on questions Q4 (12.1%), Q5 (9.8%) and Q6 (0%). 
The percentages for the Sample Size effect were a bit larger (18.9% for Q9 and 
29.6% for Q10).  

 

Figure 1: Teachers’ ability distribution and item difficulty on the same Rasch scale 

When a teacher predicted successfully the common errors and misconceptions of the 
pupils on a question, he/she was awarded 1 mark. For example, if a teacher predicted 
successfully the common errors and misconceptions of the pupils on all questions, 
he/she would receive 10 marks in total (one for each item). However, we could not 
use the raw score of the teachers across all items as an indicator of their knowledge of 
pupils’ misconceptions because of the large percentage of missing cases. Therefore, 
we used the Rasch model to convert the raw score of the teachers to a linear scale 
bypassing the problem of the missing cases. It was found that the 68 inexperienced 
teachers had an average of ‘predictive ability’ (to predict the misconceptions of their 
pupils) of -0.93 logits (SD=1.28). The 31 experienced teachers had an average 
‘predictive ability’ of -0.18 logits (SD=1.40). A t-test showed that the difference was 
statistically significant (t=-2.643, df=97, p=0.010) and that the experienced teachers 
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were significantly more able to predict the common errors/misconceptions of the 
pupils. 

RESULTS FOR THE PUPILS’ SAMPLE 
The results of the Partial Credit analysis for the pupils’ sample indicated that the 
data-model fit was appropriate. The fit of Item 6 (Random Similarity Effect) had the 
largest Infit MNSQR (1.26) which is considered to be appropriate for all practical 
intents and purposes of this study. All other items had even better Infit MNSQR 
statistics (between 0.75 and 1.08). The item reliability index was 0.99 with a 
separation index of 21.65 which is an indication of a very reliable separation of the 
item difficulties. Just above 5% of the respondents had fit statistics indicating poor 
model-data fit and this is also acceptable for empirical data. The average ability for 
the pupils was -0.83 logits (SD=1.12). The ability measures ranged from -3.93 to 3.64 
logits. The average raw score was 7.5 (out of 20 maximum possible marks) with a SD 
of 2.6 but this is difficult to interpret because of the large number of missing 
responses or not administered items. 

 

Figure 2: Pupils’ ability distribution and item difficulty on the same Rasch scale 

According to Figure 2, the test and sample can be interpreted as falling into a 
hierarchy of two levels. At level 1, approximately -4.0 to -0.5 logits, pupils can 
succeed on answering correctly questions that tested for the recency effect items (Q1, 
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Q2 and Q3) and also the multiple-choice parts of two Random Similarity Effect items 
(Q4.1 and Q5.1). At level 2 (approximately from -0.5 to 4 logits), pupils attain higher 
performance and they can answer the multiple choice of question Q6, explain their 
answers to the Random Similarity question Q4.2 and Q5.2 and they can also answer 
correctly the Base Rate Effect questions (Q7 and Q8). Fewer pupils manage to attain 
the top of level 2 by answering the hardest Sample Size effect questions (Q9 and 
Q10). Almost nobody managed to give a correct response to question Q6.2. 

By averaging the ability estimates of those pupils who made an error, we are able to 
plot errors on the same logit scale in the figure. Most of the pupils gave responses to 
the multiple-choice parts of questions 1to 6 (Recency and Random Similarity effects) 
which indicated that their probabilistic thinking was affected by the 
representativeness heuristic. The average ability of those pupils for items 1 to 6 was 
around -2.5 logits (Q1:-3.07 to Q6:-2.36 logits) which is well below the mean ability 
of the whole sample (-0.83 logits). However, the pupils who gave responses 
indicating the Base Rate (questions Q7 and Q8) and the Sample Size (questions Q9 
and Q10) misconceptions had a mean ability in the area of -1 logit (Q7:-1.10 to Q9:-
0.84 logits) which is near the mean ability of the sample.  

CONCLUSIONS AND DISCUSSION 
Having collected a fresh dataset of responses of pupils and teachers to the instrument 
which we developed in a previous study (Afantiti Lamprianou and Williams, 2002, 
2003), we used Rasch analysis to investigate (a) the degree to which the probabilistic 
thinking of pupils and teachers suffers from the representativeness heuristic, (b) 
whether the item hierarchy resulting from the Rasch analysis for pupils and teachers 
would be similar, and (c) whether the teachers were aware of the common pupils’ 
errors and misconceptions on the items of the instrument. 

The analysis of the pupils’ data showed that there is a hierarchy of two levels to 
characterise their probabilistic thinking and this is in agreement with Afantiti 
Lamprianou and Williams (2002, 2003). Indeed the item hierarchy was found to be 
the same as the one found by Afantiti Lamprianou and Williams, although the 
samples were from different schools and were collected two years apart. Pupils’ 
probabilistic thinking was found to be affected by the representativeness heuristic to a 
great extent in the sense that few pupils managed to reach level 2 (to answer correctly 
the Base Rate and the Sample Size items). The pupils found the ‘Explain why’ parts 
of the Base Rate and the Sample Size items extremely difficult and very few 
succeeded in answering these correctly.   

The analysis of the Teachers’ responses showed that the probabilistic thinking of a 
large number of respondents is influenced by the representativeness heuristic. Few 
teachers were in a position to answer correctly the most difficult items testing the 
Sample Size effect (Q9 and Q10). 
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The item hierarchy resulting from the Rasch analysis of the Teachers’ and Pupils’ 
data is not the same. This may be seen by comparing Figures 1 and 2. The rank order 
of item difficulties does not remain the same when the two figures are compared 
(although, in absolute numbers, the differences are almost always within the 95% 
error of measurement). The two hierarchies seem to be qualitatively different in the 
sense that the Base Rate items were found by the teachers to be substantially easier in 
comparison to the Sample Size and the Random Similarity items. 

One of the most striking findings, however, was the fact that the more experienced 
teachers were found to have a significantly poorer performance on the instrument 
compared to the younger and less experienced teachers. One possible explanation 
could be that the younger and less experienced teachers had the opportunity to 
receive preparation and training on probabilities and statistics because these topics 
became more widely available in the relevant teacher training courses in Universities. 
This finding is in line with the suggestion of Godino, Canizares and Diaz (n.d.) who 
suggested the need to increase the training opportunities for serving teachers on 
issues like statistics and probabilities (Godino, Batanero and Roa, 1994; Godino, 
Canizares and Diaz, n.d.).  

This is notably in contrast to the other main result, i.e. that the experienced teachers’ 
pedagogical knowledge was superior (i.e. that the more experienced teachers were in 
better position to predict the common errors and misconceptions of the pupils): this is 
in the direction expected, and suggests that the methodology adopted affords the 
making of nice distinctions between teachers’ subject-content and pedagogical-
content knowledge. This result reinforces the pilot work in this regard of 
Hadjidemtetriou and Williams (2004). 
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In the Purposeful Algebraic Activity project1 we have produced a teaching 
programme of spreadsheet-based tasks, using purpose and utility as the framework 
for task design. Here we look in detail at the design of one of the tasks, using the 
notions of visibility and invisibility to examine examples of pupils’ activity when 
working on this task and the role which perceptions of purpose play in the way in 
which transparency emerges. 

INTRODUCTION 
This paper focuses on one aspect of the Purposeful Algebraic Activity project. The 
overall aim of the project has been to study pupils’ construction of meaning for 
algebra in the early part of secondary education. The project takes up the challenge 
set by Sutherland (1991) to create ‘a school algebra culture in which pupils find a 
need for algebraic symbolism’. Central to the project is a programme of six tasks, 
based on the use of spreadsheets. These tasks have been designed to offer purposeful 
contexts for algebraic activity. In this paper we discuss in detail the design of one 
task, and use the notion of transparency (Lave & Wenger, 1991) to examine potential 
trajectories through the task, and some specific activity by pupils in response to it.  

DESIGNING PURPOSEFUL TASKS 
The relative lack of relevance in much of school mathematics, compared to the high 
levels of engagement with mathematical ideas in out-of-school settings, has been 
recognised by a number of researchers and curriculum developers. Schliemann 
(1995) identifies the need for ‘school situations that are as challenging and relevant 
for school children as getting the correct amount of change is for the street seller and 
his customers’. However, setting school tasks in the context of ‘real world’ situations 
does not provide a simple solution: there is considerable evidence of the problematic 
nature of pedagogic materials which contextualise mathematics in supposedly real-
world settings, but fail to provide purpose (see for example Cooper and Dunne, 
2000). Ainley and Pratt (2002) identify the purposeful nature of activity as a key 
feature which contributes to the challenge and relevance of mathematics in everyday 
settings, and propose a framework for pedagogic task design in which purpose for the 
learner, within the classroom environment is a key construct.  

                                                      
1 The Purposeful Algebraic Activity project is funded by the Economic and Social Research Council. 
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This use of ‘purpose’ is quite specifically related to the perceptions of the learner. It 
may be quite distinct from any objectives identified by the teacher, and does not 
depend on any apparent connection to a ‘real world’ context. It may, of course, be 
true in a trivial sense that learners construct the purpose of any task in ways other 
than those intended by the teacher. In using purpose as a design principle, we have 
tried to provide purposeful outcomes through the creation of actual or virtual 
products, solutions to intriguing questions or explanation and justification of results. 

We have also used the notion of the utility of mathematical ideas: that is knowing 
how, when and why such ideas are useful (Ainley and Pratt, 2002). Within a 
purposeful task, opportunities can be provided for learners to use and learn about 
particular mathematical ideas in ways that allow them to appreciate their utility. In 
contrast, within much of school mathematics, ideas are learnt in contexts which are 
divorced from any sense of how or why such mathematical ideas may be useful. 

In addition to these two general design principles, we have been concerned to include 
within the design of our tasks three other features: opportunities to exploit the 
algebraic potential of the spreadsheet (Ainley, Bills & Wilson, 2004), opportunities 
for pupils to engage in a balance of generational, transformational and meta-level 
algebraic activities (Kieran, 1996) and opportunities to build on pupils’ fluency with 
arithmetic to make links to both the spreadsheet notation and standard algebra. 

AN EXAMPLE: THE FAIRGROUND GAME TASK 
We now describe the design of the sixth and final task in our teaching programme. 
The task was based on an idea which appears fairly frequently (in the UK at least) in 
resources for teaching algebra in the early years of secondary school. The example in 
Figure 1 is taken from the Framework for Teaching Mathematics for ages 11-14, 
which forms the basis of the curriculum which schools in England have to follow 
(DfES, 2001). It is from the section headed ‘Equations, formulae, identities’, for 
pupils in the first year of secondary school (age 11-12). 

 

 

 

 

 

Figure 1: The original example task 

The example task given here seems to us to be limited in a number of ways. It is set 
in a purely algebraic context. Although the text refers to ‘numbers’ no numbers are 
given in this example (although further examples based on the same idea appear in 
the sections for subsequent age groups which ask pupils to find the value of a missing 
number from a pyramid array). It may be that teachers and pupils would already be 
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familiar with the pyramid array from previous numerical activities, but there is no 
attempt made in this example to make explicit links to arithmetic experience. 

The choice of letters to represent numbers in the array is likely to suggest to some 
pupils that the numbers in the bottom row are ordered, and indeed consecutive. This 
task does not give any sense of the letters as variables, representing any number, and 
indeed subsequent tasks based on the pyramid array are concerned with finding the 
value of particular unknowns. 

There is no purpose offered for the task. What is the outcome of adding numbers in 
this way? And what is the benefit of writing the final expression ‘as simply as 
possible’? For many pupils it would be difficult to see why m+2n+p is a simpler or 
more usable expression than m+n+n+p, because they are offered no context in which 
the usefulness of simplification might be apparent. 

Producing a spreadsheet-based task 
Despite these limitations, the pyramid array does seem to offer rich possibilities for 
algebraic activity, and its cell structure lends itself well to use with a spreadsheet. The 
spatial arrangement of the cells provides a visual metaphor for the repeating additive 
structure of the mathematical problem, and thus offers the potential for the array to be 
transparent for users: allowing them to look at the visible physical structure so that 
the content of cells can be manipulated, and to look through this (transparent) 
structure to get a sense of the mathematical structure which underlies it (Lave & 
Wenger, 1991). However, Meira’s study of instructional devices suggests that 
transparency emerges in the use of tools and symbols, rather than being an inherent 
characteristic of them (Meira, 1998). Thus the design of tasks may be as significant in 
the emergence of transparency as the design of tools themselves (Ainley, 2000). 

In order to create a task which would offer purposeful activities, we explored the 
questions which might be asked about the pyramid array, and the challenges which 
might be set. If the pyramid is used for numerical activities, then one obvious group 
of questions concerns the effect of changing the numbers used in the bottom row on 
the subsequent rows, and the final total. Does changing the order of these numbers 
alter the total? How can the highest or lowest total be achieved from any given set of 
numbers? Recreating the array on a spreadsheet offers an environment in which it is 
easy to explore such questions. 

In our task we used the structure of the pyramid array as the basis for a game which 
might be used at a school fair. The game uses a version of the array on a spreadsheet 
as shown below. The player is given five numbers, which they can enter into the left 
hand column in any order they like. To win, the player has to make a total (which 
will appear in the cell on the far right) which is as high as, or higher than, a target set 
by the stallholder. Pupils are presented with the example shown in Figure 2 on a 
worksheet, with a description of the game. 
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Figure 2: Extract from the pupils’ worksheet 

The decisions which we made in transferring the pyramid array to the spreadsheet, 
and creating the game context, had a number of effects on the potential activity of 
pupils working on the task.  

Because of the ‘row and column’ structure of the spreadsheet, it was necessary to 
change the spatial relationship of the cells from that in the original pyramid array2. 
This arrangement may make it less clear which cells were added to produce the next 
column. In the pupils’ worksheet for this task, the whole array of numbers is 
presented, but how the array is constructed is not made explicit. We chose to rotate 
the image, partly to make the spreadsheet operations more comfortable, and partly so 
that pupils would not immediately associate this task with previous experiences they 
may have had of working with the pyramid array. The array was enlarged to use five 
starting numbers rather than three to make the challenge more realistic. 

The first stage of the task is to recreate the game array on a spreadsheet, and to 
explore the effects of changing the positions of the numbers in the first column, and 
in particular to try to make the highest possible total which will become the target 
number of the game. The next stage of the task concerns what happens when a player 
wins by making the first target number. The stall holder must then offer a new set of 
starting numbers, so pupils need to find a method of getting the highest total for any 
set of five numbers. The final challenge is to find a way for the stallholder to 
calculate what the target number should be for any set of starting numbers. 

TRAJECTORIES THROUGH THIS TASK 
We now discuss features of this task and the learning trajectories which we had 
anticipated in relation to these, and compare these to examples of data from pupils 
working on this task within our teaching programme. The teaching programme was 
carried out in five classes in the first year of two secondary schools (i.e. pupils aged 
11-12, representing a range of achievement). Four teachers who had been involved in 
the development of the tasks used them as part of their regular teaching during the 
year. For each task, pupils’ worksheets and detailed teachers’ notes were prepared. 
The teachers were encouraged to introduce the tasks through whole class discussion 
before pupils began work in pairs, and to bring the class together for further plenary 
sessions as they felt appropriate. The pupils’ worksheets were designed to support the 
pupils’ activity, but not to ‘stand alone’ in presenting the tasks. The six tasks were 

                                                      
2 Although a closer approximation to the pyramid structure could have been produced by using alternate cells, this 
would have added an unnecessary complication. 
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used as three pairs during the year, with the Fairground Game task being the last in 
the sequence. Classes spent two lessons of about an hour each on each of the tasks. 
Most of these lessons took place in computer rooms rather than in the normal 
classrooms. This had the advantage of providing enough access for all pupils to work 
singly or in pairs at the machines, but had the disadvantages that pupils were 
generally not very familiar with this environment, and that the layout of the rooms 
was not well designed for the teacher to be able to circulate and monitor the progress 
of all pairs of pupils. 

During the teaching programme data was collected through fieldnotes and audio 
recording of the teacher, to give an overall picture of the progress of the lesson, and 
video and screen recording of one pair of pupils in each class working on each task. 

Setting up the game and finding the highest total  
In the first stage of the task the intended purpose was to produce a version of the 
game on the spreadsheet, and then to use this to find how to get the highest total. We 
anticipated that having to spot the pattern in the array of numbers and generate the 
formulae to create the array on the spreadsheet would encourage pupils to attend 
closely to the arithmetic structure of the game. By the time they undertook this task, 
pupils were reasonably familiar with using the spreadsheet and most could enter 
formulae confidently. The formulae that are required in the spreadsheet, as shown in 
Figure 3, make the iterative, column to column structure of the array very clear. 
However, this view of the spreadsheet was not available to pupils as they worked on 
the task. The formulae have become (literally) invisible to pupils, and what they see 
are the numbers in each cell changing. 

 
Figure 3: the completed spreadsheet formulae 

Searching for the highest total involves repeatedly changing the values entered in the 
cells in column A, and seeing the effect of this on the remaining cells in the array. 
Our intention for pupils’ learning was that this would reinforce the notion of the cell 
reference in a formula representing a variable: any number which may be entered into 
a particular cell.  

Once they had created their own version of the game, most pupils were able to 
engage with exploring the effects of changing the order of the starting numbers, and 
many worked systematically to identify a winning strategy. Kayleigh and 
Christopher, in a low attaining set, did not immediately understand that they needed 
to produce a spreadsheet made with formulae on which the game could be played. At 
first they simply reproduced the array they had been shown by typing in the numbers. 
After an intervention, they were able to put in the formulae, and use their game to 
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explore the effects of changing the order of the starting numbers. However, they 
seemed to see the purpose at this stage as getting the highest total, rather than as 
finding how to get the highest total. Their attention was only on the final total, and 
they did not see any reason to record how they had used the numbers to get each 
result. There was no evidence that they were engaging with the notion of variable. 

Finding how to get the highest total for any set of numbers 
In the next stage of the task the purpose shifts to finding a strategy that will always 
give the highest total. This not only reinforces the variable nature of the cell reference 
by increasing the range of possible numbers, but focuses attention on the structure of 
the array, and how the total is formed. Many pupils had already made a conjecture 
about a method for placing the numbers to give the highest total, and using a different 
set of numbers was a way of confirming their ideas.  

Pupils’ offered a variety explanations for the method they had chosen. In some cases 
their explanations suggest that the array of numbers on the spreadsheet became a 
transparent tool which they were able to look through to see features of the 
underlying arithmetic structure. We conjecture that their experience of entering the 
formulae supported this as they explored the effects of changing the starting numbers. 
For example, Hugo, in a middle attaining set, wrote ‘you get the highest overall 
number when the two highest starting numbers are in the middle because they get 
included in every sum until the overall answer’. Rupinda, in the same set, said, ‘You 
have to put the largest number in the middle because when you travel through the 
columns the big number will make a higher total’. In a high attaining set, a pupil said 
in a class discussion ‘ the three middle numbers like carry them on and the other two 
just get lost somewhere’.  

Kayleigh and Christopher, in a lower attaining set, were initially motivated by a 
competition to find the highest total with a new set of numbers, but still focussed on 
the total rather than on a method for getting it. After some further intervention, 
however, Christopher began to focus on the arrangement of the numbers, and talked 
about why some gave higher totals in terms of how numbers ‘travelled’ across the 
grid. For him it seemed that opportunities to articulate his exploration were important 
in allowing him to begin to look through the numbers to gain a sense of the structure 
and the use of variable inputs. 

Explaining the method and calculating the target number 
The final stage of the task is designed to introduce purposeful use of standard 
algebraic notation. The purpose is to give the stallholder a way to quickly calculate 
the appropriate target number for any new set of starting numbers. Obviously this 
could be done very easily using the spreadsheet array, or more laboriously by 
working through the calculations by hand. However, in the context of the Fairground 
game story the stallholder needs to do this calculation quickly and without his 
customers seeing the outcome, and so another method is needed. To find such a 
method, it is necessary to look at the structure of the array in a different way. Using 
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spreadsheet formulae, the cumulative effect of the arithmetic structure is invisible 
since each formula only refers to the previous column. The teachers’ notes for this 
part of the task suggest that pupils should move away from the computer to find ways 
of showing why their method will produce the highest total using standard notation. 

Many of the higher attaining pupils were able to use letters in place of numbers and 
work through the array simplifying their answers to give a expression for the total in 
standard notation. Of these, some made comments in their written work that 
suggested that they had appreciated the utility of the notation for showing structure. 
Robin wrote, ‘Algebra helped me to find the strategy because it made it easier to see 
how many letters were used and how often’, and Mandy commented ‘Algebra did 
make it easier because it showed you how the numbers were added up’.  

Other pupils found ways of showing the structure by working through (generic) 
numerical examples. Amanpreet worked on a paper grid, using the starting numbers 
3, 5, 4, 6, 10 (in that order). In each cell he showed the calculation that was to be 
done, but did not work out any of the results. In the final cell he recorded 

3+5+5+4+5+4+4+6+5+4+4+6+4+6+6+10 

He did not feel the need to collect like terms to simplify this result, but was happy 
that it showed that the number on the middle position (4) was used most, and that 3 
and 10 (in the first and last positions) were used least. Other pupils used the grid in 
similar ways, but showing how to actually get the highest total, and some did 
simplify their final calculation. Whilst these pupils seemed able to some extent to 
treat the array as transparent, they had not yet fully appreciated the utility of standard 
notation to express the generalised structure, or engaged with the purpose of finding a 
way to calculate the total. In practice the time which teachers allowed for working on 
this task was not long enough for most pupils to really address this final stage of the 
task. 

Faith also preferred to work with numerical examples to illustrate her general method 
for finding the highest total for five numbers. However, when challenged to find a 
strategy for six numbers, she went immediately to algebra, setting out a, b, c, d, e, f in 
the first column and completing the grid without error to finish with 10c + 10d + a + 
5e + 5b + f in the final cell. She wrote “c and d appear most often so that is where the 
largest numbers should be placed”. The additional challenge of working with six 
numbers may have helped her to appreciate the utility of using standard notation. 

THE ROLE OF PURPOSE 
In analysing these examples of pupils’ activity we see the role of purpose as 
significant in shaping the focus of their attention, and thus the ways in which they 
work with, and look at and through the tools involved, that is, the game array, the 
spreadsheet formulae and the standard notation. For Kayleigh and Christopher, the 
challenge of getting the highest total was engaging. Initially the effect of changing 
the order of the starting numbers on the total was highly visible, but their lack of 



Ainley, Bills & Wilson 

 

2- 24 PME29 — 2005 

appreciation of the purpose of the exploration (i.e. finding how to get the highest 
total) prevented them from also attending to the underlying structure of the array. 
When his attention had been focussed on the purpose of finding a general strategy 
through the teacher’s intervention, Christopher was encouraged to work with the 
array and articulate his ideas in ways which seemed to make the underlying structure 
more visible, so that he could describe the numbers ‘travelling’ through the array. 

While some pupils were able to appreciate and articulate the utility of standard 
notation for clarifying the way in which the total number was calculated, others who 
were focussing on justifying their strategy for finding the highest total were happy to 
use generic numerical examples, or generalised descriptions to do this. We conclude 
that perceptions of the purpose of a task affect the ways in which tools are used 
within it, and thus the extent to which these tools become transparent for the users. 
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The main purpose of this paper is to propose a model that could describe the mode in 
which people acquire the ability for proportional reasoning. The framework and the 
analysed data are part of an ongoing research, in which the responses of subjects of 
different ages and schoolings to different ratio- and rate-comparison tasks are 
studied. A special accent is placed on the influence of number structure and context 
upon proportional reasoning; the proposed model is based on a classification of 
number structure reported in PME-26 and on a classification of contexts in three 
categories (Rate, Mixture and Probability problems). 

This paper reports part of an ongoing research on the strategies used by subjects of 
different ages and schoolings when faced to different kinds of ratio comparison tasks. 
In the part conveyed, we are concerned with the following question: Is it possible to 
describe the way in which the ability for proportional reasoning develops? The results 
reported and the ensuing proposed model are part of a larger study (Alatorre, 2004). 

FRAMEWORK, PROVIDED BY PREVIOUS WORK 
In the last three PME’s different parts of the research have been put forward. The 
framework used in the research was presented in Alatorre (2002), an explanation of 
what are the “different kinds of ratio comparison tasks” as well as a description of the 
interview protocol used in the experimental part were submitted in Alatorre and 
Figueras (2003), and in Alatorre and Figueras (2004) the results obtained by six 
quasi-illiterate adult subjects were described. A succinct summary of these papers 
will be sketched here; the reader is referred to them for a more complete account. 

Among the problems calling for proportional reasoning, those in which the task is a 
comparison of ratios can be classified according to three issues: context, quantity 
type, and numerical structure. Figure 1 proposes a classification according to the first 
one; it blends together the classifications proposed by several authors (Freudenthal, 
1983; Tourniaire and Pulos, 1985; Lesh, Post and Behr, 1988; Lamon, 1993). 

Rate problems: couples of expositions (Two quantities) 
Mixture  (One quantity) 

Part-part-whole problems: couples of compositions 
Probability  (One quantity) 

Geometrical problems: couples of �-constructs  (Two quantities) 

Figure 1: Taxonomy of ratio comparison tasks according to context  
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Examples of the first three kinds are shown in Figures 2 to 4 (geometrical problems 
are not dealt with in this research). 

Figure 2. Example of a Rate problem: In which store are the notebooks cheaper? 
 (The round figures stand for coins) 

Figure 3. Example of a Mixture problem: In which jar does the mixture taste 
 stronger? (The grey glasses contain concentrate and the clear ones  

contain water). (Problem taken from Noelting, 1980) 

Figure 4. Example of a Probability problem: If bottles are shaken with marbles 
inside, in which one is a dark marble more likely to come out at the first try? 

The second issue is the quantity type. Quantities can be discrete (as the marbles in 
Figure 4) or continuous (as the amounts of liquids in Figure 3).  

The third issue is the numerical structure. In a ratio or rate comparison there is always 
a foursome: four numbers stemming from two “objects” (1 and 2), in each of which 
there is an antecedent (e.g. notebooks, concentrate glasses, dark marbles) and a 
consequent (e.g. coins, water glasses, light marbles). Alatorre’s (2002) framework 
includes a classification of all possible such foursomes in 86 different situations that 
can be grouped in three difficulty levels, labelled L1, L2, and L3; their description 
will close the section dedicated to the framework. 

In the previous paragraphs a description of the classification of ratio-comparison 
problems was given. Here follows a classification of the strategies used by subjects in 
their answers to such problems. Alatorre’s (2002) framework, as presented in 
Alatorre and Figueras (2003 and 2004), is to be used. Strategies can be simple or 
composed; in turn, simple strategies can be centrations or relations. Centrations can 
be on the totals CT, on the antecedents CA, or on the consequents CC. Relations can 
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be order relations RO (when an order relationship is established among the 
antecedent and the consequent of each object and the results are compared), or 
subtractive relations RS (additive strategies), or proportionality relations RP. 
Composed strategies can be four forms of logical juxtapositions of two strategies.  

Strategies may be labelled as correct or incorrect, sometimes depending on the 
situation (combination and location) in which they are used. The most important 
correct strategies are: 

• RP in all situations (for instance, saying in Figure 2 that in side 1 the 
notebooks are cheaper because they cost $0.50, whereas in side 2 they cost 
$0.67; or saying in Figure 3 that side 2 has a stronger taste because if three 
times as much juice was prepared in jar 1 it would need the same three 
concentrate glasses that are in jar 2, but twelve water glasses, which are more 
than the two of jar 2; or saying in Figure 4 that in both bottles a dark marble is 
equally likely, because side 1 is twice as much as side 2, or because in both 
sides there are three light marbles for every pair of dark ones);  

• RO in situations where one of the antecedents equals its consequent, or where 
one of the antecedents is less than its consequent and the other is more than its 
consequent (for instance, in Figure 3, saying that jar 2 has a stronger taste 
because it has more concentrate than water, whereas jar 1 has more water than 
concentrate);  

• In some situations, some composed strategies that can be considered as 
theorems in action (TA, see e.g., Vergnaud, 1981) (for instance, saying in 
Figure 3 that jar 2 has a stronger taste because it has more concentrate and 
fewer water glasses than jar 1); there are overall 14 TA’s. 

Incorrect strategies are: 
• CT in all situations (for instance, saying in Figure 4 that a dark marble is more 

likely in bottle 1 because it has altogether more marbles than bottle 2); 
• CA in most situations (for instance, saying in Figure 2 that side 2 is cheaper 

than side 1 because it has more notebooks than side 1); 
• CC in most situations (for instance, saying in Figure 4 that a dark marble is 

more likely in bottle 2 because it has fewer light marbles than bottle 1); 
• RO in most situations (for instance, saying in Figure 2 that in both sides the 

notebooks are equally cheap because both have more notebooks than coins); 
• RS in all situations (for instance, saying in Figure 4 that a dark marble is more 

likely in bottle 2 because it only has one more light marble than dark ones, 
whereas in side 1 there are two more); 

• Most composed strategies. 

The three difficulty levels mentioned before refer to which correct strategies may be 
applied. L1 consists of all the situations where, in addition to RP, other correct 
strategies may be used. In L2 and L3 only RP can be used; the difference among 
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them is that L2 consists of situations of proportionality (both ratios or rates are the 
same), and L3 consists of situations of non-proportionality. An example of L1 is the 
array of Figure 3; an example of L2 is Figure 4; and an example of L3 is Figure 2. 

METHODOLOGY 
A case study was conducted in Mexico City with 23 subjects, aged from 9 to 65 and 
with schooling from 0 (illiterate adults) to 23 (PhD). Each one was interviewed for a 
time between 60 and 90 minutes; the sessions were videotaped. Two of the subjects 
are in fact one, Sofía, who was interviewed twice: when she was aged 10 and 12. 

During the interviews, subjects were posed several questions in each of 10 sorts of 
problems, which were 4 Rate problems (of which the juice problem of Figure 2), 2 
Mixture problems (of which the notebook problem of Figure 3), 2 Probability 
problems (of which the marbles problem of Figure 4), and two forms of partitions 
problems as controls (one fraction and one pizza problem).  

Each of the ten problems was posed in different questions according to numerical 
structure. Fifteen such questions were designed, five in each of the difficulty levels 
L1, L2, and L3; all the problems could be posed in each of them. To each subject all 
of the problems were posed in some of the 15 numerical questions, covering at least a 
couple of the questions of each level. Each time, the subjects were asked to make a 
decision (side 1, side 2, or “it is the same”) and to justify it.  

A total of 2518 answers was thus obtained; 2049 (81%) of them were classified using 
the strategies system described above, and the rest either consisted of a decision 
without a justification (9%), or had a justification that was only a description (4%), or 
consisted of solution mechanisms different from the strategies described before (6%). 
Two phases of analysis were undertaken: quantitative and qualitative.  

QUANTITATIVE ANALYSIS 
In order to make a quantitative analysis 
possible, one point was given to all 
correct strategies, and 0.5 point was 
given to answers that could be 
incomplete expressions of correct 
theorems in action. Also, 0.5 point was 
given to all non-classifiable answers that 
fulfilled the following conditions: correct 
decision and either no mechanism or a 
mechanism that could eventually become 
correct (such as arithmetic or geometric 
approximations). Then, for each group of 
answers (e.g., for each subject) a score 
was obtained, and expressed as a 
percentage of the answers in that group.  Figure 5. Scores according to context 
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A first approach consists of verifying that the categories labelled L1, L2, and L3 are 
indeed difficulty levels. As Figure 5 shows, L3 is, in all of the context types, the most 
difficult (i.e., the one with lowest scores), and L1 the easiest (highest scores). Except 
for the Rate and the Partitions (control) problems, L2 has intermediate scores. Figure 
5 also allows a comparison of the different context types. The Rate problems are the 
easiest ones, and the Probability problems are the most difficult ones. Mixture 
problems are as easy as Rate problems only in level L1, and in levels L2 and L3 lay 
between Rate and Probability problems. 

In a second approach the behaviour of the 23 subjects in the three levels (across all 
contexts) is studied. The 23 subjects can be classified in four groups, as shown in 
Figure 6, where the age (child = younger than 15, adult = older than 15) and the 
schooling of the subjects within each group are also described.  

  

 GROUP A GROUP B GROUP C GROUP D 

 P S MS P S MS P S MS P S MS 

Child 1 0  1 1  1 2  0 0  

Adult 2 0 0 1 1 3 1 2 1 2 1 3 

Figure 6. Four groups of subjects 
(P=Primary school or less, S=Secondary school, MS=More than Secondary School) 

Group A consists of three subjects in primary school, a child and two adults. For 
them Level L1 was fairly easy, level L3 was very difficult, and level L2 was almost 
as difficult as L3. Groups B and C consist of assortments of young and adult subjects 
of all schooling levels; they all find level L1 rather easy and level L3 rather difficult; 
the difference between Group B and Group C is that in the former the difficulty of 
level L2 lies midway between those of L1 and L3, whereas in the latter it is equal or 
even smaller than that of L1. Finally, group D consists of six adult subjects in the 
three schooling stages, who had good results in all three levels L1, L2, and L3. 
Among these subjects a necessary (but not sufficient) condition for belonging to 
Group A was very little schooling, and a necessary (but not sufficient) condition for 
belonging to Group D was some age (the youngest of these subjects was aged 16). 
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An interesting case is that of Sofía, interviewed at ages 10 and 12, because a small 
longitudinal study can be carried out 
with her data. Figure 7 shows that when 
aged 10 Sofía belonged to Group B, and 
her development over two years took 
her to Group C. She had an increase in 
her scores in all three levels, which was 
small for L1 and much greater in L2 
and L3.  

QUALITATIVE ANALYSIS 
The strategies used by the subjects of 
the four Groups described before differ in some ways.  

• In Group A subjects use the correct order relations RO and Theorems in 
Action (TA) that are applicable in L1, but almost never use the proportionality 
relations RP. This explains their failure at levels L2 and L3, where they use 
mainly incorrect centrations.  

• Subjects in Group B also use correct RO and TA in L1. They use RP almost 
only in the proportionality situations of L2, and then again only in some cases 
of L2 (mainly in Rate problems); they seldom use RP in the non-
proportionality situations of L3. The strategies that account for the incorrect 
answers are mainly centrations. 

• In Group C subjects use widely RP in L2, and they even use RP in some L1 
questions (although still using correct RO and TA). They still use mostly 
incorrect strategies in L3, mainly centrations and the additive strategies RS, 
especially in the most difficult Probability and Mixture problems. 

• Subjects of Group D can use RP in all kinds of situations. Some of the 
subjects go so far as to use exclusively RP, even in L1. The scarce incorrect 
answers are due to centrations, RS and arithmetically mistaken attempts at RP. 

A DEVELOPMENTAL MODEL 
The quantitative and qualitative analyses conducted permit the construction of a 
model that describes how the subjects grow in their ability to respond correctly to 
ratio comparison tasks. Subjects in groups A, B, C, and D (in that order) have 
increasingly higher global scores (respectively 40%, 60%, 68%, and 76%); they also 
use increasingly correct and sophisticated strategies. If one adds the fact that Sofía 
evolved from Group B to Group C, it can be postulated that within a given context, 
these groups correspond to stages or moments that occur in that order, as shown in 
Figure 8.  

Figure 7. Sofía’s results  
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It may be hypothesized that before responding like Group A, which is the first 
moment, subjects could go through a moment zero where all three levels are equally 
difficult (i.e., very young children). Then the first ability to develop is the use of non-
proportionality correct strategies RO and TA, which are only useful in level L1 (first 
moment). After that the ability to use the proportionality relations RP in 
proportionality situations (L2) would slowly grow, first almost without any change in 
the non-proportionality situations (second moment), and only when the ability to use 
RP in L2 equals the ability to use RP or RO or TA in L1 would the ability to use 
proportionality relations in the non-proportionality situations L3 start to develop 
(third moment). In the last stage this last ability equals that of the other two levels 
(fourth moment). 

Figure 8. Developmental model 

This development, however, is only within a certain kind of context. The whole 
process would start first with the Rate problems, which are the easiest ones, then with 
the Mixture problems and finally with 
the Probability problems, which are the 
most difficult ones. Thus, at a given 
instant a person is in different stages or 
moments regarding his/her response to 
different kinds of problems. For 
instance Flor, who is one of the 
subjects in Group D, is in the first 
moment in the Probability problems, in 
the third moment in the Mixture 
problems and in the fourth moment in 
the Rate problems (see Figure 9). 

Figure 9. Flor’s results 
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CONCLUSIONS 
It has been said before that it is easier for children to solve ratio comparison tasks in 
proportionality situations than in non-proportionality ones. However, if one considers 
that other strategies apart from the proportionality relations can be correct, some non-
proportionality situations can be easier (for children as well as for adult subjects) than 
the proportionality ones. But it is the ability to adequately solve the proportionality 
situations that can trigger the ability to solve the non-proportionality situations where 
only the proportionality strategies may be applied. 
It has also been said that proportional reasoning is highly context-dependent. This 
paper has shown that Rate problems are the easiest to solve and Probability problems 
are the hardest, with Mixture problems between them. 
The data obtained from this group of 23 subjects suggest that their ability for 
proportional reasoning evolves in the form described by the proposed developmental 
model. It can be conjectured that the model could describe this evolution for other 
subjects as well. This would in particular entail that only people with very little 
schooling would be at the first stage of this development, and that only people above 
a certain age would be at the last stage. In turn, this could imply that neither the 
school nor life are sufficient conditions for the development of proportional 
reasoning, but that both can be considered as catalysts for the process. 
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REFERENTIAL AND SYNTACTIC APPROACHES TO PROOF: 
CASE STUDIES FROM A TRANSITION COURSE 

Lara Alcock Keith Weber 

Graduate School of Education, Rutgers University, USA 

 
This paper aims to increase our understanding of different approaches to proving. 
We present two case studies from an interview-based project in which students were 
asked to attempt proof-related tasks. The first student consistently took a referential 
approach, instantiating referents of the mathematical statements and using these to 
guide his reasoning. The second consistently took a syntactic approach, working with 
definitions and proof structures without reference to instantiations. Both made good 
progress on the tasks, but they exhibited different strengths and experienced different 
difficulties, which we consider in detail. 

INTRODUCTION 
Writing proofs in advanced mathematics requires the correct use of formal definitions 
and logical reasoning. However, both mathematicians and mathematics educators 
have argued that intuitive representations are also necessary for reasoning to be 
effective (Fischbein, 1982; Thurston, 1994; Weber & Alcock, 2004). This paper 
highlights the fact that definitions and formal statements can be treated as strings of 
symbols that may be manipulated according to well-defined rules, or as formal 
characterizations of meaningful objects and relationships between these, and that 
either treatment can be the basis for productive reasoning. It is related to the work of 
Pinto and Tall (1999), who argue that one can extract meaning from a definition by 
logical deduction, or give meaning to it by refining existing mental images. We say a 
proof attempt is referential if the prover uses (particular or generic) instantiation(s) of 
the referent object(s) of the statement to guide his or her formal inferences. We will 
speak of a proof attempt as syntactic if it is written solely by manipulating correctly 
stated definitions and other relevant facts in a logically permissible way. 

We report two case studies from a project designed to investigate whether students 
think about the referents of mathematical statements while attempting proofs. In one 
case the student produces proofs referentially and in the other, syntactically. The 
specific purposes of examining the case studies are: 1) to show that students in 
transition-to-proof courses can take two qualitatively different approaches to proof 
writing, 2) to demonstrate that students taking each approach can be at least 
somewhat successful in writing proofs, and 3) to highlight what particular difficulties 
students have when using each approach.  

RESEARCH CONTEXT 
In this exploratory study, eleven students were interviewed individually at the end of 
a course entitled “Introduction to Mathematical Reasoning”, the aim of which is to 
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facilitate students’ transition from calculation-oriented mathematics to more abstract, 
proof-based mathematics. It is designed to provide exposure to techniques of 
mathematical proof, as well as to content on logic, sets, relations, functions, and some 
elementary group, number and graph theory. The study aimed to 1) investigate the 
degree to which students at this level tended to instantiate mathematical objects while 
working on proof-oriented tasks, 2) discern any possible correlation between such a 
tendency and success at this level, and 3) identify purposes for which students used 
their instantiations. The participants were asked to complete three tasks, two of which 
involved producing proofs and one of which involved explaining and illustrating a 
provided proof. They were then asked to reflect upon their usual practices when 
trying to produce and read proofs.  

This paper will exhibit data from the proof production tasks. These were presented to 
the students in written form, and are reproduced below.  

Relation task 

Let D be a set. Define a relation ~ on functions with domain D as follows. 

f~g if and only if there exists x in D such that f(x) = g(x). 

Function task 

Definitions: A function f:R→R is said to be increasing if and only if for all x, y∈R, (x>y 
implies f(x)>f(y)). A function f:R→R is said to have a global maximum at a real 
number c if and only if, for all x∈R(x�c implies f(x) < f(c).) 

Suppose f is an increasing function. Prove that there is no real number c that is a global 
maximum for f. 

The participants were presented with these tasks one at a time on separate sheets of 
paper, and were asked to describe what they were thinking about as they attempted to 
answer. They worked without assistance from the interviewer until they either 
completed the task to their own satisfaction or became stuck. At this point the 
interviewer asked them about why they had taken specific actions and/or about why 
they now found it difficult to proceed. These questions focused on the student’s 
choice of actions and conceptions of their own difficulties rather than on conceptual 
understanding or logical reasoning per se. 

The interviews were transcribed, and the authors independently identified episodes in 
which the student used an instantiation and characterized the purpose for which this 
was used. It became clear that some students took a consistently referential approach, 
always instantiating in response to a question, and other students took a consistently 
syntactic approach, almost never instantiating. This was particularly evident in the 
more successful students. This paper will focus on two students, Brad and Carla, both 
of whom obtained A’s on their midterm examination, and made substantial progress 
on the tasks in these interviews. Brad instantiated in response to all of the interview 
tasks. In contrast, Carla never did so. Since they were both articulate in reflecting 
upon their own strategies, they provide good material for us to see how each 
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approach has distinct advantages and disadvantages. It is worth noting that Brad and 
Carla had attended the same class and so had been exposed to the same lectures, the 
same homework assignments etc. 

REFERENTIAL APPROACH: BRAD 
Response to relation task 
Brad read the relation task and, after an initial comment that he was “trying to think 
what the question’s asking”, he announced, 

B: Alright, I’m just going to like write out some examples. To try and…like, set a D. 
And then…yes, write out a function or two. I don’t know if that’s going to help me. 

He wrote the following on his paper: 
D={1,3,5}  f(x)=x2  g(x)=x 

He then said, 
B: Would this be an example? Like where f of x is equal to 1, and g of x is equal to 

1…and since x is 1, like 1 is in the domain, f is related to g?  

He went on to recall that an equivalence relation should be reflexive, symmetric and 
transitive. In reasoning about reflexivity and symmetry he spoke about f and g as 
though these stood for general functions, but referred back to his instantiation in 
which f(1)=g(1) as if to confirm his thinking.  

B: So…so okay if it’s reflexive, then…f of x should be equal to f of x. Or there should 
be x in D with, so that f of x is equal to f of x. Okay. That’s all I’m going to say! 
Laughs. And…that’s true. Because 1 is equal to 1. Symmetric, is um…x – f implies 
– f is related to g implies g is related to f. So…so this is really the g, there’s an x in 
D such that f of x is equal to g of x. g is related to x – ah, f, when there’s an x in D 
such that g of x is related to f of x. Pause. So…writing…implies that g 
of…writing…yes. Because if…because x one, f of x is equal to g of x, then the 
same x in D that g of x must be equal to f of x.  

In reasoning about transitivity, he no longer referred to his instantiation, and made an 
error based on implicitly assuming that the value of x for which f(x)=g(x) is the same 
as the value for which g=h. 

B: And then transitive. f, g, and g is related to some h, then f is related to h. So f is 
related to g is…x in D such that f of x is equal to g of x. And g related to h is 
there’s an x in D such that g of x is related to…is equal to h of x. So then…x is in 
D in both cases. And if x is equal to g of x and g of x is equal to h of x, f of x must 
be equal to h of x. 

The interviewer did not attempt to correct Brad’s answer, but instead asked him what 
role his example had played for him. Brad said,  

B: Um, I guess it just…gives you something concrete […] because this is really 
general. And you can’t really put your hands on this. You know I can’t like, get a 
grasp of it. 
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It appears important to Brad to feel that he can “grasp” the concepts in the question, 
and he seemed to achieve this to his own satisfaction. However, he did not maintain 
explicit links between this example and the general argument, and did not spot his 
own error in this case.  

Response to function task 
Brad’s response to the function task began in a similar way. He again commented 
that he was trying to understand the question, and stated: 

B: And I’m going to take an example to make sure I’m doing it right. 

He wrote the following, along with a small sketch graph of f(x)=x: 

f(x)=x  x=2 f(2)=2  y=3 f(3)=3 
After overcoming some confusion caused by the fact that the notation was not used in 
the standard y=f(x) format, Brad suggested a proof tactic. 

B: …I think we can do this by contradiction. Assume that…assume that um…if f is an 
increasing function then c…ah…then there is…a c? For which there is a max. And 
then prove that that can’t happen. And then, so that’ll prove it.  

He began to work on this idea, but without a very good command of how the 
variables could be set up to make an argument on this basis. 

B:  Alright so, if there is…a global max…writing, mumbling…f of c is greater than 
both f of x and f of y.  

After some struggle, he considered a graphical instantiation: 

B: I’m just trying to see it by looking at the graph. How I can relate it. Like, the two 
terms interrelate. Why…because I can’t even see – I want to know why, there can’t 
be one […] like know why it can’t be and then try to prove.  

When the interviewer asked him to talk through his thinking, he said, 
B: Alright. I’m thinking that in the definition of increasing, there’s never going to be 

one number that’s the greatest. There’s always going to be like, a number greater 
than x. Because it’s, because it’s increasing. So there’s always going to be some 
number greater than the last. So if x is greater than – that’s what I assumed here. x 
is greater than y, then there’s going to be some x plus 1, that is going to be greater 
than y plus 1, so that f of x plus 1 is going to be greater than f of y plus 1. Or 
something like that. Where like, it’s just going to change…. So then, there can’t be 
some number, you know that…if it’s increasing there can’t be some number that’s 
greater than all of them. Or, some f of c. 

In our view Brad seemed to have a reasonable idea that for any number in the 
domain, one can always take a greater number, whose image under the function will 
be greater than that of the original. However, he did not have good control over the 
way in which the definitions, and in particular the variables x,y and c, could be used 
to express this argument. 
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In reflecting upon the function task, the interviewer commented that Brad had spent 
quite a lot of time thinking at the beginning before writing anything, and asked him 
what he was thinking in that time. Brad once again indicated that he was using 
examples to grasp the concepts. 

B: …I didn’t, I never heard of a global maximum. I don’t think we learned about 
increasing, but I’m not sure. I don’t remember learning about it. So I wanted to 
teach it to myself first. And, I want to teach myself by examples, you know. And I 
was kind of starting to understand a bit more when I was trying to, in trying to 
grasp – I grasped increasing, it seemed like, okay. But then I was trying to grasp the 
global max.  

The interviewer then asked what happened when Brad stopped thinking about 
examples and wrote “if f is an increasing function”. Brad replied, 

B: …it doesn’t tell you, proof by induction or proof by contradiction, and so…I’m just 
trying to think of a way that I can prove it. Like, take what’s here and then prove it. 
So then, and then I was just going to write down what, a claim or like what we 
knew.  

Summary  
It seems that Brad used examples at the following junctures in his work: 

1. To initially understand or grasp the concepts in a given question. 

2. To decide on a type of proof to use. 

3. To fall back to for more ideas when stuck. 

This referential approach served him reasonably well in these respects, affording him 
a sense of understanding and an ability to decide how to proceed. What it did not 
seem to afford him was the ability to use this insight to write a full and correct 
general argument. He did not seem to use his examples to effectively guide his 
manipulation of the symbolic notation at the detailed level. In fact, his reflective 
comments on his proof-writing strategies suggest that he was not trying to do this, 
relying on his knowledge of standard types of proof to provide this structure:  

B: …I start out by forming an example to, you know, get a strong grasp of what 
they’re asking me. And then, ah, probably play around with like, maybe do a few 
examples, so I can see what it’s – actually maybe how I could prove it, which 
method of proof I should use. And then once I find a method, proceed from there 
[…] because it seems like in all the different types of proofs we’ve done, there’s 
always some kind of structure. […] Then you can structure it the way you’ve 
normally done it before. 

SYNTACTIC APPROACH: CARLA 
Response to relation task 
Carla responded quickly to the relation task. She listed the properties of an 
equivalence relation, and went on to draw a conclusion. 
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C: Oh…okay. It’s transitive, symmetric, and reflexive. Writing. So to prove that it’s 
transitive…um…pause…if x is in D, f of x is…equal to g of x. f of x is equal to f of 
x, so f is related to g. So it’s reflexive…um…symmetric is…if f is related to g, 
then…f of x is equal to g of x, so g is related to f as well…so…symmetric. And 
transitive is…f is related to g, that means f of x is equal to g of x, and g is related 
to…a I guess…so g of x is equal to a of x. So it’s transitive as well. So…yes. It’s 
an equivalence relation. 

She made an error similar to Brad’s by not giving due consideration to the existential 
quantifier. The interviewer then asked whether she would write anything else if she 
were going to hand this in for homework. Carla said yes and elected to provide an 
answer for symmetric. She wrote: 

Symmetric  YES if f~g, then f(x)=g(x) 

     if f(x)=g(x), then g(x)=f(x) 

     thus g~f, so if f~g, then g~f thus it is symmetric. 

As in Brad’s case, Carla did not spot her own error. 

Response to function task 
Carla’s response to the function task began in a similar way, with reading of the 
question followed by immediate writing. 

C: So…I’m thinking the way to prove this is using contradiction. So, I would start out 
by assuming…there exists…a c…for which…f of x is less than f of c, when x is not 
equal to c. Okay. Pause. So now I’m trying to use the definition of increasing 
function to prove that, this cannot be. Um…so there exists a real number for which f 
of x is less than f of c, for all x…and there’s…f…is an increasing function…for…all 
x…y in R, x greater than y implies f of x greater than f of y. Mm…pause…I guess 
what I’m trying to show is if x is in reals, and they are infinite…for all x…there will 
be…some function f of c greater than f of x. Long pause. So…there exists…an 
element…in R…greater than c. Um…for x…because…f is an increasing 
function…f of x will be greater than f of c. Um…a contradiction…so that…there is 
no c for which f of c is greater than f of x…for all x.  

Despite successfully producing a proof, she commented that “it seems a bit flaky”. 
When asked why, it seemed she lacked a sense of meaning. 

C: I don’t know, it just doesn’t make sense for me. It, it feels like, I just, it’s just 
proved systematically, without being able to imagine what’s going on. So that’s 
why it feels flaky.  

When asked what made her decide to prove by contradiction, Carla answered that she 
had used the form of statement to decide upon an appropriate proof structure.  

C: Because, in class, whenever we have some statement which says… “there is…no 
such number”, or “there exists no such number”, then we assume there is, such 
number. And then we go on to prove that that would cause a contradiction, thus, it 
doesn’t exist. So it was just, something…automatically ingrained, when I see those 
couple of words, I think contradiction. 
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She found it rather difficult to describe how she moved from this point toward 
finding a link between what was given and what should be proven. What is 
interesting is that she was not referring to instantiations as she did this, as revealed by 
her later definite negative answer to a leading question from the interviewer. 

I: Did you have any sort of picture in your head for this one? 
C: No, no…not really. I mean I know what a global maximum is from calculus…I 

mean I’ve done these sort of things so many times. But I didn’t imagine any, any 
sort of function. Something that would have a maximum. […] Really…I guess I did 
it very systematically and theoretically, because I just stepped – this is the rule, and 
do it through. 

Summary 
Overall it seems that Carla takes a syntactic approach to proving, beginning by 
writing down assumptions and using knowledge about standard forms of words to 
decide upon a structure for the proof. This is confirmed by her later reflective 
comments. When asked about any general strategies she had for writing proofs, she 
said, 

C: Um, I just start with a claim…I usually don’t have anything in my head beforehand. 
I start off with what I know, and then I assume, what they’re talking about, that I 
should use, in that case. And then I just try to work off of there. And I try to imagine 
what my goal is, and kind of work from both sides, to the center. 

When asked more specifically about the first things she does, she stated that she 
“thinks of a method to use” and went on to explain how she identifies an appropriate 
one: 

C: If it’s something that has to be proven for all…numbers in such a set, then I use 
induction. And…for instance, if uniqueness is supposed to be proven, I always 
assume there’s two different numbers that produce the same result. Or something to 
that extent. And use contradiction. Or, for there exists no number such that, I say 
yes, assume there is and then use contradiction.  

This basic strategy still stands when she does not immediately know which technique 
to use. 

C: I would try out just different ones and see which one gets me the farthest. […] We 
don’t really know many methods, so it’s not that difficult, to get one right. 

This last comment indicates that this syntactic approach affords Carla the ability to 
answer most of the questions she encounters in this transition course. What it does 
not appear to afford her is a sense of meaningful understanding of her answers, unlike 
that which Brad appears to obtain by reference to examples. Indeed, Carla expressed 
a discomfort with the use examples in proving, both as counterexamples and as a 
basis for constructing general arguments (the latter at least in graph theory).  

C: I could never grasp the, just concept of giving a simple counterexample, any old 
thing. And those were usually the easiest problems on the exam. And I would 
always get zeros on them. Because I tried to disprove it in a general manner. And, I 
guess I’m just not, I don’t trust examples, but… 
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C: …even if I have convinced myself that that proof would be true, and it would 
happen in certain examples, it wouldn’t help me in writing out the proof itself. 
Because it has to hold for all graphs, and…I don’t know how to explain it. I have 
trouble…generalizing graphs.  

It is not clear whether she has over-adopted the maxim “you can’t prove by example” 
or is simply unable to generate a proof based on examining an example.  

DISCUSSION 
Compared with the majority of the interview participants, both Brad and Carla were 
doing well in the class, and made good progress on the interview tasks. However, 
they worked differently: Brad took a consistently referential approach, and Carla a 
consistently syntactic approach. The referential approach afforded Brad a strong 
sense of meaningful understanding and a way to decide on an appropriate proof 
framework, but left him sometimes lacking an ability to coordinate the details of a 
general argument. The syntactic approach afforded Carla a systematic way of 
beginning a proof attempt and deciding on an appropriate proof framework, and 
pursuing this at the detailed level. However, it left her sometimes lacking a sense of 
meaning as well as confidence in situations in which examples could be useful. 
We suggest that these different approaches deserve attention if we wish to help 
similar students build on their strengths. It would probably be more productive to 
help Brad describe his examples formally than to reject the examples in favor of a 
rigid approach to formal work; likewise, to allow Carla to keep using her syntactic 
strategy as a first approach, but to increasingly recognize situations in which 
examining examples can be useful. However, we also note that both students seem to 
have an underdeveloped notion of how to use examples and syntax together to 
construct a proof. Hence we suggest that those taking either approach could benefit 
from instruction that emphasizes the detail of links between formal statements and 
proofs and their referent objects and relationships. 
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Pre-algebraic content has recently been introduced in primary education. One 
question that is worth examining is to what extend does the teachers’ views of the 
complexity of algebraic tasks match the actual students’ difficulty. In this report we 
focus on teachers  ̀beliefs about the students  ̀difficulty to handle simple equations. 
Ninety-three 6th grade students completed a test with 14 tasks, while 50 teachers 
rated the items according to difficulty. It was found that teachers could only partially 
predict students understanding and reasoning. Contrary to teachers  ̀perceptions, the 
students could manage word equations and story problems easier than they could 
handle tasks represented by pictures and diagrams. This mismatch needs to be 
addressed to help teachers organize productive learning activities. 

Introduction  
Beliefs constitute one of the three basic components of the affective domain, the 
other two being emotions and attitudes (McLeod, 1992). Beliefs might be defined as 
one’s personal views, conceptions and theories (Thompson, 1992). The importance of 
the construct lies in findings that teachers’ behavior is primarily determined by their 
belief system rather than by their own knowledge. Experience and prior knowledge 
are also important, but beliefs act as the “driving forces” in shaping the structure and 
content of their practices in the classroom.  

The teachers’ beliefs shape the type, content and representation format of the 
activities used in the classroom. As Hersh (1986) put it, “one’s conceptions of what 
mathematics is affects one’s conceptions of how it should be presented” (p.13). As 
Nathan & Koedinger (2000a) mention, “teachers’ beliefs about students’ ability and 
learning greatly influence their instructional practices” (p. 168). More specifically, 
their previous study of teachers’ beliefs has revealed that teachers consider students’ 
ability to be the characteristic, which has the greatest influence on their planning 
decisions. Furthermore, Borko & Shavelson (1990) have found that teachers 
generally report that information about students is the most important factor in their 
instructional planning. Raymond (1997) presented a visual model depicting the 
relationships between mathematics beliefs and practice. She found a direct 
relationship between mathematics beliefs and mathematics teaching practice. 

Recently, the mathematics education community has given more emphasis on 
studying the teachers’ beliefs on specific aspects of mathematics teaching, while little 
attention has been paid on studying beliefs about the students’ ability on developing 
specific mathematical content. The Professional Standards for the Teaching of 
Mathematics (NCTM, 1991) proposes that teachers must be more proficient in 
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selecting mathematical tasks to engage students’ interests and intellect. For 
successful learning outcomes, it is necessary for mathematics teachers to have strong 
mastery of mathematics content, mathematics pedagogy and knowledge of children’s 
mathematical thinking. Thus, it is important to study how the teachers’ beliefs guide 
them to take into consideration these variables during instructional decision making. 

In this study we examine teachers’ beliefs about the ways students’ develop the 
concept of equation in the elementary school. This concept has traditionally been 
taught at middle and high schools. Elementary school teachers’ preparation did not 
include any training on the teaching of pre-algebraic concepts. 

The early development of algebra concepts 
During the last decade, there has been an effort internationally, to “algebrafy” the 
mathematics curriculum from as early as the pre-kindergarten years. That is, to 
introduce algebra content into the elementary school curriculum. According to the 
National Council of Mathematics (NCTM, 2000):  

by viewing algebra as a strand in the curriculum from pre-kindergarten on, teachers can 
help students build a solid foundation of understanding and experience as a preparation 
for more-sophisticated work in algebra in the middle grades and high school (p. 36).  

The question though is “What might mean to suggest that algebra should start that 
early?” Kieran and Chalouh (1993) “consider as pre-algebraic the area of 
mathematical learning in which students construct their algebra from their arithmetic” 
(p. 179). 

The difference between arithmetic and algebra is in the way questions and problems 
are expressed. The position of the unknown quantity in a problem statement 
determines the type of the equation and the required procedure for its calculation. 
Therefore, we consider the position of the unknown quantity to have a significant 
effect on the difficulty level of mathematical problems in an early algebra 
curriculum. For the purposes of this study, we consider as arithmetic equations those 
that the unknown quantity is the result (at the end), i.e. 32 + 25 = � and as algebraic 
equations those that the unknown quantity is at the start, i.e. � + 25 = 57. 

Additionally, another factor that influences the difficulty level of mathematical 
problems is the representation format. Specifically, according to the developmental 
theories of Piaget, for each new concept studied, students use concrete objects to 
solve problems, next they use pictures, icons or diagrams and finally they use abstract 
symbols. This sequence of learning must be used for each new major concept that is 
introduced to elementary school children. 

Furthermore, we anticipate that another factor that influences the difficulty level of 
mathematical tasks is the number of quantities in a problem situation; the difficulty 
level increases with the number of quantities. Thus, a problem with two quantities 
(i.e., the number of beads Mary and John have) is less difficult than a problem with 
three quantities (i.e., the number of beads Mary, John and Peter have). 
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This study has focused on teachers’ beliefs about a specific topic of the mathematics 
curriculum for the elementary grades. In particular, we studied the teachers’ beliefs 
on the development of an early algebra concept. Since, MacGregor and Stacey (1999) 
suggest that one of the five aspects of number knowledge that are essential for 
algebra learning is understanding equality, this study has given emphasis on the 
ability of 6th graders to solve arithmetic and algebraic equations in different problem 
contexts and on the teachers’ beliefs about the factors that affect the difficulty level 
of the equations. 

The research questions were: (1) Which factors do teachers’ of 5th and 6th grades 
believe that influence the difficulty level of arithmetic and algebraic equations that 6th 
graders are expected to solve? (2) How do teachers’ beliefs compare to students’ 
responses on different types of arithmetic and algebraic equations? 

METHODOLOGY 
The student questionnaire was made up of 14 mathematical tasks and students were 
asked to complete it in 40 minutes. The tasks included were designed according to 
the factors considered to affect the difficulty level of problems, as mentioned in the 
previous section. Table 1 refers to the specifications of each type of task used with a 
sample from each type. The first factor considered was the position of unknown 
quantity. Problems with the result as unknown quantity are considered arithmetic 
equations, whereas those with start unknown quantity are considered algebraic 
equations. The second factor considered was the representation format of the 
equations. Five formats were used: pictures, diagrams, word equations (verbal 
equations with no context), story problems (verbal equations with context) and 
symbolic equations where a geometrical shape represented the unknown quantity. 
The third factor considered was the number of quantities/variables in the equation. 
Problems were designed with either two or three known quantities and one unknown. 

The teacher questionnaire was made up of the same mathematical tasks that were 
included in the student questionnaire. Teachers were asked to sequence them by 
giving a value of 1 to 14 (1 for the easiest and 14 for the most difficult) in order to 
evaluate the level of difficulty of each task. They were given a week’s time to 
complete the questionnaire at their own time.  

The student sample consisted of 93 grade 6 students from two urban schools in 
Nicosia and the teacher sample consisted of 50 grade 5 and 6 teachers in urban and 
rural elementary schools in Nicosia district. Their teachers administered the student 
questionnaires. The teachers read aloud the directions to them, supervised the 
completion of the questionnaires without giving any additional information, collected 
them and returned them to the researchers the next day. 

The data were analyzed using the statistical package SPSS. The 14 mathematical 
tasks were ordered according to the percentage of students who successfully 
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answered the problem. The same tasks were also ordered according to the average 
value of level of difficulty teachers had given in the questionnaire. 

RESULTS 
The reliability indices (Cronbach Alpha) for student and teacher questionnaires were 
0,67 and 0,83 respectively. Both exploratory factor analyses for each of the student 
and teacher data confirmed the factors-variables used to design the mathematical 
tasks included in the two questionnaires. 

The students’ performance in the early algebra problems showed that none of the 
problems was very difficult for them. The percentages of students’ successful 
responses to the problems were from 98% to 61%. The easiest problems for them 
were the symbolic equations with 2 quantities, the word equations with 3 quantities, 
the start unknown story problem with 3 quantities and the result unknown picture 
with 2 quantities. The problems with medium difficulty for the students were the 
symbolic equations with 3 quantities, the result unknown story problem with 3 
quantities and the start unknown picture with 3 quantities. More difficult tasks were 
the four result and start unknown diagrams with 2 or 3 quantities.  

Overall, teachers’ believed that the algebraic equations were more difficult than the 
arithmetic ones. They systematically ordered problems with result unknown quantity 
with a smaller value of difficulty level than those with start unknown quantity, for 
each representation format of the problems. Additionally, they ordered problems with 
2 quantities with a smaller value of difficulty level than those with 3 quantities for 
each representation format. As for the representation format of the problems, teachers 
believed that the easiest tasks for the students were the symbolic equations. Next, 
they believed that diagrams with 2 quantities were more difficult, along with the 
result unknown diagram with 3 quantities, the symbolic equations with 3 quantities 
and the result unknown word equation and story problem with 3 quantities. Finally, 
teachers believed that the most difficult problems for 6th graders were the start 
unknown diagram, picture and word equation with 3 quantities. 

Figure 1 presents the way students performed, considering the representation format 
of the problems, starting from the ones that students found the easiest. They were 
able to successfully complete symbolic equations with 2 quantities more easily than 
word equations. Those were easier than story problems and next were the symbolic 
equations with 3 quantities. Students faced difficulties solving the equations, which 
were presented pictorially and diagrammatically. 

Figure 2 presents the way teachers ordered the problems according to how difficult 
they believed they were, starting from the easiest ones. They believed that symbolic 
equations were the easiest tasks for the students. Next were the diagrams and the 
symbolic equations with 3 quantities and the pictures. Teachers believed that the 
most difficult tasks were those represented verbally, either in a word equation format 
or in a story problem format. 
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Figure 1: Students’ performance.         Figure 2: Teachers’ beliefs. 

Comparing the above two figures, one can understand that there is an agreement on 
the level of difficulty of the symbolic equations with 2 and 3 quantities, whether they 
are arithmetic or algebraic ones. Next though one can notice a disagreement between 
the students’ performance and the teachers’ beliefs on the level of difficulty for 
diagrams, word equations and story problems. Although teachers believed that 
diagrams and pictures were easier than story problems and word equations, the 
students’ performance manifested the opposite direction. Word equations and story 
problems were less difficult for them than pictures and diagrams. This finding shows 
that students were able to respond in a better way to equations at the pre-algebraic 
level, which were represented verbally than pictorially. 
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CONCLUSIONS 
Teachers’ beliefs about the difficulty level of early algebra problems indicate their 
conceptions on the ways that their students are able to respond to them. Teacher 
decision making about planning and structuring the content of their teaching is 
greatly influenced by their beliefs on the difficulty of the activities they include in the 
classroom. The tasks need to be according to the cognitive developmental stage of the 
students. For these reasons, the accuracy and relevance of teachers’ beliefs on a 
specific topic of the curriculum influence the ways of teaching and, consequently, the 
learning outcomes. 

The results showed that 5th and 6th grade teachers were able to correctly predict the 
level of difficulty between arithmetic and algebraic equations in different 
representation formats. This finding is in agreement with previous research outcomes 
(Carpenter, Fennena & Franke, 1994; De Corte, Greer & Verschaffel, 1996) that 
problems with result unknown quantities are easier than problems with start unknown 
quantities. 

On the contrary, teachers’ beliefs have been found to be discrepant from the students’ 
performance about the level of difficulty of differently represented equations. The 
representation format is a very important factor to consider when selecting tasks and 
activities for teaching concepts. As the data showed, students were able to perform 
better at verbal problems overall, whereas teachers believed that these tasks were 
harder than pictorial ones. This finding is in line with Nathan & Koedinger (2000a) 
who mention, “these differences have a significant role on how teachers perceive 
students’ reasoning and learning” (p. 184). Consequently, when tasks are not in 
accordance with the cognitive level of the students, they are not able to respond 
successfully to the requirements of the lessons. This may affect their interest, 
participation, performance and attitude toward mathematics and their mathematical 
ability. 

Teachers’ beliefs have been found to follow the ways that this particular 
mathematical content is presented in the textbooks used in Cypriot schools today. 
This finding verifies what Nathan and Koedinger (2000b) had concluded. 
Consequently, it seems essential to include tasks and activities in the mathematics 
textbooks that are represented in pictorial, diagrammatical and verbal formats. Thus, 
students will be able to develop the concept of algebraic equation in a natural way as 
early as the elementary school, in such a way that will help them extend their 
knowledge later on to the symbolic formats required for further algebra study. 
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Appendix 1 

Mathematical task Position of 
unknown 

Representation 
format 

No of 
quantities 

Find the value of . Result Picture 2 

Find the value of 
 .

 Start Picture 3 

Find the value of �. 
 

Result Diagram 2 

Find the value of �. 
 

Start Diagram 2 

Find the value of �. 

 

Result Diagram 3 

Find the value of �. 
 

Start Diagram 3 

Chris played with his taws. At the beginning, he 
had 32 taws. At game 1 he lost 12. At game 2 
he won 8. How many did he have at the end? 

Result Story problem 3 

Steve bought a cheese-pie from the school 
canteen for 30 cents and an orange juice for 25 
cents. He was left with 45 cents in his pocket. 
How much did he have at the beginning? 

Start Story problem 3 

When I multiply 5 by 4 and add 3, what number 
do I get? 

Result Word equation 3 

I think of a number A and multiply it by 3. Next 
I add 2 and I get 14. What is number A? 

Start Word equation 3 

Find the value of �.  24 + 8 = � Result Symbolic 2 
Find the value of �.  � + 7 = 30 Start Symbolic 2 
Find the value of �.  28 – 16 + 8 = � Result Symbolic 3 
Find the value of �. � + 25 – 12 = 33 Start Symbolic 3 
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DEVELOPING STUDENTS’ UNDERSTANDING OF THE 
CONCEPT OF FRACTIONS AS NUMBERS 

Solange Amorim Amato 

Universidade de Brasília, Brasília, Brazil 

Research has shown that many students have not fully developed an understanding 
that fractions are numbers. The purpose of this study was to investigate the effects on 
the understanding of fractions as an extension to the number system of a teaching 
programme focusing on mixed numbers. Significant differences were found in favour 
of the programme with greater emphasis on mixed numbers. The study suggests that 
a programme involving multiple representations for mixed numbers may help 
students realise that fractions are numbers. 

INTRODUCTION 
While students may have some facility with fractions, many of them appear not to 
have fully developed an understanding that fractions are numbers (e.g., Kerslake, 
1986, Domoney, 2002 and Hannula, 2003). Kerslake (1986) emphasises the need for 
students to understand fractions at least as an extension of the number system. Her 
report presents some of the difficulties 12 to 14 year old students have in connection 
with fractions. The suggestion is made that many of those difficulties occur because 
students see fractions as only parts of a shape or quantity and not as numbers. The 
part-whole model was the only interpretation familiar to all students who took part in 
her study. Kerslake thinks that the problem starts in primary school when fractions 
are first introduced merely as parts of geometric pictures. She argues that school 
practice does not give enough hints to students that fractions are numbers. The work 
with graphs, algebraic equations and number patterns usually involves only integers. 

Research has also shown that students have difficulties in identifying the unit in part-
whole diagrams showing more than one unit (e.g., Dickson et al., 1984). When a 
fraction greater than one is represented in a diagram like the one in Figure 1, many 
students respond 7/10 rather than 7/5. Similar problems arise when separate part-
whole diagrams are used to illustrate addition of two proper fractions (Figure 2) or 
when the total is greater than one unit (Figure 3). 

 

 

 

 

 

In the CSMS investigations, Hart (1981) noticed that diagrams sometimes helped in 
the solution of problems with fractions, or were used to check whether the answer 

 

        
        

2
3  + 4

3

 = 
7
5  

Figure 2 

 

           
           

10
7  

Figure 1 

 

         

         

8
5  + 

8
7  = 

16
12  

Figure 3 



Amato 

 

2- 50 PME29 — 2005 

found was feasible. However, the process of interpreting a part-whole diagram often 
involved: (i) counting the number of pieces which were shaded, (ii) counting the total 
number of pieces, and (iii) then writing one whole number on top of the other. In the 
interviews, just after the students answered the fraction shaded in a part whole 
diagram for 3/5, they were asked to give the fraction not shaded. Hart reports that few 
subtracted the fraction shaded from one (1 − 3/5) they often used again the counting 
process just mentioned. It may be here conjectured that those students gave the 
correct fractions without realising the connection between the fraction 5/5 and the 
whole number 1. In fact, this counting process of naming a fraction does not require 
the application of any concept of fractions as parts of a whole. The fraction is 
interpreted as a pair of whole numbers. Research has also shown that students have 
difficulties in identifying a proper fraction in a number line showing two units instead 
of one unit of length (e.g., Kerslake, 1986 and Hannula, 2003). A common 
misconception is to place the fraction 1/n at (1/n)th of the distance from 0 to 2. So the 
identification of the unit in number lines seems to be as problematic to some students 
as in part-whole diagrams. 

Although part-whole diagrams are thought to be misleading and a possible inhibitor 
of the development of other interpretations for fractions (e.g., Kerslake, 1986), Pirie 
and Kieren (1994) present how 10 year old Katia achieved “a new understanding” (p. 
174) of addition of unrelated fractions (halves and thirds) by drawing part-whole 
diagrams (pizzas) for the fractions and later dividing both into sixths. There is also 
some agreement that fractions should be introduced as parts of a whole (e.g., English 
and Halford, 1995). Probably because it is the first aspect of fractions met in a child’s 
life. So more research needs to be done about how a move from the part-whole aspect 
to the aspect of fractions as numbers could be achieved (Liebeck, 1985 and Kerslake, 
1986). This move was the focus of the present research. 

THEORETICAL FRAMEWORK AND RELATED LITERATURE 
English and Halford (1995) have developed a psychological theory of mathematics 
education which combines psychological principles with theories of curriculum 
development. They discuss the importance of representations and analogical 
reasoning in helping students construct their mathematical knowledge from prior 
knowledge. Yet the choice of representation and the actions to be performed upon it 
can have important consequences for mathematical learning. Some representations 
can even obscure or distort the concepts they are supposed to help students learn. 
Certain representations like fictitious stories such as “mating occurs only between 
fractions, so mixed numbers - 1¾ - become improper fractions - 7/4 ...” may help 
students remember procedures but do nothing to develop conceptual understanding 
(Chapin, 1998, p. 611). Some important pedagogical and physical criteria for 
selecting representations are suggested in the literature (e.g., Skemp, 1986 and 
English and Halford, 1995), but only the pedagogical versatility criterion will be 
discussed in this paper. 
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Skemp (1986) advises teachers to choose versatile representations which can be used 
to construct long-term schemas. Such schemas are applicable to a great number of 
mathematical concepts and so make the assimilation of later concepts easier than a 
short-term schema which will soon require reconstruction. English and Halford 
(1995) call the criterion of selecting versatile representations “the principle of scope”. 
They consider the part-whole model to be a representation with scope as it can 
illustrate many fraction concepts and operations. The idea is to use the same type of 
representation to communicate several concepts and operations which are related 
among themselves. It is not just a matter of economy, but of allowing more 
relationships to become exposed. 

Bell et al. (1985) think that some misconceptions may result from new concepts not 
being strongly connected with the student’s previous concepts. On the other hand, 
some other misconceptions may result from “the absence of some actually essential 
detail of the knowledge-scheme which has been overlooked in the design of the 
teaching material” (p. 2). Therefore, certain misconceptions may also be related to 
instructional constraints which may result in students’ construction of a schema in a 
more limited way. Naming improper fractions (Figure 1) or adding the numerators 
and denominators in addition of fractions (Figures 2 and 3) may be the result of a 
more limited schema for fractions. The student may see fractions merely as a pair of 
two whole numbers, one written on top of the other. In order to develop a conceptual 
knowledge of rational numbers, students should be able to both differentiate and 
integrate whole numbers and fractions. Yet versatility of a representational model 
does not imply uni-embodiment. It seems important to use several models for each 
concept, but two or more related concepts, whenever possible, should be represented 
together so that their relationship becomes clear. An example which concerns the 
present study involves using multiple representations to work simultaneously with 
whole numbers and fractions in order to highlight the relationships between those two 
sets of numbers. 

METHODOLOGY 
The purpose of the study was to investigate the effects on the understanding of 
fractions as an extension to the number system of a teaching sequence for fractions 
which places emphasis on fractions of the type n/n (n ≠ 0) and on mixed numbers 
since from the beginning of the instruction. The study was also concerned with ways 
of helping students to move from the part-whole aspect to the aspect of fractions as 
numbers. Each of two teaching sequences was administered to a group of around 60 
students of 11 years of age drawn from six schools in England (Amato, 1989). Group 
X used multiple representations (contexts, concrete materials, pictures and diagrams, 
spoken languages and written symbols) to represent proper fractions and mixed 
numbers from the beginning of instruction. Group Y used multiple representations to 
represent only proper fractions at the beginning of instruction. However, at the end of 
instruction part-whole diagrams for mixed numbers were also presented. 
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Some cheap concrete materials which are used to teach place value with whole 
numbers, like coloured plastic straws, can easily be extended to fractions and 
decimals through cuts of the unit. For example, the number 135¾ can be represented 
with straws as in Figure 4. Hundreds, tens and units can be represented together with 
fractions of those units in both enactive and iconic ways. This type of representation 
may help students to visualise fractions and decimals as an extension to the right side 
on a place value system and so as an extension to the number system. The 
terminology employed in some textbooks does not seem to help students to associate 
fractions with an extension to the number system. When learning about whole 
numbers, they read words like units, tens, hundreds, etc. However, when learning 
about fractions, the word “unit” is substituted by the word “whole”. So not many 
attempts are made to associate fractions with the previously learned numbers by an 
appropriate use of language. 

Hundreds Tens Units pieces 
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3

 

Figure 4 

Part-whole diagrams can also be helpful in the development of the concept of 
fractions as numbers if used in a way that highlights the unit and the connections 
between fractions and whole numbers. Soon after working with concrete materials 
and part-whole diagrams for fractions less than one unit (e.g., 1/4, 2/4 and 3/4, Figure 
5), diagrams for fractions equal to one unit (e.g., 4/4, Figure 6) and mixed numbers 
(e.g., 2 units and 3/4, Figure 7) are presented. 

 

 

 

 

 

The presence of whole unsliced units in those diagrams may help some students 
realise that the proper fractions in the mixed number notation are numbers smaller 
than one. Often mixed numbers are introduced much later in the book or in one of the 
following books and together with improper fractions. The equivalence between the 
two notations is usually presented with the help of diagrams where all the “wholes” 
are cut into equal pieces (Figure 8). This kind of representation does not seem to 
emphasise the two units as much as when they are not cut (Figure 7). 
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In this study, not only fractions were added in similar manner to that of whole 
numbers but also the “carrying” process was extended to fractions in a way that 
reinforces the relation between fractions of the type n/n and the whole number 1. So 
the study was concerned with ways of helping students to move from the part-whole 
aspect to the aspect of fractions as numbers and it sought to answer the question: 
“Does the use of mixed numbers from the beginning of instruction concerning 
fractions help the development of the concept of fractions as numbers?” 

The main activities included in both teaching sequences were: 

(1) representing numbers with straws and recording in figures the number being 
represented with pictures of straws; 
(2) counting forward and backwards with fractions: (a) shading diagrams to represent 
numbers, (b) recording in figures the number being represented with diagrams, and 
(c) following in figures only a counting number pattern; 
(3) using part-whole diagrams for recording the number being represented by the 
shaded part and the missing number (unshaded part); 
(4) using part-whole diagrams to represent three-dimensional divisible units and to 
help solving sharing problems with whole numbers for both dividend and divisor; 
(5) adding fractions: (a) adding fractions in a similar algorithm to the one used for 
whole numbers (vertical position), and (b) recording resulting fractions of the type 
n/n as the whole number “1”; 
(6) multiplying a whole number by a fraction: (a) using part-whole diagrams for 
changing multiplication into repeated addition and to help combining fractions that 
together would be equivalent to one unit or a whole, (b) changing multiplication into 
repeated addition only in figures, and (c) using multiplication tables in a way similar 
to that which is used when a whole number is being multiplied by another whole 
number (the sequence of products would form a number pattern); and 
(7) Working with number lines associated with the idea of measuring. 
The teaching sequences were evaluated by a pre-test, an immediate post-test and a 
five weeks delayed post-test. The questions on the tests involved the use of fractions 
in number contexts similar to those in which whole numbers are often used. The 
questions were extracted from the tests in the projects “Concepts in Secondary 
Mathematics and Science” (Hart, 1981) and “Strategies and Errors in Secondary 
Mathematics” (Kerslake, 1986). Covariance analyses were performed on the scores 
of each post-test, and in both cases, the scores on the pre-test were used as covariate. 
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SOME RESULTS 
The types of activities, the fractions and the quantity of items involving fractions on 
the worksheets were the same for both groups X (mixed numbers) and Y (no mixed 
numbers). However, group X spent more time on the worksheets (about 4½ hours) 
than group Y (about 4 hours). This was expected as group X had at the beginning of 
instruction three extra worksheets revising place value with whole numbers. Also 
when group X worked with mixed numbers at the beginning of instruction, they not 
only had to count pieces and write fractions but also to count units and write whole 
numbers. A sample of 148 students took the pre-test and started the instructional 
sequences. Eight of them did not manage to finish 10% of the sequence. On the days 
when the immediate and delayed post-tests were administered, totals of nine and 
eleven students were absent respectively. Therefore, the experimental sample was 
composed of 120 students who had done the three tests and finished 90% of the 
teaching sequence. 

Analysis of covariance with one regression line was used to investigate the effects of 
using mixed numbers from the beginning of instruction on the acquisition of the 
concept of fractions as numbers and to allow for initial differences between the 
experimental groups on the pre-test score. First, it was used to test the operational 
hypotheses and employed the score on the immediate post-test as the dependent 
variable. In a second instance, covariance analysis was used for both re-testing the 
hypotheses and investigating the achievement over time of the two groups. In the 
latter case the delayed post-test was taken as the dependent variable. The main 
variable which were thought to relate to the dependent variable in both instances 
were the pre-test score. The operational hypothesis was tested with differences at the 
.05 level considered significant. 

The majority of students did not perform well on the pre-test. More than 90% of the 
experimental sample scored less than half of the maximum possible score in the pre-
test. It could be noticed that some students had little knowledge about fractions, 
especially their notation. They could easily talk about halves and quarters but 
questions like “How do I write one quarter in figures?” were asked in the pre-test and 
in the initial worksheets. The effect of “Mixed Numbers from the Beginning of 
Instruction” was significant in both the immediate post-test (scores without covariate 
adjustment: F = 13.56 and p = .000 and scores adjusted for pre-test scores: F = 10.73 
and p = .001) and in the delayed post-test (scores without covariate adjustment: F = 
15.01 and p = .000, and scores adjusted for pre-test scores: F = 12.88 and p = .000). 

Student teachers’ understanding of the concept of fractions as numbers has also been 
found to be limited (Domoney, 2002). More recently, I have been using the idea of 
focusing on fractions of the type n/n and mixed numbers since the beginning of 
instruction with student teachers (Amato, 2004a). The idea has proved to be effective 
in helping them overcome their difficulties in relearning rational numbers 
conceptually within the short time available in pre-service teacher education (80 
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hours). I have greatly reduced the number of activities for place value and operations 
with whole numbers alone. However, through activities involving multiple and 
versatile representations for concepts and operations with mixed numbers and 
decimals (e.g., 35¾+26¼ or 24.75-12.53), student teachers have been provided with 
many opportunities to: (a) revise whole numbers as the representations for mixed 
numbers and decimals include a whole number part, and (b) make important 
relationships between rational numbers interpretations and between operations with 
whole numbers and operations with fractions and decimals. I am also using a similar 
program to help Brazilian 10 year olds construct rational numbers concepts and the 
connections among whole numbers, fractions, decimals and percentages. 
CONCLUSIONS 
Significant differences were found in favour of those students who used mixed 
numbers from the beginning of instruction. Students’ understanding of fractions as an 
extension to the number system appear to benefit from the use of multiple 
representations for fractions equal to one unit (n/n) and mixed numbers. It was not 
difficult to teach the mixed number notation at the beginning of instruction soon after 
the students had learned the notation for proper fractions. It was interesting to note a 
student using his fingers to find the solution to “2½ + 2½”. He represented 2½ by 
showing 2 whole fingers and ½ of the third finger. He then covered the other half 
with his second hand and hide the fourth and fifth fingers behind the palm of his hand 
and said “2½”. After that he showed the 2½ fingers which were hidden and said “plus 
2½ makes 5”. The process of adding whole numbers with fingers was extended 
naturally to the addition of mixed numbers with halves. In order to understand 
fractions as an extension to the number system, students need a variety of experiences 
with fractions equal to one unit and mixed numbers as well as with numbers between 
zero and one unit. 
Kerlake’s suggestion (Kerslake, 1986) that the geometric part-whole interpretation of 
fractions inhibits the understanding of fractions as numbers and other interpretations 
of fractions appears to be justified. Part-whole diagrams may be interpreted as a 
particular way of representing two whole numbers and not as a representation of a 
single number. The relationship between one whole shape and the whole number 1 
may not be recognised by some students. On the other hand, the type of part-whole 
diagrams used to represent mixed numbers in the activities performed by the students 
who participated in the present study were seen as beneficial to the understanding of 
fractions as an extension to the number system. The presence of whole unsliced units 
in those diagrams may have helped students realise that the proper fractions in the 
mixed number notation were numbers smaller than 1. 
Mixed numbers are often used in everyday life: traffic signs (e.g., 3¼ miles), recipes 
(e.g., 1½ pints of milk) and ages (e.g., 9½ years). Using decimals in such instances 
would be more complicated language. To Liebeck (1985) the concept of mixed 
numbers arises naturally from measuring objects (e.g., 1 metre and 2 tenths of a 
metre). She thinks that recording a length between 1m and 2m as 1½ m is a strong 
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“hint” that there are numbers between two consecutive whole numbers. Approaches 
such as “1 + ¼ can be written as 1¼ “ and “3½ = 3 + ½ = 6/2 + 1/2 = 7/2” (p. 33) are 
too formal for the introduction of mixed numbers and improper fractions 
respectively. Hannula (2003) found that mixed numbers were much easier to locate 
on a number line than proper fractions. Yet little emphasis appears to be given to 
mixed numbers. Many textbooks introduce fractions first with pictures of real objects 
where pieces are missing and then with geometric part-whole diagrams, but normally 
only fractions “less than one whole” (proper fractions) are presented. Few textbooks 
work extensively with fractions “equal to one unit” (n/n with n ≠ 0) and mixed 
numbers. These fractions may provide the initial link between fractions and whole 
numbers. 
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  MULTIPLE REPRESENTATIONS IN 8TH GRADE ALGEBRA 
LESSONS: ARE LEARNERS REALLY GETTING IT? 

Miriam Amit & Michael N. Fried 

Ben Gurion University of the Negev 

The potential benefits to be gained from multiple representations in mathematics 
education, both where the representations are constructed by learners and where 
learners use standard representations, have long been recognized. In this paper, 
qualitative data from 8th grade lessons on linear equations are produced questioning 
how well this potential, in the case of standard representations, is realized in a real 
learning environment. 

INTRODUCTION 
The general case for multiple representations in mathematics education hardly needs 
defending anymore—most of us have long been persuaded of the central place of 
multiple representations in problem solving and in the understanding of mathematical 
ideas (thorough discussions can be found in, for example, Goldin, 2002; Schultz & 
Waters, 2000; Kaput, 1999; Greeno & Hall, 1997; Janvier, 1987). This paper, 
therefore, does not aim to adduce further evidence for the importance of multiple 
representations, nor to challenge it. Rather, we wish to look at the practical question 
of how ideas about multiple representations are realized in real classrooms. Do 
teachers succeed in creating learning environments in which they and their students 
share an understanding of why multiple representations of mathematical ideas and 
problems ought to be entertained? Are students truly reaping the potential benefits 
from lessons explicitly designed with multiple representations in mind?   

These questions are in fact quite complex for they concern not only students’ ability 
to work with multiple representations as prescribed in documents such as the NCTM 
Principles and Standards (NCTM, 2000), but also their interpretations of the 
meaning and value of what they are doing when they use multiple representations. In 
the present paper, we can only hope to leave readers with the sense that they ought 
not be complacent about these practical questions and their complexities, even while 
they are thoroughly convinced of the correctness of the theory. To this end, based on 
data from an 8th grade classroom studying systems of linear equations, we shall show 
that it can happen that in a learning environment where multiple representations have 
been fully taken into account by a well-informed teacher learners may, nevertheless, 
fail to grasp the idea of multiple representations and why they are important. Given 
the allowable length of the paper, we shall give most of our attention to one particular 
interview, though others could have served as well.    

But before we present this data and discuss their significance, we need to 
circumscribe our treatment of multiple representations. For the word ‘representation’ 
itself has multiple meanings in mathematics education, a fact that made discussions 
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in the original 1990-1993 PME working sessions on representations at once difficult 
and rich (see Goldin, 1997). But with respect to classroom practice, it is possible to 
distinguish two main tendencies concerning multiple representations. One points 
towards students constructing their own representations, both in pure mathematical 
contexts and in situations where mathematics is applied to non-mathematical or real-
life situations. The other points towards students using or adapting standard 
representations, particularly, algebraic, graphic, tabular, and verbal representations.  
Of course, these tendencies are not exclusive. Both tendencies are evident in the 
NCTM ‘representation standard’, which stipulates that “Instructional programs from 
prekindergarten through grade 12 should enable all students to— 

• create and use representations to organize, record , and communicate 
mathematical ideas; 

• select, apply, and translate among mathematical representations to solve problems; 
• use representations to model and interpret physical, social, and mathematical 

phenomena” (NCTM, 2000, p.67) 
In many classroom situations, especially where standard material is taught, it is the 
second tendency, that is, towards multiple representations of a standard kind, that 
naturally dominates (this is true even where the means of presenting the 
representations are not entirely standard as in Schultz & Waters (2000)). In this case, 
what the teacher aims towards is chiefly the ability to select, apply, and translate 
among different representations; this, in turn, demands that learners understand the 
meaning and value of representations. In this paper, we shall be concerned only with 
this second tendency.    

RESEARCH SETTING AND METHODOLOGY 
The research setting for the results to be presented here is the Learners’ Perspective 
Study (LPS), which is an international effort involving nine countries (Clarke, 1998; 
Fried & Amit, 2004). The LPS expands on the work done in the TIMSS video study, 
which exclusively examined teachers and only one lesson per teacher (see Stigler & 
Hiebert, 1999), by focusing on student actions within the context of whole-class 
mathematics practice and by adopting a methodology whereby student 
reconstructions and reflections are considered in a substantial number of videotaped 
mathematics lessons.   

As specified in Clark (1998), classroom sessions were videotaped using an integrated 
system of three video cameras: one viewing the class as a whole, one on the teacher, 
and one on a “focus group” of two or three students. In general, every lesson over the 
course of three weeks was videotaped, that is, a period comprising fifteen consecutive 
lessons. The extended videotaping period allowed every student at one point of 
another to be a member of a focus group.   

The researchers were present in every lesson, took field notes, collected relevant class 
material, and conducted interviews with each student focus group. Teachers were 
interviewed once a week. Although a basic set of questions was constructed 
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beforehand, in practice, the interview protocol was kept flexible so that particular 
classroom events could be pursued. In this respect, our methodology was along the 
lines of Ginsburg (1997). 

This qualitative methodology was chosen in general because the overall goal of LPS 
is not so much to test hypothesized student practices as it is to discover them in the 
first place. In this particular instance, however, a qualitative methodology was also 
necessary because, as we remarked above, our investigation of multiple 
representations in the classroom involved to a great degree teachers’ and students’ 
interpretations of the meaning and intent of the classroom activity, as can be seen 
schematically in the following figure: 

    

 

 

 

 

 

 

The specific case that formed the basis for this paper was a sequence of 15 lessons on 
systems of linear equations taught by a dedicated and experienced teacher, whom we 
shall call Danit. Danit teaches in a comprehensive high school whose direction in 
mathematics education is along the lines of the NCTM standards approach; Danit 
herself is well-informed about the educational issues involved. The 8th grade class 
Danit teaches is heterogeneous in ability and multiethnic.  

DATA 
As mentioned above, Danit is a teacher who, partly through her own interest and 
partly through the educational framework embodied in the national curriculum, is 
familiar with new developments in mathematics education. Thus, in constructing her 
lessons on systems of linear equations, she quite consciously introduces different 
representations relevant to them. Danit goes back and forth between representations 
in a way that keeps them always in play and in a way that gives her lessons a flow 
describable as ‘turbulent’, albeit carefully controlled turbulence (Fried & Amit, 
2004). Her desire that students think about the idea of different representations, that 
they suggest to the students different approaches to mathematical problems and 
different ways of conceiving mathematical ideas, that the students do not see them 
merely “...as though they are ends in themselves” as Greeno & Hall put it (1997, p. 
362), is evident in the way Danit makes a transition from the symbolic representation 
of an equation in two unknowns to a graphical representation.  Referring to the 
equation x+y=6 written on the board, she begins as follows: 

Teachers’ pedagogical 
knowledge & interpretation of 
research-based recommendations  

Teachers’ classroom 
presentation  

Students’ interpretation of 
teachers’ pedagogical strategy 

Students own understanding 
and performance 
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[min 35]Who is willing to tell me what is written here in Hebrew? I want a translation 
[with emphasis] into Hebrew, not just “x plus y equals six”!...You’ve seen this [i.e. an 
equation like this] in your book, and you know to do with them [referring to exercises 
given in the last lesson]—now translate it into Hebrew [i.e. into your spoken language]. 

After some discussion, she finally lets the students know what she is up to:  
[writes: ‘Two numbers whose sum is six’] Find me two numbers whose sum is six. In the 
language of algebra, we say, ‘x plus y equals six’. [min. 37] Today, we’re going to learn 
to translate this into another language [our emphasis]; we’re going to sketch this, that is, 
what is written here, x+y=6, I don’t have write in the language of algebra, I don’t have to 
say it in words: I can sketch it. 

Thus, besides referring to different kinds of representation, Danit uses words such as 
‘language’ and ‘translation’ which refer to the meaning of representation and to 
moving between representations. She wants the students to know what 
representations and the act of representing are all about.  

In our focus group for that lesson were two boys, Oren and Yuri. By asking them 
simply “What was the lesson about?” we hoped to find out in the interview whether 
they grasped Danit’s message as well as her words. Yuri answered “How to solve 
equations with a number line” [both Yuri and Oren, as well as many of the other 
students we interviewed, tended to refer to the coordinate system as ‘the number 
line’—an interesting fact in itself!]. Oren’s answer was somewhat more revealing: 

Oren:  We learned [min 2] [glances at the whiteboard] about, um, well, equation 
exercises [sic] with two unknowns we started to learn and how to solve 
them. And, also we learned about the number line and we connect that 
with equations. 

Two observation can be made here. First, Both boys spoke about using the ‘number 
line’ to solve equations. Danit did speak about solutions of equations in two 
unknowns and used yet another representation, a tabular representation, to bring out 
the pairs of numbers that solve the equation; however, at this point she did not 
present the graphical representation as a means of solving the equation but as a way 
of seeing the equation in a different light. This tendency was strikingly illustrated in 
the next lesson, where in the video of the lesson, two girls (that day’s focus group), 
are seen to continue carrying out only the arithmetical calculations of finding y for a 
given x, without ever mentioning the graphic representation of the linear relation—
and that, just when Danit has been emphasizing aspects of the graphic representation 
to the whole class!  

The second observation is that Oren described the content of the lesson by means of 
simple conjunctions—this and this and this and this—it is a fragmented account 
containing the facts of the story but not its theme. Even where he does use the word 
‘connect’ (lechaber), he is still only reporting factually what Danit has said: indeed, 
in the previous lesson she said that she would ‘link’ (lekasher—which is synonymous 
to lechaber) everything together in the lesson we are looking at now. Here, Oren’s 
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glance at the whiteboard is telling: he has to remind himself what the lesson was 
about by looking at what Danit wrote rather than looking at his own thoughts. We 
shall return to this point in a moment.       

Pushing our original question a little further, we asked what Danit tried to accomplish 
in her lesson and whether she succeeded in achieving her goals. Oren again 
emphasized the word ‘connect’, and both Oren and Yuri agreed heartily that Danit 
did truly achieve her lesson aims: 

Interviewer:  What do you think the teacher tried to accomplish in this lesson? 

Oren:  She tried to connect [for] us, because before we studied the number line in 
a separate lesson and equations in the second lesson, so in my opinion she 
tried to connect [for] us, how the number line is connected to equations. 

Yuri:  To equations. 

Interviewer:  Do you think she succeeded in her goal? 

Yuri:  Yeah, I think so. 

Oren:  In my opinion, yes [min 5]. 

They seem to have grasped what Danit was trying to do, at least they know the right 
words to use. But just a couple of minutes later, while discussing one of the exercises 
they worked on in the class and for which they had asked Danit for help, Yuri 
described the general procedure, which involved substituting a value for x in the 
equation, say, x+y=6 (Danit’s example), solving for y, finding the point (x,y) on the 
‘number line’, and then repeating the process for another value of x. Yuri describes 
the procedure in a very disjointed way, and soon afterward, both Yuri and Oren admit 
that they did not understand the point of the lesson: 

Yuri:  ...Solve it a few times so that the numbers, the unknowns, will be different 
and afterwards see it on the number line—so it will be a straight line, sort 
of, that it will be correct—that I didn’t understand—she explained it to 
me. 

Interviewer:  [to Oren] Did you have the same question? 

Oren:  Yeah, exactly. I also was a bit mixed up about the teaching, because I 
understood, but I didn’t understand, it was hard for me to connect with 
[sic] the number line and the equations. 

Yuri:  Yeah. 

Oren:  The teaching [presumably, “The teaching wasn’t clear to me”]. 

Interviewer:  [to Yuri] Why didn’t you ask him [Oren]? 

Yuri:  Because he asked [Danit] too. 

Oren:  I really [with emphasis] didn’t understand either. 

It turns out that Oren and Yuri do not truly see the point of the graphic representation. 
For them, drawing the graphs does not show them equations from a different 
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perspective; for them, drawing the graphs is a redundant exercise. At one point 
during the video of the lesson, which we watched together with Oren and Yuri, Yuri 
says ‘Boring!’. We asked what he was referring to. He said drawing the axes. Oren 
agreed and added, “It takes time.” Asked if the problem was that they had to use a 
ruler, Yuri expanded and said, “Yeah, drawing the numbers and checking and putting 
down the points—it’s easy but it takes time. Because of that.” From their point of 
view, ‘solving’ the equations has weight; drawing the lines was just another task 
given to them by Danit, a task which could just be easy or hard. This was a typical 
attitude in Danit’s class. For instance, when on another day we asked Annette and 
Chanita about why they need the ‘number line’, the ‘axis’, neither could say why.  
And when we pressed them, and asked why they didn’t ask the teacher, the exchange 
was as follows: 

Interviewer:  Chanita, tell me, why didn’t you ask the teacher why? [min 14] 
Annette:  [Answering for Chanita] It wasn’t ( ) interesting. 
Interviewer:  Sorry? 
Annette:  Because it’s no so interesting why you need the axis—we just solve, and, 

that’s it, we go home [everyone chuckles] 
Later in the interview, both Chanita and Annette answered that that lesson contained 
just exercises. And when asked what they thought would be in the next lesson, 
Chanita answered, laughing, that “She [Danit] said [our emphasis] in the next lesson 
we would stop drawing [graphs].” So, like Yuri and Oren, Chanita and Annette see 
no intrinsic value in pursuing the graphical representation of the linear relations. If 
Danit decides they should do it or not do it, so be it—but better if she decides not to! 

This brings us back to Oren’s glance at the whiteboard to answer what the lesson was 
about. Although Danit is at pains to make the students themselves think about the 
notion of representation, they take their cues from her; her authority is enormous (see 
Amit & Fried, in press). This could be seen when we asked the students about why 
the points representing the solutions of a linear equation lie on a straight line. The end 
of that exchange was as follows: 

Interviewer: [Referring to the equation (x-y)/7=(2y-x)/2, which was similar to an 
equation Danit had written on the board earlier just as an example of an 
equation in two unknowns] Is it possible, in your opinion, that this won’t 
be a straight line? 

Yuri:  I don’t know...to check I need to get [lit. do] some results [of calculations] 
[min 60] but I think that it will come out a straight line. 

Interviewer:  Why? 
Yuri:  If the results are right then, well, I don’t know exactly, sort of that’s what 

the teacher said, so it has to come out a straight line [our emphasis]. 
Interviewer:  It’s because the teacher said so? 
Yuri:  I don’t know, no—I can’t explain it—I don’t know. 
Interviewer:  I see, she said it is a straight line, and you believe her? [the boys laugh] 
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Oren:  Yes. 
Yuri:  [Sarcastically] No, she’s lying. 

CONCLUDING DISCUSSION 
To summarize, what we see in the case of Yuri and Oren—and, as we suggested in 
the introduction, they were not atypical—is that despite Danit’s conscious attempts to 
organize her lessons with eye to representations, Yuri and Oren do not appear to 
understand them as showing different mutually reinforcing views of linear equations; 
they do not see the line as a representation but as a solution method, which for them 
at this stage only means finding the value of y for a given x.  

It may be because they expect the graphic representation to be a solution method, 
rather than a bona fide representation, that they think of the graphic representation as 
redundant. But whatever the reason, in none of our interviews did we find indications 
that students appreciated the graphic representation as complementary to the 
algebraic representation of linear relation. On the other hand, they seem to grasp that 
Danit attached importance to the different representations, and, accordingly, they 
produce statements in line with her approach. These statements, moreover, are 
sometimes convincing enough to deceive and, therefore, can mask the students’ lack 
of true sympathy with and understanding of what the teacher tries to instil in them.     
The division between the teacher’s intention of what she was doing and the students’ 
interpretation of what was expected of them (see the figure in the second section) 
might, then, be one reason why the students in this class did not seem to get the idea 
that representations are to be selected, applied, and translated. But, of course, this 
only begs the question. We need to ask why, in the first place, there was this gap, why 
these students seemed able only to give lip service to Danit’s emphasis on 
‘connecting’ and ‘translating’ representations.  
One possibility may be the absence of mediating elements, that is, not just the 
presence of different representations said to be connected but ‘connectors’ as well. 
Formally, such connectors between representations are isomorphisms, and Powell 
and Maher (2003) have suggested that students can themselves discover 
isomorphisms. But in fact what allows learners to connect representations may have 
much more variety. Thus, Even (1998), speaking about multiple representations of 
functions, argues that the flexibility and ease with which we hope students will move 
from representation to representation depends on what general strategy students bring 
to mathematical situations, what context students place a problem, what previous 
underlying knowledge students possess, and perhaps other things as well. In other 
words, the efficacy of multiple representations in the classroom needs more than the 
multiple representations themselves. Thus, Even writes:  

“...concluding that the subjects who participated in this study had difficulties in working 
with different representations of these functions is not enough. Much more important is 
to understand how these subjects think when they work with different representations of 
functions” (p.119)       
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It might be then that we need to be more willing to treat multiple representations as a 
terminus ad quem than as a terminus a quo, that is, it may be that we have to 
challenge a multiple representations approach as a framework to begin with in 
teaching and think of as a distant goal that may not be achieved until the learner has 
had considerable experience in kinds of thinking that potentially link representations. 
This conclusion, if it is valid, is sobering for educators who want to promote multiple 
representations by presenting many representations all at once. But a sobering 
message such as this may be what is needed for learners to begin and reap truly the 
potential benefits of multiple representations. 
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REFORM-ORIENTED TEACHING PRACTICES: A SURVEY OF 
PRIMARY SCHOOL TEACHERS 

Judy Anderson and Janette Bobis 
The University of Sydney, Australia 

In line with international recommendations, reform-oriented approaches have been 
promoted through the Working Mathematically strand of the curriculum for primary 
school children in New South Wales. Evidence suggests that teachers engage 
differently with these recommendations depending on their knowledge and beliefs 
about the role of working mathematically in learning mathematics. Through a self-
report survey, this preliminary investigation identified the use of reform-oriented 
practices. Many teachers reported using such practices and actively plan learning 
experiences that incorporate a range of processes including reasoning and 
communicating. However, some respondents appeared to be more informed than 
others. 

INTRODUCTION 
Recent curriculum documents typically promote reform-oriented approaches and 
recognise the importance of engaging students in worthwhile mathematics through a 
range of processes. For example, the Standards of the National Council of Teachers 
of Mathematics [NCTM] (NCTM, 2000) includes problem solving, reasoning and 
proof, communication, connections, and representations. Similar processes are 
included in the latest mathematics syllabus for primary school students in New South 
Wales [NSW] (Board of Studies NSW [BOSNSW], 2002). The Working 
Mathematically strand incorporates five interrelated processes – questioning, 
applying strategies, communicating, reasoning and reflecting. 
These processes underpin problem solving; a life skill that is universally considered 
central to the mathematics curriculum (NCTM, 2000). When such processes are 
successfully implemented, learning experiences “allow learners to think and create 
for themselves … discuss their interpretations and develop shared meanings” 
(Sullivan, 1999, p. 16). The teacher’s role is not trivial (Schoen, Cebulla, Finn & Fi, 
2003). The teacher needs to choose tasks that engage students in higher order 
thinking and sustain engagement (Henningsen & Stein, 1997), help students make 
links between mathematical ideas (Askew, Brown, Rhodes, Johnson & Wiliam, 
1997), and meet the needs of the full range of students in classrooms.  
Given the centrality of working mathematically in the new mathematics syllabus 
(BOSNSW, 2002), and the assertion that not all teachers have embraced it 
(Hollingsworth, Lokan, & McCrae, 2003), it is critical to explore the extent to which 
it is being adopted and integrated into teachers’ practices. It is also essential to 
identify cases of exemplary practice and to provide advice to teachers about the 
issues that might constrain their efforts to implement the reform elements of this new 
syllabus.  
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SITUATING THE RESEARCH IN AN INTERNATIONAL CONTEXT 
It has been argued that the use of non-routine problems and problem-centred 
activities form the basis of classroom activity in a reformed or inquiry-based 
classroom (Clarke, 1997; Schoen et al., 2003). There has been substantial advice to 
teachers to teach problem-solving skills and to use problems as a focus of learning in 
mathematics (Wilson & Cooney, 2002). Such advice has been accompanied by 
considerable efforts through preservice and inservice programs to change teaching 
practices from more traditional approaches to contemporary or reformed methods 
(e.g., Schifter, 1998).  
Investigations into the implementation of reform, or standards-based curriculum 
(NCTM, 2000), have been undertaken in the United States over recent years. Two 
studies have particular relevance for this investigation. Schoen et al. (2003) used 
observation criteria for reform-teaching practices that include open-ended questions, 
time to learn from investigations, as well as pair and small-group work. Ross, 
McDougall, Hogaboam-Gray and LeSage (2003) developed a 20-item survey based 
on nine dimensions of standards-based teaching that include several aspects of the 
focus of this study (student tasks, discovery, teacher’s role, interaction and 
assessment). While the survey was found to have reliability and validity, the authors 
advise the use of observations to confirm teacher self-report data.  
While teachers may have good intentions and plan to implement reform-oriented 
approaches, there is evidence that teachers in Australian contexts have not responded 
to this advice (Hollingsworth et al., 2003), with the suggestion that the culture of 
schooling and particular teachers’ beliefs hinder the implementation of problem-
solving approaches in classrooms (McLeod & McLeod, 2002; Stigler & Hiebert, 
1999). There is a significant body of research indicating that teacher’s knowledge and 
beliefs about the discipline of mathematics, teaching mathematics, and learning 
mathematics impact on classroom practice (Wilson & Cooney, 2002). In particular, 
Stigler and Hiebert (1999) argued that the differences between American and 
Japanese approaches to teaching mathematics could be explained by differences in 
teachers’ beliefs.  
However, it has also been determined that other constraints can impact on teachers’ 
efforts to implement the working mathematically processes. In her investigation of 
reform in primary schools involved in the Count Me In Too professional development 
program, Bobis (2000) noted teachers’ concerns about time, availability of resources 
and classroom management issues. Similarly, a study into primary school teachers’ 
problem-solving beliefs and practices by Anderson, Sullivan & White (2004) 
identified several constraints including assessment and reporting practices, parent’s 
expectations, students resistance to new approaches, system requirements of 
curriculum implementation, and large-scale testing regimes. Jaworkski (2004, p. 18) 
describes such demands as “sociosystemic factors” suggesting that teachers have to 
regularly grapple with the tensions and issues that arise in their contexts. 
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One particular issue for teachers is planning reform-oriented experiences that 
maintain engagement and cater for the needs of all students (Henningsen & Stein, 
1997). There is evidence from the TIMSS 1999 Video Study (Hollingsworth et al., 
2003) that teachers plan to use different teaching strategies to teach higher achieving 
students compared with lower achieving students. However, even with higher 
achieving students, there was little use of higher-level processes or opportunities for 
reasoning as emphasised in the Working Mathematically strand. While teachers 
generally support reform-oriented teaching (Anderson et al., 2004), they appear to 
have difficulty operationalising it (Ross et al., 2003).  
It is possible that teachers may not have an image of what this reform approach looks 
like in practice, or it may be that particular contextual factors interfere with their 
intentions. An ongoing concern of the problem-solving research has been the need for 
descriptions of classrooms where effective practice is occurring with an 
exemplification of the key role of the teacher (e.g., Clarke, 1997). Identifying 
successful teachers and providing rich descriptions of their efforts might support 
implementation for others, particularly if these teachers are able to overcome 
militating factors. 
To investigate the implementation of reform-oriented teaching in NSW classrooms, 
the research questions for the study include: 

1. Which reform-oriented teaching practices do primary school teachers report 
using? 

2. Which particular teaching practices do primary teachers report using for each 
of the five processes of working mathematically? 

3. What knowledge and beliefs distinguish teachers who successfully implement 
Working Mathematically? 

4. How do teachers who successfully implement Working Mathematically cater 
for the needs of all students in the classroom? 

Previous research suggests that teacher self-report surveys provide a relatively 
accurate picture of classroom practice but that there are some aspects of practice—
particularly in the case of working mathematically—that cannot be easily measured 
in this way (Ross et al., 2003). For this reason, a combination of survey, interview 
and case study (including classroom observations) approaches were utilised in the 
study to explore teachers’ understandings of working mathematically and their 
implementation of the various processes of the strand. Only results from the survey 
component will be discussed in this paper. 

METHODOLOGY – SEEKING THE EVIDENCE 
A survey was used to determine whether teachers’ practices reflect those advocated 
in reform-oriented curriculum materials produced locally (e.g., BOSNSW, 2002) and 
internationally (NCTM, 2000). In particular, it focused on specific teaching strategies 
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associated with each of the five processes of the Working Mathematically strand in 
the Mathematics K-6 Syllabus (BOSNSW, 2002).  
There were three main parts to the survey. Part A was designed to collect essential 
background information about respondents and their school contexts. Part B was 
adapted from the Ross et al. (2003) instrument for measuring the extent to which 
primary teachers implement reform-oriented teaching practices. It contains 20 Likert 
items with a 5-point response scale ranging from Strongly Agree to Strongly 
Disagree. To guard against response bias, seven of the items were worded so that 
their scoring would be reversed. Ross et al. (2003) provide evidence of the 
instrument’s reliability and validity. Using Cronbach’s α, a measure of internal 
consistency, they obtained a reliability coefficient of α = 0.81 in two independent 
studies. Part C of the survey contained four open-ended questions that explicitly 
focussed on teaching practices associated with working mathematically.  
The aim of the survey was to produce a tentative picture of teacher beliefs and 
commitment to reform-based teaching practices, and to distinguish teachers—
specifically those reporting the incorporation of working mathematically into their 
teaching—for inclusion in the interview component of the study. Approximately 100 
surveys were sent to 12 primary schools located in the Sydney, metropolitan area that 
had been identified as supporting reform-oriented approaches. Descriptive statistics 
were used to analyse the items on the survey requiring quantitative responses (Parts 
A and B). The open-ended items in Part C were analysed according to emergent 
themes. 

RESULTS 
Forty surveys were returned. Background information provided by teachers (Part A 
of the survey) indicated that there was a fairly even representation from each of the 
grade levels from Kindergarten to Year 6. Similarly, there was an even spread of 
years of teaching in each of the groups 1-5, 6-10, 11-15, 16-20, and 21 and beyond. 
To assist analysis of Part B of the survey, the percentage of teachers indicating that 
they agreed (including strongly agreed), were unsure, and disagreed (including 
strongly disagreed) with each statement in the survey was calculated. While there is 
insufficient space to report the results for each item, we have selected some for 
discussion to support our analysis and complement the data provided in the open-
ended response component of the survey. It must be emphasised, that we intended to 
use the information gained from the quantitative component as ‘tentative’, providing 
starting points for further exploration in the interview and observation components of 
the project. 
As a whole, respondents seemed to be very well aware of what the reform-based 
movement recommends regarding the teaching and learning of mathematics. For 
example, 97.5% of respondents indicated that they agreed or strongly agreed with 
Items 1 and 3 (“I like to use maths problems that can be solved in many different 
ways”, and “when two students solve the same maths problem correctly using two 
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different strategies, I have them share the steps they went through with each other” 
respectively).  
Contrary to the general trend of responses, which were consistent with views 
expressed by reform-oriented curriculum documents, only 19.7% of respondents 
disagreed with Item 16 (“I like my students to master basic mathematical operations 
before they tackle complex problems”). This type of response is contrary to current 
curriculum documents that advocate the teaching of mathematics through or via 
problem-solving approaches (e.g., BOSNSW, 2002). Whether teachers are aware of 
such recommendations or simply disagree with them, it is clear that the majority of 
our respondents report not implementing such practices. More information on this 
issue may be gained during the interview component of the study. 
Related to this view of mathematics, a quarter of teachers responding to the survey 
indicated that they considered “A lot of things in maths must simply be accepted as 
true and remembered” (Item 15). Similarly, 27.5% of respondents indicated their 
agreement with Item 19: “If students use calculators they don’t master the basic 
maths skills they need to know”. Both these responses are indicative of a more 
traditional view of mathematics. That is, mathematics is seen as little more than a 
series of facts, rules and procedures that must be learned. 
While teachers rarely used the ‘unsure’ category, two statements attracted high 
percentages of responses in this category. 30.7% of respondents indicated that they 
were unsure of Item 12 (“Creating a set of criteria for marking maths questions and 
problems is a worthwhile assessment strategy”) and 27.5% were unsure of Item 18 
(“Using computers to solve maths problems distracts students from learning basic 
maths skills”). The reasons for the higher than expected percentages of ‘unsure’ 
responses for each of these items, will be explored in follow-up interviews. 
Part C required respondents to list the “specific teaching strategies” they use for each 
of the five processes of Working Mathematically. Descriptions of three of these 
processes are presented in Table 1 with samples of teachers’ responses. 
Process Description of the Process (BOSNSW, 

2002a, p. 19) 
Sample Teacher Response 

Questioning Students ask questions in relation to 
mathematical situations and their 
mathematical experiences. 

Children work together in groups and 
solve maths problems, which 
encourage them to ask questions. (23) 

Reasoning Students develop and use processes for 
exploring relationships, checking 
solutions and giving reasons to support 
their conclusions. 

Provide opportunities to compare and 
contrast results of an investigation – 
expect/encourage explanation of 
process/product (3) 

Reflecting Students reflect on their experiences 
and critical understanding to make 
connections with, and generalisations 
about, existing knowledge and 
understanding. 

Building upon known concepts, using 
skills to extend understandings. 
Applying knowledge to everyday 
situations (18) 

Table 1 Sample responses to three processes in Working Mathematically 
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The majority of the 31 teachers, who responded to Part C, seemed to be familiar with 
each process and the associated teaching practices recommended in reform 
documents. However, some respondents appeared to be more informed than others. 
To identify those teachers, an adaptation of the Schoen et al. (2003, p. 236) 
observation criteria for reform teaching practices was used to rate the responses. 
These criteria (presented below) were used to make holistic judgements about 
participants’ reported level of implementation of reform-oriented practices. 

1. The teacher uses open-ended questions to facilitate student thinking and 
exploration. 

2. Students monitor their own work instead of always seeking out the teacher as 
the authority. 

3. Students are given enough time to learn from investigations. 
4. Class organisations (i.e., whole-class presentation or discussion, pair or small-

group work, and individual work) match expectations for each part of the 
lesson. 

5. Pairs or small groups of students work collaboratively. 
6. Manipulative materials are available. 
7. The teacher focuses on understanding of the big mathematical ideas by 

questioning understanding and using problem-solving strategies. 

Using these criteria, the response of each participant to the open-ended question was 
judged as excellent, good, fair, or poor according to the number of criteria that were 
explicitly addressed. From this, the responses of two participants were rated as 
excellent, five as good, 17 as fair, and 7 as poor. The responses from those teachers 
who were rated as fair or poor were either limited in information, repetitive in the 
practices employed, or suggested that more traditional practices were typically used. 
For example, an experienced teacher of a Year 3/4 class reported that she uses a 
“whole class focus first then one to one – needs lots of examples and practise, 
concrete material or practical applications” for Applying Strategies. This individual 
focus was repeated for Reflecting with the additional strategy of “sometimes we meet 
as a group at the board and discuss” for “students who are experiencing difficulties or 
simply don’t understand”. These comments were consistent with her responses to the 
reform-oriented practices in Part B of the survey. Again, this data provides tentative 
information as respondents may not have given much thought to their responses or 
they may not have had sufficient time to think deeply about their practice. However, 
this process helped to identify participants for the interviews and classroom 
observations. 

Ten survey respondents (25%) indicated their willingness to participate in the follow-
up interview component of the study. Data from all parts of the survey were 
considered to develop initial ‘profiles’ of these teachers so as to determine which 
teachers we should include. Eight of these teachers had profiles that were very 
closely aligned with the practices recommended by reform-oriented documents. All 
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eight indicated that they explicitly planned for Working Mathematically either all of 
the time or at least for approximately 70% of their mathematics lessons. Interestingly, 
the three teachers with profiles considered to be closest to reform-oriented practices, 
teach at the same school. The interview component will hopefully reveal if there are 
any contextual factors operating at the school that may contribute to such a result.  

The responses of the other two teachers who volunteered to participate in the 
interview component of the study were among those respondents who showed least 
consistency or familiarity with reform-based practices. One teacher indicated that she 
did not explicitly plan for Working Mathematically, while the other indicated that she 
planned for approximately 90% of her lessons. Again, what this planning actually 
entails will be explored further in the interview component of the study. 

DISCUSSION AND FURTHER RESEARCH 
Considered together, the qualitative and quantitative data gained from the survey 
provide tentative information (Wilson & Cooney, 2002) and a starting point from 
which we can now continue to explore aspects of teachers’ practices. It would appear 
that the majority of these teachers support reform-oriented teaching approaches that 
promote working mathematically in primary classrooms, particularly in a self-report 
survey. While most responses were consistent for both sections of the survey, a 
careful reading of the open-ended responses suggests that this may not be what is 
implemented in practice. Further exploration through interviews and observations is 
required before in-depth claims can be made. 

The next step in our project is to explore particular teacher’s practices in detail to 
form a picture of the successful implementation of working mathematically for all 
students and how teachers confront the sociosystemic factors operating in school 
contexts. As Wilson and Cooney (2002, p. 131) propose 

in-depth studies of individuals emphasise the value of telling stories about teachers’ 
professional lives and what shapes those lives … good stories are not simply descriptions 
but are grounded theoretical constructs that have the power to explain what is described. 

The knowledge gained from this project has the potential to impact on the 
implementation of working mathematically in classrooms. It will clarify for teachers 
what working mathematically actually looks like and provide models of best practice. 
It will present teachers with evidence that all students are able to participate in 
challenging experiences regardless of their performance on tasks that assess basic 
skills in mathematics. It will provide teachers with strategies to cope with the 
tensions and issues that may impede implementation of the Working Mathematically 
strand.  
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This paper highlights the role of gestures in communicating and particularly in 
thinking in mathematics. The research interest is on the relation between the use of 
gestures and the birth of new perceivable signs. This link is shown through the 
description of a concrete example, referring to a discussion among 8th grade 
students around a geometrical problem in 3D, to be solved without the use of devices 
and paper and pencil. It is interesting to observe the progression in the construction 
of the solution, obtained with the introduction of new signs from gestures, and at the 
end even of a common tool used by children, the plasticine. 

INTRODUCTION 
In the last years psychologists have shown a deep interest on the analysis of gestures 
and their role in the construction of meanings. More recently, gestures became also 
relevant in the field of mathematics education, in order to show a strong relation not 
only with speech, but with the entire environment where the genesis of mathematical 
meanings takes place: context, artefacts, social interaction, discussion, and so on. 
Since math is an abstract matter, it often requires signs to be made somehow 
perceivable by students, the abstract becoming more and more concrete to them. 
Many times students need to see, to touch, and to manipulate, and as a consequence, 
the environment plays a crucial role in learning math. 

This paper shows the link between the use of gestures and the birth of new 
perceivable signs through a concrete example. To reach this aim, we use a theoretical 
framework made of different components, coming from mathematics education, 
psychology, neuroscience and semiotics, and presented at the Research Forum on 
gestures at the current PME (Arzarello et al., 2005). Three parts constitute the paper. 
We sketch some ideas of the theoretical framework in a first paragraph. The second 
paragraph presents an example of a protocol analysed through our theoretical tools. 
In the last part, conclusions and further problems are introduced.   

THE THEORETICAL FRAMEWORK 
Some researchers form psychology and mathematics education claim that gestures 
play an active role in thinking, intending communicating and thinking not as 
mutually exclusive functions (McNeill, 1992; Goldin-Meadow, 2003). So gesturing is 
useful to listeners to communicate, and to speakers to think. To exemplify, just think 
of people speaking on the phone: they are completely conscious of the fact that their 
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interlocutor is not in front of them, but all the same they gesture, as well as the 
listener would be there. Even a subject alone, doing an activity such as studying, 
could gesture to give expression to her thoughts. Briefly speaking, we can gesture for 
ourselves or for others, and gesture is both a mean of communication and of thinking. 
Gesture in fact can contribute to create ideas: 

According to McNeill, thought begins as an image that is idiosyncratic. When we speak, 
this image is transformed into a linguistic and gestural form. ... The speaker realizes his 
or her meaning only at the final moment of synthesis, when the linear-segmented and 
analyzed representations characteristic of speech are joined with the global-synthetic and 
holistic representations characteristic of gesture. The synthesis does not exist as a single 
mental representation for the speaker until the two types of representations are joined. 
The communicative act is consequently itself an act of thought... It is in this sense that 
gesture shapes thought.  (Goldin-Meadow, 2003; p. 178) 

Within the perspective of psychology, we refer to the so-called Information 
Packaging Hypothesis (IPH): Alibali, Kita & Young (2000) describe it as the way 
gesture is involved in the conceptual planning of the messages. IPH concerns the so 
called representational gestures (Kita 2000), namely the iconic and the abstract 
deictic gestures: an iconic gesture represents an entity or a phenomenon, a movement, 
a shape, and so on; a deictic gesture points to an object (Mc Neill, 1992). This object 
can be a physical thing or an abstract entity, so deictic gestures can be divided in 
concrete or abstract (Kita, 2000). According to the IPH, the production of 
representational gestures seems particularly important, since it helps speakers 
organise spatio-motoric information into packages suitable for speaking. In such a 
sense gesture explores alternative ways of encoding and organising spatial and 
perceptual information. Spatio-motoric thinking (constitutive of representational 
gestures) provides an alternative informational organisation that is not readily 
accessible to analytic thinking (constitutive of speaking organisation). Analytic 
thinking is normally employed when people have to organise information for speech 
production. On the other side, spatio-motoric thinking is normally employed when 
people interact with the physical environment, using the body (interactions with an 
object, locomotion, imitating somebody else’s action, etc.). This kind of thinking can 
be applied even to the virtual environment that is created as imagery. 

Gesture can be discussed also from a neuroscientific point of view. In fact some 
studies from neuroscience argue that there is no inherent distinction between thought 
and movement at the level of the brain; both can be controlled by identical neural 
systems (Ito, 1993). Therefore, concepts and ideas can be manipulated just as they 
were body parts in motion. The ‘motor system’ is thus a complex computational 
network that controls and directs the brain’s circuitry or internal symbols: counting, 
timing, sequencing, predicting, planning, correcting, attending, patterning, learning 
and adapting (Leiner et al., 1993). Indeed, gestures that accompany language may 
facilitate thought itself. With the embodied mind Seitz (2000) introduces a fresh 
paradigm for thinking about the relation of movements to thoughts, in which the 
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boundaries between perception, action, and cognition are porous. Thought, action, 
and perception are indissolubly tied. Thinking of embodied activities, although 
humans may be best characterised as symbol-using organisms, symbol use is 
structured by action and perceptual systems that occur in both natural environments 
and artifactual contexts: “[…] body structures thought as much as cognition shapes 
bodily experiences.” (Seitz, 2000). 

From another viewpoint, gestures can be seen as signs, as pointed out by Vygotsky 
(1997: 133): 

A gesture is specifically the initial visual sign in which the future writing of the child is 
contained as the future oak is contained in the seed. The gesture is a writing in the air and 
the written sign is very frequently simply a fixed gesture. 

As a consequence, semiotics is a useful tool to analyse gestures, but within a wider 
frame, which involves also their cultural and embodied aspects. Such a wider analysis 
has been developed in mathematics education with the introduction of the notion of 
semiotic means of objectification (Radford, 2003) that produce the so-called 
contextual generalisation: a generalisation referring still heavily to the subject’s 
actions in time and space, within a precise context, even if he/she is using signs who 
could have a generalising meaning. In contextual generalisation, signs have a twofold 
semiotic nature: they are becoming symbols but are still indexes. We use these terms 
in the sense of Pierce (1955): an index gives an indication or a hint on the object, like 
an image of the Golden Gate makes you think of the town of S. Francisco. A symbol 
is a sign that contains a rule in an abstract way (e.g. an algebraic formula).  

In light of the results stated above, our research hypothesis is that meanings 
construction is supported by a dynamic evolution in the use of gestures and by their 
role in generating new signs. In this paper, such an evolution is pointed out by the 
social activity of the students in a geometric context, where the main components are: 
the hands that shape geometrical figures, and the fingers that point to or trace 
geometrical entities (sides, angles, faces, vertices, etc.) related to the solution of the 
problem.  

THE CASE OF GUSTAVO: SIGNS ARISING FROM GESTURES 
In the following example, some students of the 8th grade in an Italian middle school  
are working in group to solve a geometric problem. The task is to find the solid figure 
that fills in the 3D hole obtained if two congruent regular squared-based pyramids are 
placed (on the same plane) with two sides of the bases touching each other (Fig. 1). 
The pupils are asked to not use any kind of concrete 
support, as drawings, paper and pencil, computers, etc. 
On the contrary, they are required to get the solution ‘in 
their mind’, simply imagining and discussing together 
about it (the tetrahedron ABCD in Fig. 1). The teacher 
in the classroom observes the work without interfering 
if not necessary. The students work in a big group Figure 1 
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around some desks, in order to pay attention to what each other is doing or saying. 
During their curriculum they have already met regular tetrahedrons, as belonging to 
the family of pyramids (a regular pyramid with congruent faces and triangular basis).  

The following analysis is based on the video recorded by a moving camera. In the 
course of the discussion, gestures are used in a massive and social way. Gestures are 
our data, and they are analysed to figure out the dynamics of the pupils’ solution 
processes and communication acts. In particular, we will show the emergence of 
signs (arising from gestures) that can be seen, touched and manipulated (not simply 
imagined) by the students. These observations fit with the hypothesis stated above. 

Since the beginning of the work, the actions of the group seem 
to occur principally around two pupils: Sara and Gustavo. In 
Fig. 2 Sara is the girl with long hair and eyeglasses on the right 
of the reader, and Gustavo is the boy on the left, with short hair. 
It is Gustavo who leads the game: he allows his mates to 
approach the solution and his gestures guide them and their 
gestures.                                                                  Figure 2              

Three phases appear to characterise the dialogue of the students. First, the pupils need 
to re-construct the geometry of the given configuration. Gustavo performs a lot of 
gestures to imagine what he has in mind and makes it visible: fingers running along 
or pointing to Sara’s hands open as they were the two close faces of the pyramids 
(Fig. 3a, 3b); hands closing the hole in the attempt of figuring out the unknown solid 
(Fig. 3c, 3d); fingers tracing sides of the solid itself (Fig. 3e, 3f).  

         

       
Figure 3 

This is an exploration phase in which the students share a space of communication, 
that over the desks, where they can freely move, gesture, show. We can call it gesture 
space. To Gustavo, such a space represents something more: it is already a space of 
action and production, other than of communication (APC Space - Action, 

a b c 

d e f 
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Production and Communication - Arzarello, 2004). At the moment pupils need an 
investigation of this kind; spatio-motoric thinking is essential, since gestures are the 
only available means for them to understand the problem. Imagination alone is not 
sufficient to figure out the geometric entities, especially the one to be found.  

Gustavo’s gestures (performed in front of his body over the desks, Fig. 4) start to 
acquire a symbolic characterisation. Recalling Peirce’s terminology, they are still 
indexes of figures (in that his hands in motion represent sides, faces, solids), but start 
becoming symbols when referring to the virtual world where these entities live and 
being used as really existing objects by Gustavo.    

      
Figure 4 

At this point, Gustavo has got the solid in his mind, as highlighted by his words: 

Gustavo: It’s a triangle, but with a thickness. It’s a solid of pyramid.  

A new phase begins here: in order to allow his mates to see the shape of the unknown 
solid, new signs are necessary, with a more concrete nature than the previous 
gestures. Their emergence is marked by a change of the gesture space, more visible. 
The (real) desks now represent the new space: in it, Gustavo’s index finger traces 
some virtual segments to explain his solution to the others (Fig. 5).  

Gustavo: It is in this way, in this way, and then in this way. 

       
Figure 5 

These segments are imaginary inscriptions, but used as if they were real, and so can 
be deleted (by hand in Fig. 6), just as geometric lines drawn on paper are erased by 
means of a rubber (the term inscription comes from Sfard & McClain, 2002).   
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Figure 6 

This is a conjecture phase, but the explanation is not yet satisfactory to the group. 
The dialogue goes on among the pupils with an exchange of some sentences: 

Gustavo: It is made of two triangles with the bases below, and two triangles with 
the bases above. 

Sara: But, it’s a solid. It [the problem] tells a solid, one! 
Gustavo: Yeah, it is a solid, made of two triangles placed with the bases below, 

which are those starting in this way and going up, and two triangles with 
the bases above that are those going in this way [see Fig. 7] 

       
Figure 7 

Lucy: And how does it call? 
Gustavo: I don’t know, but that’s it. 
Sara: No, no, because above they have skew sides. 
Gustavo: No, it doesn’t matter! 

Let us observe that along the discussion, a conflict appears into the whole group: the 
opposite behaviour of the triangles above and below. Gustavo’s metaphor on such 
triangles (expressed both in his words and gestures) is not useful to accept the shape 
of the searched solid. Hands are not enough. To overcome the obstacle, something 
different is to be used: something really existing, that can be effectively seen, 
touched, manipulated. Again, the emergence of new signs is strong. At this point a 
last phase of production begins: a tool enters the scene, as Gustavo claims:  

Gustavo: Guys, we got a tool!  [he takes a piece of plasticine by the hands of a 
group mate] 

Other than gestures, plasticine is stable, motionless and concrete: it is real, visible and 
manipulable. By plasticine, students are able to check their conjectures, to make the 
solution apparent, to create it. Figure 8 shows just some moments of this final phase.  
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Figure 8 

Somebody: It’s a thing made in this way, it’s strange [Fig. 8a] 
Lucy: Try to put it [Fig. 8c] 
Sara: But it is a pyramid with triangular basis.  

All the geometric entities are visible; the tetrahedron itself is visible. In terms of 
Radford’s words, students have objectified new knowledge: now they know that the 
solid solving the original task is a “pyramid with triangular basis”.  

SOME CONCLUSIONS  
In the previous example we have described the activity of some students solving a 3D 
geometry problem. We have pointed out that their understanding grows up around the 
gestures of Gustavo, who is early able to imagine the solid solving the task, and in the 
same time has to explain it to the group mates. We have seen the way these gestures 
mark the birth of new perceivable signs: the virtual segments drawn by Gustavo’s 
forefinger on the desks, and the solids shaped by the use of plasticine. 

The relevant point of the activity is the evolution of gestures in generating signs. At 
first, Gustavo’s gestures have an iconic function in that their shape resembles their 
referents (the geometric solids they express), but they become indexes (in the sense 
of Pierce) in his communicative attempt of transferring knowledge to the others. The 
indexical gestures acquire a symbolic function later, when they are used as existing 
objects of a virtual geometric world and in relation with the genuine geometric 
objects (e.g., think of the metaphor of the “two triangles with the bases below, and 
two triangles with the bases above”). This relation consists in a piece of theoretical 
knowledge. Particularly, when the students identify the unknown solid as a pyramid 
also their utterances have a two-fold nature: an indexical one and a symbolic one, in 
encoding information according to the theory at their disposal.  

The most significant moment of the activity arises from the use of plasticine, here a 
tool expressing three different functions. First, plasticine has an iconic function for 
Gustavo, who wants to show the solution of the task, as well as his mates want to see 
it. Secondly, it is an index in being manipulated and seen; in these terms, it is a sign 
useful to make sense of the solution. But it also has the germs of a symbolic function 
in itself, because it is shaped in a theoretical knowledge, still vague if only supported 
by the previous gestures and metaphors. Gustavo and the group need to understand 
those relations. The discovery of the solid as a pyramid happens at this point.  

a b c 
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We can interpret this last moment using the theory of instrumentation of Rabardel 
(1995) within a fresh viewpoint. According to Rabardel, an artefact becomes an 
instrument in the hands of a subject, by activating different schemes of use; in these 
terms, the instrument prompts the genesis of meanings. To our students plasticine is 
already an instrument: they are able to use it, and they have acquired the 
corresponding instrumentations. As a consequence, the role of plasticine is different 
from that of an artefact becoming an instrument; in a certain way, the situation is 
exactly opposite. Our students (especially Gustavo) take an instrument they have and 
know, with its schemes of use, and, through their perceptuo-motor information about 
it, they add new schemes of use in order to solve the problem. According to our wider 
frame developed for the Research Forum (see Arzarello et al., 2005), the whole 
dynamics can be identified as a SPO (Serial Process of Objectification) in that the 
situation evolves by the successive production of signs (through gestures and words, 
and schemes of use).  
Acknowledgments 
Research program supported by MIUR and by the Università di Torino and the Università 
di Modena e Reggio Emilia (COFIN03 n.2003011072). 
References  
Alibali, M. W., Kita, S., & Young, A. (2000). Gesture and the process of speech production: 

We think, therefore we gesture. Language and Cognitive Processes, 15, 593-613. 
Arzarello, F. (in print). Mathematical landscapes and their inhabitants: perceptions, 

languages, theories, Proceedings ICME 10, Plenary Lecture.  
Arzarello, F., Ferrara, F., Paola, D., Robutti, O. & Sabena, C. (2005). Shaping a multi-

dimensional analysis of signs. In: Arzarello, F. & Edwards, L., Gesture and the 
Construction of Mathematical Meaning, Research Forum. These Proceedings.  

Kita, S. 2000. How Representational Gestures Help Speaking. In McNeill, D. (Ed.), 
Language and Gesture, pp. 162-185. Cambridge: Cambridge University Press. 

Goldin-Meadow, S. (2003). How our Hands Help us Think. Chicago: Chicago University 
Press.  

Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum.  
Trends in the Neurosciences, 16(11), 448-450. 

Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993a).  Cognitive and language functions of the 
human cerebellum.  Trends in Neurosciences, 16(11), 444-447. 

McNeill, D. (1992). Hand and Mind: What gestures reveal about thought. Chicago: 
University of Chicago Press. 

Peirce, C.S. (1955). Philosophical Writings (J. Buchler, Ed.). New York: Dover.  
Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking 

and Learning, 5(1), 37-70.  
Seitz, J.A. (2000). The Bodily Basis of Thought, New Ideas in Psychology: An 

International Journal of Innovative Theory in Psychology, 18(1), 23-40. 
Sfard, A. & McClain, K. (2002). Analyzing tools: Perspectives on the role of designed 

artifacts in mathematical learning, The Journal of the Learning Sciences, 11(2&3), 153-
161. 

Vygotsky, L.S. (1978). Mind in society: The development of higher psychological 
processes. Cambridge, MA: Harvard University Press. 



 

 

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 2, pp. 81-88. Melbourne: PME.  2- 81 

STUDENTS’ EXPERIENCE OF EQUIVALENCE RELATIONS 
A PHENOMENOGRAPHIC APPROACH 

Amir H. Asghari & David Tall 

University of Warwick 

This paper is based on a doctoral study in which we studied ‘lay’ students’ 
understanding of equivalence relations through individual task-based interviews. We 
report a conceptual gap between “the everyday functioning of intelligence and 
mathematics” as to equivalence relations. 

INTRODUCTION 
It is “an abstraction, a basic mathematical concept, that includes the way species, 
phonemes, numbers and many other concepts in many parts of life are best thought of…the 
name of the concept is “equivalence relation”…it is one of the basic building blocks out of 
which all mathematical thought is constructed.” (Halmos, 1982, pp.245-246) 

An equivalence relation is “one of the ideas which helps to form a bridge between the 
everyday functioning of intelligence and mathematics”. (Skemp, 1977, p.173) 

In this paper we consider lay students’ understanding of the notion of equivalence 
relation. In particular, we report one gap (or two!) between “the everyday functioning 
of intelligence and mathematics”. Despite the fact that the tasks(see below) used do 
not relate to a formal educational setting, we also suggest that it will be useful to pay 
attention to these gaps in our standard practice of teaching the notion of equivalence 
relation, in which, as Skemp says (ibid, p.137), “we start with everyday examples 
before defining it mathematically”.  

LITERATURE  
Surprisingly, despite the fact that equivalence relation is one of the most fundamental 
ideas of mathematics, students’ conceptions of it have attracted little attention as a 
research subject. An exception is a series of papers by Chin & Tall (2000, 2001 and 
2002) in which they considered the cognitive growth of “equivalence relation” and 
“partition” at a time when students have been given the definitions and have been 
expected to operate in an increasingly “theorem-based” manner (ibid, 2000, p.2). 
However, as a result of working with students already being exposed to the formal 
treatment of equivalence relations and partitions the focus of the papers inevitably is 
on the far end of the bridge, i.e. students’ understanding and usage of the formal 
concepts. Thus, in a sense, we furthered their study by investigating the opposite end 
of the bridge, i.e., informal conception of equivalence relations and partitions. In the 
discussion of the results we will briefly link these studies together.  
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METHODOLOGY 
The study is based on a detailed phenomenographic analysis of twenty verbatim 
transcribed audio-taped interviews with students with varied background experience 
(see also, Asghari, 2004a, 2004b). The participants comprised four middle school 
students, four high school students, one first year politics students, one first year law 
student, six first year mathematics students, two second year physics students, one 
second year computer science student, and one postgraduate student in mathematics. 
None of them had any formal previous experience neither of equivalence relations 
nor of the related concepts used to formulate the definition. In a one-to-one 
phenomenographic interview, each student was introduced to a set of tasks that were 
designed having the standard definition of equivalence relations in mind (see below). 
The interviews had a simple structure; the tasks were posed in order, but the timing of 
the interviews and questions were contingent on students’ responses. 

Such a varied range of interviewees remind us of a ‘pure phenomenography’ in 
which “the concepts under study are mostly phenomena confronted by subjects in 
everyday life rather than course material in school.” as compared to ‘developmental 
phenomenography’ in which the concepts under scrutiny are confined to a formal 
educational setting and the purpose of the study is to help the subjects of the research, 
or others with the similar educational background to learn (Bowden, 2000, p.3). 
However, in the case of a concept as basic as an equivalence relation, the line 
between pure and developmental phenomenography fades out.  

The Tasks 
First, each student was introduced to the definition of a ‘visiting law’ while they were 
told that their first task would be giving an example of a visiting law on the prepared 
grids. (See figure 1.) 

A country has ten cities. A mad dictator of the country has decided that he wants to 
introduce a strict law about visiting other people. He calls this 'the visiting law'. 
A visiting-city of the city, which you are in, is: A city where you are allowed to visit 
other people/ 
A visiting law must obey two conditions to satisfy the mad dictator: 
   1. When you are in a particular city, you are allowed to visit other people in that city. 
   2. For each pair of cities, either their visiting-cities are identical or they mustn’t have 
any visiting-cities in common. 

The dictator asks different officials to come up with valid 
visiting laws, which obey both these rules. In order to allow 
the dictator to compare the different laws, the officials are 
asked to represent their laws on a grid as figure 1. 
After generating some examples (student-generated, ranging 
from one example to suggesting a way to generate an 
example), students were presented with the following three 
tasks: 

 
Figure 1: a grid to 

represent a visiting law 
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Task 1: The mad dictator decides that the officials are using too much ink in drawing up 
these laws. He decrees that, on each grid, the officials must give the least amount of 
information possible so that the dictator (who is an intelligent person and who knows the 
two rules) could deduce the whole of the official's visiting law. Looking at each of the 
examples you have created, what is the least amount of information you need to give to 
enable the dictator deduce the whole of your visiting law.  

Task 2: One of the officials, for creating an example, uses other officials’ examples: he 
takes two valid examples and put their common points in his own grid. Is the grid that he 
makes a valid example? [In the discussion following this is termed the intersection task] 

Task 3: Another official takes two valid examples and puts all of their points in his own 
grid. Is the grid that he makes a valid example? [Hereafter, this is termed the union task] 

Our account of equivalence relations when we designed the tasks 
Let us use the eloquent, but still informal, account of equivalence relations given by 
Skemp (1977).He begins by introducing methods of sorting the elements of a parent 
set into sub-classes in which every object in the parent set belongs to one, and only 
one, subset (a partition of the parent set). He (ibid, p.174) considers two sorting 
methods: first, starting “with some characteristic properties, and form our sub-sets 
according to this”; and second, starting “with a particular matching procedure, and 
sort our set by putting all objects which match in this way into the same sub-set”. The 
particularity of this matching procedure is in its “exactness”, i.e. having an exact 
measure for the sameness; a necessity that if it is achieved, the matching procedure is 
called an equivalence relation. The exactness of the matching procedure also 
accounts for the transitive property. In addition to the transitive property, an 
equivalence relation has two further properties, reflexivity and symmetry (see below). 

In the problem given to our students, two cities are matched together if their visiting-
cities are the same, or two columns are matched together if they have the same status 
in each row. (For a thorough analysis of the task see Asghari, 2004a). 

RESULTS 
Analysis of the written transcripts led to a categorisation related to the variation in 
students’ focus of attention in this particular situation. It was possible for the same 
student to experience different things at different times. The categories are: Matching 
procedure, Single-group experience and Multiple-group experience. 

Matching Procedure Experience 
In this category, the focus is on the matching procedure between individual elements; 
what students experienced and described is in terms of the elements involved, 
without resort to a group and/or groups of elements. Before giving an example, it is 
worth saying that somehow or other the defining properties of an equivalence relation 
determine an exact matching. So do the defining properties of a visiting law.  

A matching procedure was exhibited by Ali (first year high school student) when he 
was generating an example. 
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Ali: I choose the very first things (points) haphazardly, and then I am going to 
match the things that have not been matched up yet.  

 
Fig 2: Three stages of Ali’s matching procedure 

Ali:  All right, we start again. 

So he paired up city 1 with all the other cities, one-by-one; when two focal columns 
find something in common, he matched them up, and when they have been already 
matched or they have nothing in common, he left them as they were. Then he did the 
same process on city 2 and paired it up and matched it up (if necessary) with all the 
other city after city 2, and so on. The result of this long process was the middle figure 
above. Then he continued:  

Ali:  Now, we are checking from start; it is going to be full (having all points). 

And he did so. Eventually the process ended with the right figure above.  

Single-Group Experience 
In this category, focus is on only one single “group” while all the other elements that 
do not fall into that group are treated as individuals. The elements in the focal group 
in one way or another are related to each other while all other elements are in the 
background as individual elements. Each student in the present study could exemplify 
this category. However, we have chosen one that at the same time could exemplify 
different aspects of this category. 

Kord (a middle school student) generated the following figures:  

 
Figure 3: Figures generated by Kord. 

Each of these has a square of equivalent points in one corner (lower left or upper 
right) but in no case did he put together a picture with squares in both corners. Even 
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when confronted with the ‘union task’, he found it necessary to focus on one square 
after the other; while he checked whether the square that he has been focusing on has 
been properly packed, he unpacks the other square and treated its elements on a par 
with all other individual elements. 

Kord:  … those that can visit each other are 
identical and they have no commonality 
with other cities, so this is correct (this is 
an example). 

Since this way of experiencing an equivalence relation 
has been completely hidden by our formal account 
(whether formally expressed or informally) we shall 
give a few other examples. Somewhere in his informal 
account of equivalence relation and partition, Skemp1 
(1977, p.174) asks us to imagine that “we are standing on the pavement in London, and 
in a hurry to get to the station, then we may divide {passing objects} simply into the sub-
sets {taxis} and {everything else}”. (Let us further his thought experiment) Doing so, 
we probably could not remember when we went sightseeing in London we divided 
the very parent set into the sub-sets {double-decker buses designed for tourists} and 
{everything else}. And still in both situations we do not think of the other passing 
objects around the world. Given this, it seems in the most practical and/or everyday 
situation we, ourselves, could exemplify our second category, single-group 
experience!  

Multiple-Group Experience 
In this category, “disjoint groups” are experienced; the groups have no elements in 
common and the elements of each group are related to each other in one way or 
another. There are only three students who exemplify this category. Let us follow the 
youngest one (Hess, middle school student) as he dealt with the problem of giving the 
least amount of information for the following figure on the left, which then was 
abbreviated to the figure on the right: (“abbreviated” is the way that Hess describes 
the figure with the least amount of information)  

 
Figure 5: Hess’s abbreviation of one of his examples 

Hess:  For example, one, five and seven make a group (it is the first time that he 
uses the word “group”) with each other, so I only draw five and seven, It 
doesn’t need (to do something) for five and seven, then I see two, nine 
and ten make a group with each other, I do for two these, it doesn’t need 
for nine and ten; three and six make a group too, four nothing, it make a 

 
Figure 4: Kord’s task 
putting two examples 
together. 
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group for itself, for five, one, no five has been done(suddenly shift to the 
third category); how many groups are they? It’s been finished, eight, it’s 
been finished; that’s it. 

And then to explain that why this abbreviated figure uniquely determines the original 
figure he added:  

Hess: There is only one case, when we draw the diagonal, the groups are 
determined; and when the groups were determined there is only one case. 

Now, let us enjoy the great extent of the operability of this new idea:  

After examining different arguments for the intersection problem he decided to work 
on the abbreviated figures, since “their abbreviations are themselves” and by using 
them “our way would be simpler”, he suggested. 

Hess : Suppose we have an abbreviation, suppose I am deleting certain points, 
even randomly, it still remain an abbreviation; they have been divided into 
some groups that have no intersection with each other, certain different 
groups are created… so if two abbreviations have intersection the 
intersection is some kind of abbreviation… (In other words) the remained 
figure is again the abbreviation of another figure.  

Reflexivity, Symmetry and Transitivity 
Looking at the above categories, we now turn to consider what has happened to the 
three properties reflexivity, symmetry and transitivity that constitute our normative 
conception of equivalence relation. In many natural contexts, reflexivity is not made 
explicit. Family relationships allow A to be a brother of B, but A is not his own 
brother. Similarly, in some of the earliest formal notions relating to equivalence, the 
Greek notion of two lines l, m being ‘parallel’ is shown to satisfy the two properties 
‘� a Pb  implies � b Pa ’ and ‘� a Pc  and � b Pc  implies � a Pb ’. But a is not parallel to itself. 
(How could it be? Two parallel lines have no points in common but a has all its 
points in common with itself). In the case of the example of visiting cities represented 
on a grid, however, the reflexive law is visible as the main diagonal of the array. (The 
matter is a little more subtle as the idea of ‘matching’ usually means matching two 
things. (See Asghari, 2004a for further details.) 

Symmetry seems to be the most natural properties of a matching procedure; simply 
two things are matched together. To see how natural it is, let us recall the example 
given in matching procedure category where Ali matched up all possible pairs to 
guarantee examplehood of his figure; however, not quite all possible pairs! Taking 
symmetry of the matching procedure for granted, he only needed to match forty-five 
pairs of cities not ninety pairs, as he did so. The ways that our students experienced 
the geometrical symmetry of each example (see any one of the above examples) or 
the more algebraic form of symmetry (if (a, b) then (b, a)) have deeper subtleties. 

Our discussion can again start with Skemp who said: 
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The importance of the transitive property is that any two elements of the same sub-set in 
a partition are connected by the equivalence relation. (Skemp, 1977, p. 175) 

This suggests that the transitive property is what that makes the vague phrase used in 
the second (and third) category clear; where we say that “the elements in the focal 
group in one way or another are related to each other.” However, what our students 
experienced in each single group (of related elements) was the version of transitivity 
formulated above by Euclid and specified by Freudenthal as follows: 

If two objects are equivalent to a third, then they are also mutually equivalent 
(Freudenthal 1966, p.17).  

Let us give an example. Hess is about to explain why the following figure that he has 
just generated is an example of a visiting law. 

Hess:  I am going to show that those that have 
commonality with four are equal to it.   

And he did so. And shortly after that, while generalizing 
his argument he added:  

Hess: For each column we check that those that are 
equal to it, those that must be equal to it, are 
they equal to it or not. 

 

We will call this version of the property ‘F-transitivity’ in 
honour of Freudenthal (following a private communication from Bob Burn). F-
transitivity (  a ~ c  and   b ~ c  implies  a ~ b ) is equivalent to standard transitivity when 
dealing with equivalence relations, but it is not satisfied by an order relation. The 
different embodiments of transitivity in order relations and equivalence relations can 
cause difficulties to students when they are introduced at the same time in a 
university foundation course (Chin & Tall, 2002). 

CONCLUSIONS AND AFTERWORD 
Our data suggest that by the standard (and mathematical) treatment of equivalence 
relation and partition in which we jump from the former to the latter and vice versa, 
we ignore a gap in everyday experience of the subject, i.e. single-group experience; 
moreover, If for some purposes we form our focal single-group by a certain matching 
procedure, it is likely the experience of F-transitivity (not transitivity) that saves us 
from matching all possible pairs though logically both amount to the same thing.  

Being aware of the above deviations from the standards could shed some light on our 
standard practice of teaching equivalence relations and some of its consequences (for 
example, see the end of the previous section). Furthermore, the above tasks 
themselves could be used for teaching purposes (though we used them only as a 
research device).      

 

Fig. 6: An example of 
the visiting law 
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The first part of The Task of the Mad Dictator (generating an example) was used by a 
lecturer in one of the top five ranked universities in the UK in a class consisting of 
fifteen prospective teachers. Following the task he reported: 

The students worked in groups to try to invent new visiting laws. They quickly 
discovered that just the diagonal and the whole grid were valid laws... one group 
produced a generic visiting law where each identical equivalence class was coloured the 
same. They independently 'discovered' the notion of equivalence classes (although they 
didn't use this terminology of course) and came up with the two main theorems I had on 
the next seminar’s lesson plan.  

End note 
1- Skemp himself used this example to illustrate that characteristic properties do not 
necessarily have to have a characteristic property. 
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HOW SERIES PROBLEMS INTEGRATING GEOMETRIC AND 
ARITHMETIC SCHEMES INFLUENCED PROSPECTIVE 

SECONDARY TEACHERS PEDAGOGICAL UNDERSTANDING 
Leslie Aspinwall Kenneth L. Shaw Hasan Unal 

 Florida State University  

 

In an undergraduate level mathematical problem-solving course, we conducted an 
experiment with a different methodology in the teaching of mathematical series 
problems to twenty-eight prospective secondary mathematics teachers. We 
supplemented the typical series instruction from an arithmetic focus to what we call a 
geo-arithmetic focus, one that focuses both on visual and analytic skills. What 
resulted were some inspiring revelations among these future high school teachers. 
We present the culminating geo-arithmetic series task, describe our interpretative 
methodology, and report the cases of three case-study students who reported, as a 
result of these tasks, initial cognitive dissonance, rich discussions in their learning 
groups, and ramifications for changes in their future teaching practices. 

MOTIVATION 
Mathematics students in sixth-century B.C. Greece concentrated on four very 
separate areas of mathematics (called mathemata): arithmetica (arithmetic), harmonia 
(music), geometria (geometry), and astrologia (astronomy). “This fourfold division of 
knowledge became known in the Middle Ages as the ‘quadrivium’” (Burton, 1997, p. 
88). To these early Greeks, arithmetic and geometry were as separate as music and 
astronomy. Mathematicians soon realized that arithmetic and geometry are not 
separate, and that some intriguing mathematics lies at their intersection. This report 
attempts to explore the beauty and richness of viewing one problem from a geo-
arithmetic perspective. 

Studies (e.g., Vinner, 1989) have consistently shown that students' mathematics 
understanding is typically analytic and not visual. Two possible reasons for this are 
when the analytic mode, instead of the graphic mode, is pervasively used in 
instruction, or when students or teachers hold the belief that mathematics is the 
skillful manipulation of symbols and numbers. It is clear from the literature (e.g., 
Lesh, Post, & Behr, 1987; Janvier, 1987; NCTM, 2000) that having multiple ways – 
for example, visual and analytic – to represent mathematical concepts is beneficial. 

Our argument is not that one student’s representational scheme is superior to another, 
only that students often construct vastly different personal and idiosyncratic 
representations that lead to different understandings of a concept. Because student-
generated representations provide useful windows into students’ thinking, it is 
productive for teachers to value these personal representations. Moreover, there is a 
belief among mathematics educators (e.g., Janvier 1987; Lesh, Post, & Behr, 1987) 
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that students benefit from being able to understand a variety of representations for 
mathematical concepts and to select and apply a representation that is suited to a 
particular mathematical task. The National Council of Teachers of Mathematics 
(NCTM) reinforces this belief: “Different representations support different ways of 
thinking about and manipulating mathematical objects. An object can be better 
understood when viewed through multiple lenses” (2000, p. 360).  

Recently, Aspinwall and Shaw (2002) reported their work with two students with 
contrasting modes of mathematical thinking – Al, whose mode was primarily visual, 
and Betty, whose mode was almost entirely symbolic. Their assertion was that 
students often construct vastly different personal and idiosyncratic representations, 
which lead to different understandings of concepts. Given problems presented 
graphically, Betty generally found it nearly impossible to think about the problem in 
graphical terms; thus, she translated from the graphic representations to symbolic 
representations, or equations, in order to make sense of the problems. Once she 
completed analytic operations on the symbols, she translated the problem back to the 
graphic representations required for the tasks. Al, however, operated directly on the 
graphic representations without having first to translate to symbolic representations. 
Betty and Al showcased two very different ways of solving problems, but the study 
suggested that if students could move freely between the visual (geometria) and the 
symbolic (arithmetica), their mathematical understanding would be much richer and 
their problem-solving abilities more robust.  

Krutetskii (1976) distinguished among three main types of mathematical processing 
by individuals: analytic, geometric, and harmonic. A student who has predominance 
toward the analytic relies strongly on verbal-logical processing and relies little on 
visual-pictorial processing. Conversely, a student who has predominance toward the 
geometric relies strongly on visual-pictorial processing predominating over above-
average verbal-logical processing. A student who has predominance toward the 
harmonic relies equally on verbal-logical and visual-pictorial processes. Several 
aspects of Krutetskii's position are of relevance in our interpretation of the ways that 
our students, comprising both analytic and geometric, processed mathematical series 
problems demonstrated geometrically. The use of Krutetskii’s categories permitted us 
to explore their thinking in the context of their cognitive processing. 

The National Council of Teachers of Mathematics (NCTM, 2000) states that problem 
solving with an array of creative problems is an essential component in students’ 
construction of meaningful mathematical content. “In high school, students’ 
repertoires of problem-solving strategies expand significantly because students are 
capable of employing more-complex methods and their abilities to reflect on their 
knowledge and act accordingly have grown” (p. 334). The following is one of those 
creative problems that we developed to generate students’ interests and to engage 
them in discussing mathematical content as well as geo-arithmetic issues of learning 
and teaching. 
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MATHEMATICAL PROBLEM 
The teacher stands at the front of the room with a bag and begins to remove four 
cubes, with side lengths from 1 cm to 4 cm. After ensuring all the students see the 
four cubes, the teacher returns the cubes to the bag, shakes the bag, then slowly 
withdraws from the bag … the four cubes? No, she withdraws not four cubes but one 
single square with side length 10 cm. The students were amazed by this extraordinary 
feat of conversion of 4 cubes into a square. (For them, it represented a conversion of 
three-dimensional cubes into a two-dimensional square.)  

From an arithmetic perspective, this problem can be represented by the following 
equation, 13  + 23 + 33 + 43  = 102. One student remarked that the conversion was true 
when using 1, 2, or 3 cubes as well. Another student asked, “Does placing 
consecutively larger cubes into the magic bag always produce a square with this 
intriguing property; that is, does this equality always hold:  13  + 23 + 33 + � � � + n3 = 
(1 + 2 + 3 + � � � + n) 2 ?” A mathematical induction approach is sufficient to show that 
this relationship is true for any natural number, n. We leave these familiar induction 
steps for the reader. 

From a geo-arithmetic perspective, we can look at this generalized problem in a 
richer way. First we consider the square, in Figure 1, with size (1 + 2 + 3 + � � � + n) x 
(1 + 2 + 3 + � � � + n). We divide this large square into smaller squares and rectangles, 
and calculate the areas of these squares and rectangles based on their dimensions – 
lengths and widths. But we will add the areas separately based on their placement in 
groups that we will designate as the Diagonal, Bricked, Vertical-Line, Dotted-Line, 
and Horizontal-Line regions. Finally, we will demonstrate that the sum of each of 
these regions is a cube so that the area of the square is the sum of the cubes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Generalized problem, regions of the square 
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Sum of the Diagonal Region 
1 = 13 

Sum of the Bricked Regions 
1x2 + 2x2 + 2x1 = 2(1+2) + 2x1 = 2((2x3)/2) + 2x1 = 2(3+1) = 2x22 = 23 

Sum of the Vertical-Line Regions 
1x3 + 2x3 + 3x3 + 3x1 + 3x2 = 3(1+2+3) + 3(1+2) = 3[(3x4)/2] + 3[(2x3)/2] = 

3[(3x4+2x3)/2] = 3x3(4+2)/2 = 32x3 = 33 

Sum of the Dotted-Line Regions 
1(n-1) + 2(n-1) + 3(n-1) +…+ (n-1)(n-1) + 1(n-1) + 2(n-1) + 3(n-1) +…+ (n-2)(n-1) = 

(n-1)(1+2+3+…+(n-1)) + (n-1)(1+2+3+…+(n-2)) = 

[(n-1)(n-1)n]/2 + [(n-1)(n-2)(n-1)]/2 = [(n-1)2n]/2 + [(n-1)2(n-2)]/2 = 

[(n-1)2(n+n-2)]/2 = [(n-1)2(2n-2)]/2 = [(n-1)22(n-1)]/2 = (n-1)3 

Sum of the Horizontal-Line Regions 
1n + 2n + 3n +…+ n(n-1) + nn + 1n + 2n + 3n +…+ n(n-1) = 

n(1+2+3+…+n) + n(1+2+3+…+n-1) = n[(n(n+1)/2] + n[(n-1)(n)/2] = 

n2(n+1)/2 + n2(n-1)/2 = n2[(n+1)+(n-1)]/2 = n2(2n)/2 = n3 

Now, we have as the sum of the areas of the subdivided square: 

+  Sum of the Diagonal Region:  13 

+  Sum of the Bricked Regions:  23 

+  Sum for the Vertical-Line Regions: 33  + …  

+  Sum for the Dotted-Line Regions: (n − 1) 3 

+  Sum for the Horizontal-Line Regions: n3  

=  Area of the square:    (1+2+3+…+n)2 = 13  + 23 + 33 + � � � + n3 

A series of other geo-arithmetic problems, similar to this one, was presented to the 
students over a period of 6 weeks, culminating with the problem above. During the 
entire semester, students were negotiating these ideas within the small groups of the 
class, and although many students had valuable insights, we report the thinking of 
three students as they seemed representative of the students as a whole.  

METHODOLOGY 
Twenty-eight students (pre-service high school mathematics teachers) from one 
senior-level mathematical problem solving class participated in the study. Analyzing 
their responses to Presmeg’s (1986) theoretical framework, we determined that some 
students were non-visual and that others tended to process information visually. Of 
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the three students we chose for interviews, one was visual (Emily) and two non-
visual (Ryan and Sara). Students in the class responded to written and oral tasks and 
questions, and the case studies consisted of students’ responses to questions about the 
classroom activities. In general, the aims of our study were to arrive at a 
comprehensive understanding of the role of students’ personal and idiosyncratic 
representations in their learning and to develop general theoretical statements about 
their learning processes.  

We explored students’ thinking on tasks designed to probe their different ways of 
understanding and representing series problems. Using multiple sources of qualitative 
data (e.g., audiotapes of interviews with students, transcripts of those tapes, 
researchers’ fieldnotes, worksheets of case study students, and two researchers’ 
journals), case study analyses were undertaken to identify patterns and changes in 
students’ understanding. In particular, we report how their work on these series 
problems presented geo-arithmetically influenced the ways they thought about 
teaching. Analyses of taped sessions included coding of transcripts. We triangulated 
the data to identify common and distinct strands.  

STUDENTS’ EXPLORATIONS 
As we began investigating these students’ geo-arithmetic concepts, assertions in three 
domains arose from the data: Cognitive Perturbation, Learning Group Dynamics, and 
Pedagogical Implication. We discuss each of these below with data that support each 
assertion. 

Cognitive Perturbation 
Perturbation, although often characterized as negative, is an essential cognitive 
component of change; to learn and grow, teachers must face cognitive dissonance 
(Shaw & Jakubowski, 1991). Such dissonance may cause frustration, but can also 
lead to reflection. We found this task caused students a great deal of reflection as the 
task was geo-arithmetic and students tended to have a preference toward either the 
geometric (visual) or the arithmetic (analytic). Thus, non-visual students experienced 
cognitive dissonance thinking about the visual components, and, similarly, visual 
students thinking about the analytic (arithmetic) part of the problem saw this as a 
perturbation. 

Ryan, the non-visual thinker above, was initially frustrated by our asking him to 
solve the series problems geometrically; he said he had always thought “in 
equations.” Ryan said that being confronted with problems presented visually had 
altered the way he thought about mathematics and his future role as a teacher. But 
Emily stated that she was  

extremely visual. I have to see things done out; I am sometimes not confident in my 
mathematical abilities, my algebra skills. I know what I am doing but I am afraid [of 
mistakes]. If I can do it visually, I know I am on the right track.  
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She claims that she has a good “3-D mind” and that her “last resort is to write an 
equation out.” She confessed that she looks at problems in creative ways and ways 
that are “out of the norm.” She asserts it “is easier for me to conceptualize it that 
way.” Though Emily was comforted by the blended visual/analytic problem, just 
because it was partly visual, she found herself mentally challenged as she tied 
together the visual and analytic aspects of the problem. She said, “I was struggling 
with the problem algebraically, I did not feel confident in myself.” 

Ryan said his first approach was to try to write an equation; but Emily’s approach 
was much different. When we asked Emily whether she thought these series 
problems were algebraic or geometric in nature, she said, “It was a blend for me. You 
needed to know the algebra behind it, but you had to have that geometry, spatial 
sense, in order to see the problem.” When we asked her how she thought about the 
problem presented above, she responded, “With the series problems, I had to picture 
a physical cube, with them lined up next to each other, and figure it out from there.” 

Sara reported that she found that the inductive proof to be easy, but had “a hard time 
visualizing it.” She said she would “never have thought about the geometric aspect of 
it.” She also stated that it “was confusing to me, and I would still solve them 
algebraically and then convert it.” Recollecting the problem later, after we had given 
the students cubes for modeling the problems, she said,  

“Once we had the manipulatives, … I can remember working with the actual blocked 
cubes, colored blocked to build the cubes and then see how they unfolded to make the 
square. And when I actually had hands-on something to work with, it was a little easier 
for me to see it, because I wasn’t having to depend on my spatial sense.”   

Here she notes that having physical manipulatives was an aid to her understanding as 
she had difficulties with mentally picturing the problem. Though the manipulatives 
were beneficial to her, she still relied on the analytic as her absolute,  

And I still think even though the visual representations were effective, they’re not a proof 
to me. I would still have to do it algebraically for it to verifiably be true in every case. 

Learning Group Dynamics 
During group activity, Ryan reported he was able to see how some students process 
information geometrically as he worked through the problems. What was striking was 
that as a result of the group activities, he felt he would be a better teacher in relating 
to visual and non-visual learners. “They taught me how to think about a problem so 
that if you are trying to reach someone who does not think just in numbers, well, you 
can help the student to see the problem visually.”   

Sara was also influenced by working within her groups. She said,  
It showed me that there are more visual aspects to math than I ever would have 
thought…. In the past I tended to rely on algebraic methods to solve problems and now I 
might be more willing to look at it visually and to think about whether or not my answer 
makes sense geometrically and visually. 
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Sara contrasted the way her group partner worked the problem, “She was very visual 
and I was very non-visual, but together we somehow always seemed to find a 
solution… we could always find some way to make sense for both of us.” She valued 
working with someone who was a visual thinker,  

I think that if I didn’t have someone like that to work with, who looked at it completely 
different, I would’ve kept trying the same things over and over and over again, and never 
have found a solution. 

Pedagogical Implication 
Our students reported that the activities had altered the way they thought about their 
future careers in teaching high school. Ryan’s experience with the geo-arithmetic 
problem “opened my eyes to a new way of seeing things that I had never been 
exposed to before. I consider myself to be not just a better problem solver, but a 
better teacher seeing how other students are going to see things.” Furthermore, he 
explained,  

Before, I was only thinking of the equations, and I thought everyone else was too. My 
idea was that everyone was going to learn by my [symbolic] teaching. I wasn’t open to 
visual teaching. Now I’m thinking differently, out of my comfort zone. 

Emily reflected on her future teaching practice, “Before these problems, I would have 
had to just go by the book, teach by breaking the equations down into smaller parts 
algebraically.” As a result of doing these geo-arithmetic problems, she asserted,  

I want to try to incorporate this (visual aspects) into my teaching, into as many lessons as 
possible. Because I now know I am that kind of thinker (visual), I know there are others 
like me. Based on this I want to try to accommodate all the different kinds of thinking. I 
will have to teach it purely algebraically for those who don’t think visually. I want to try 
to incorporate as much visual as I can, and that will help the algebra (analytic) people to 
see it differently too. Maybe I can create a future engineer. And the people who are visual 
need to know the numbers, how the equations work and not have to see it visually. 

Emily clearly saw a need to provide a balanced approach in teaching students both 
the analytic and the visual components of problems. Sara stated that, 

In teaching, definitely, I think that I would use more visual aspects, because at least for 
me as a student it was easier to see why things made sense, because you could visually 
look at it and tell, as opposed to algebraic methods where you had to think about it and 
see if it reasoned out.  

Since Sara states that she is non-visual, we asked Sara specifically, “What are the 
ramifications for the non-visual students if she presented something visually?” Sara 
responded,  

I think you would have to show it the algebraic way, the inductive way, the proof way, 
and then show it visually to kind of illustrate why it works. And I think that, at least for 
me, as a non-visual thinker, it still made sense for me to look at it visually. 
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CONCLUSIONS 
We believe students develop mathematical power by learning to recognize an idea 
embedded in a variety of different representational systems and to translate the idea 
from one mode of representation to another. A positive result of multiple 
instructional representations of concepts is that students who are prospective teachers 
learn to construct and to present representational schemes with which they might not 
be comfortable. 

The geo-arithmetic problems had positive implications for each student in class and 
in particular, the three students that have been mentioned in this paper. The problems, 
along with the group interactions caused students to reflect on how they think, 
whether it be predominantly visual or analytic. They were able to see from their 
colleagues that not everyone thinks they way they do. The pedagogical discussions 
were rich in that these prospective teachers began to describe how they might deal 
with various modes of students’ representations in their own classes, especially 
students who may have a predominance that differs from theirs. The authors intend to 
continue to investigate how geo-arithmetic problems positively perturb prospective 
mathematics teachers in their own thinking about mathematics learning and what 
impact these problems may have on their pedagogical content knowledge.  
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DEALING WITH LEARNING IN PRACTICE: TOOLS FOR 
MANAGING THE COMPLEXITY OF TEACHING AND 

LEARNING 
Sikunder Ali Baber Bettina Dahl 

Aalborg University Virginia Tech 

 
Drawing on the so-called CULTIS model of learning theories developed while 
working with students in the UK and Denmark and insights gained through the 
experiences of teachers’ learning through Networks of Learning developed in 
Pakistan, we suggest that the complexity of learning can be tackled with the CULTIS 
model at the conceptual level and can be supplemented while taking insights from the 
experiences of working through the Networks of Learning. An example of the 
Network of Learning is the Mathematics Association of Pakistan (MAP). The paper 
also discusses the implications of how the juxtaposition of CULTIS and Networks for 
Learning can be used to develop mathematics teachers’ understanding for various 
demands of learning mathematics in an informed manner.   

INTRODUCTION 
This paper brings in the experiences and ideas developed by each author. Sikunder 
Ali Baber (SAB) has worked on Networks of Learning and further theorized on this 
through the creation and continually running of various activities of Mathematics 
Association of Pakistan (MAP). SAB has chaired MAP the last four years. Bettina 
Dahl (BD) developed the CULTIS model of learning theories during her Ph.D. study. 
Below this model is explained. At the end of the paper, we discuss why we think it is 
necessary to combine both approaches to tackle the complexities of learning theories. 

NETWORKS OF TEACHER LEARNING 
What are networks? It is difficult to find one suitable definition of a network given 
the range of purposes for which they are established. However, Clarke (1996) quotes 
a useful definition proposed by Alter and Hage (1993, p. 46): “Networks constitute 
the basic social form that permits inter-organizational interactions of exchange, 
concerted action, and joint production. Networks are unbounded or bounded clusters 
of organizations that, by definition, are non-hierarchical collectives of legally 
separate units. Networking is the art of creating and/or maintaining a cluster of 
organizations for the purpose of exchanging, acting, or producing among the member 
organizations” (Clarke, 1996, p. 142). Darling-Hammond and McLaughlin (1995) 
have stressed the importance of networks as a powerful tool in teacher learning for 
both pre-service and in-service teachers, as cited by the report named 
Networks@Work (Queensland Board of Teacher Registration, 2002). Networks 
provide the ‘critical friends’ or ‘peers’ that teachers need to be able to reflect on their 
own teaching experiences associated with developing new practices in their 
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classrooms. Teacher networking often provides an opportunity for teachers to visit 
the various schools of participants and to gain ‘practical pedagogical clues’ (Moonen 
and Vooget, 1998, p. 102), from other teachers’ classrooms. Also, “Professional 
relationships forged outside the immediate working environment enable teachers to 
gain valuable insights into new knowledge and practice beyond that gained from 
interactions with colleagues in their own schools” (Board of Teacher Registration, 
1997, pp. 6-7). Lieberman (1999) says that “Networks are becoming popular, in part, 
because they encourage and seem to support many of the key ideas that reformers say 
are needed to produce change and improvement in schools, teaching, and learning”. 

Networks therefore seem to provide: 

• Opportunities for teachers to both consume and generate knowledge; 
• A variety of collaborative structures; 
• Flexibility and informality; 
• Discussion of problems that often have no agreed-upon solutions; 
• Ideas that challenge teachers rather than merely prescribing generic 

solutions; 
• An organizational structure that can be independent of, yet attached to, 

schools or 
• universities; 
• A chance to work across school and district lines; 
• A vision of reform that excites and encourages risk taking in a supportive 

environment; and 
• A community that respects teachers’ knowledge as well as knowledge from 

research and reform (Lieberman and Grolnick, 1997). 
Various writers (e.g., Darling Hammond and McLaughlin, 1995; Smith & 
Wohlstetter, 2001; Lieberman & Wood, 2003) have identified two distinctive features 
that teacher networks exhibit in their pursuit to better support teachers’ learning on a 
regular basis: 

Personal and Social Relationships: improved relationships, flexibility, risk-taking, 
commitment, openness in interacting with each other and clarifying values and 
expectations. 

Academic and Professional Aspects: innovation, enriching practice, continual 
development of teachers focused on professional concerns such as student learning, 
sharing and getting relevant professional information (dissemination), developing 
healthy and shared norms, enriching curriculum and influencing policy makers. 

Networks should also continually get engaged in the process of diversifying their 
activities and programs so that evolving and changing needs can be accommodated. 
This requires training of network leaders in managing the complex relationships and 
meeting the evolving needs in an effective manner. Also networks can get engaged 
with processes of follow-up of their professional development activities through 
engaging different individual and institutional members. These follow-up activities 
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can also help participants to develop insights into the issues that the professional 
networks are supposed to tackle. This continual sharing of professional practice of 
teachers within the networks can help all the participants to develop the culture of 
evidence essential to develop teaching practice along professional lines. 

Why are networks important in the context of Pakistan? 
Recently Aga Khan University Institute for Educational Development (AKU-IED) in 
Pakistan, a leading Institute mandated to uplift the quality of education through its 
innovative programs and research initiatives, has supported six professional 
associations; namely, Mathematics Association of Pakistan (MAP), School Head 
Teachers Association of Development of Education (SHADE), Science Association 
of Pakistan (SAP), Pakistan Association of Inclusive Education (PAIE), Association 
of Primary Teachers (APT) and Association of Social Studies Educators and 
Teachers (ASSET) to form a network called Professional Teachers Associations 
Network (PTAN). This network has some funding support from the Canadian 
International Development Agency (CIDA). The overarching aim of this Network is 
to promote an enabling environment for the professional growth and development of 
educators from diverse backgrounds, as a contribution to the improvement of 
education in Pakistan (PTAN Funding Proposal, unpublished). In the funding 
proposal of PTAN, an assessment is made about the status of teachers in Pakistan. It 
states: “Teaching in the context of Pakistan continues to remain as a neglected 
profession thus leading to poor status for the teachers within society. This status quo 
also remains prevalent due to the absence of networking amongst Pakistani teachers 
and an authentic platform to raise genuine issues to broader audiences as well as to 
support their own professional development. Pakistani teachers today, find 
themselves as an ignored identity, in most educational reforms and quality 
improvement initiatives in the country. This despondency has further perpetuated 
nonchalance and lack of conviction within their profession leading to the educational 
system working in a dismal situation” (PTAN Proposal, unpublished p. 1.). PTAN, 
through its constituent members is helping teachers from different sectors (public, 
private not-for-profit and private for profit) to come together and discuss their 
professional matters in a more open manner and develop a collaborative strategy to 
approach their professional matters. For example, the composition of working 
committees of these professional associations is made up with fair representation of 
teachers from all the constituencies such as government and private and other non-
governmental organizations that they are serving. This coming together of teachers 
from different sector schools helps members of these networks to understand their 
particular issues and develop a holistic approach towards creating greater cooperation 
to deal these issues on a more sustained and focused manner. 

MAP was established as a professional association of mathematics teachers to 
upgrade the quality of mathematics education in Pakistan. Since its inception, July 4, 
1997, it has been committed to providing a learning platform for all those related to 
the field of mathematics education whether directly or indirectly. MAP has adopted a 
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three-pronged approach to address the matter of the continuing development of 
mathematics teachers. Firstly, it has created and structured focused programs for 
mathematics teachers both pre-service and in-service to provide opportunities for 
them to interact freely with each other on professional matters. For example, MAP 
organizes a regular workshop every month on various topics such as teaching 
fractions meaningfully or geometry - making connections etc. 

Secondly, for children to develop positive attitude towards mathematics, MAP has 
been very active in organizing separate programs for them. In these programs, the 
children have opportunities to work in teams to experience mathematics as an 
interesting and challenging subject. MAP has also organized three Olympiads for 
children of different grade levels to work on interesting and challenging mathematics 
in a collaborative fashion. 

Thirdly, in order to create a strong support mechanism for teaching and learning 
worthwhile mathematics, MAP has worked on various projects where important 
stakeholders are being encouraged to re-learn mathematics so that they can see the 
broader role of mathematics in daily life situations. In this regard, MAP has been 
actively engaged into the process of rewriting textbooks with the Provincial bodies 
such as Sindh Text Book Board, a policy level body to design and produce text books 
for the province of Sindh in Pakistan. In Pakistan not too distant the government 
regulates the guidelines of mathematics curriculum to be taught at secondary and 
high schools in Pakistan. Also the governmental agencies have been significantly 
involved in the production of the textbooks of mathematics.  

MAP is also organizing workshops for parents so they can see what it means to learn 
mathematics and how they would be able to support children’s mathematics 
understanding. This work with the wider society enables MAP to create greater 
synergy and networking amongst different stakeholders to achieve quality 
mathematics education within Pakistan and beyond. Within this scenario the learning 
of mathematics can be seen as an important subject for making informed decisions in 
today’s fast changing world. 

CULTIS AND ITS SIGNIFICANCE FOR TEACHER LEARNING 
Dahl (2003, 2004) developed a model combing a number of different widely 
recognized and classical learning theories. This was done as part of a study on high-
achieving Danish and UK high school students’ mathematics learning strategies. To 
have a range of possible analysis, mainly the following theorists were used: von 
Glasersfeld (1995), Hadamard (1945), Mason (1985), Piaget (1970), Polya (1971), 
Skemp (1993), and Vygotsky (1962, 1978). These theories express themselves in 
various categories: Consciousness-Unconsciousness; Language-Tacit; Individual-
Social (CULTIS). The categories cut the theories into modules that to some extent 
interact and overlap but each category has nevertheless its own identity.  
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Category 1: Consciousness 
Polya described four phases for working on a mathematics problem. First: understand 
the problem; second: device a plan; third: carry out the plan, and the fourth is to 
examine the solution. The student should also be motivated and “desire its solution” 
(Polya, 1971, p. 6). Since it is a practical skill to solve problems and since we require 
all practical skills by imitation and practice, this also applies for solving 
mathematical problems (Polya, 1971, p. 4-5). Mason writes that practice is important 
but without reflection it may leave no permanent mark. Time and a questioning, 
challenging, and reflective atmosphere is also needed (Mason, 1985, p. 153). This 
reflects many teachers’ and students’ experience that through practice and repetition, 
one gets a feeling for the mathematics but also that if one only learns a technique, an 
algorithm, then soon after, these are forgotten.  
Category 2: Unconsciousness  
Hadamard (1945, p. 56) states that there are four stages in learning: preparation, 
incubation, illumination, and verification. Conscious work (preparation) is therefore 
preparatory to the illuminations. Polya states that “only such problems come back 
improved whose solution we passionately desire ... conscious effort and tension seem 
to be necessary to set the subconscious work going” (Polya, 1971, p. 198). This is the 
experience that after one has worked on a problem, one leaves it, and then later one 
feels a sudden shed of lighting and everything is clear. The illumination is generally 
preceded by an incubation phase where the problem solving is completely interrupted 
(Hadamard, 1945, p. 16). Teachers can organize time for the incubation phase e.g. 
through repetition and after the illumination spend time on verification, as in 
Category 1, to reflect consciously on the unconscious inputs.  
Category 3: Language as thinking-tool and concept formation  
Vygotsky describes language as the logical and analytical thinking-tool and that 
thoughts are not just expressed in words but come into existence through the words 
(Vygotsky, 1962, p. viii & 125). Mathematics is also itself a language, wherefore the 
formations of concepts are an essential part of learning mathematics. A basic 
principle in concept formation is that all concepts, except the primary ones, are 
derived from other concepts and they take part in the formation of higher order 
concepts (Skemp, 1993, p. 35). It is therefore important to let new concepts build on 
old ones and that these old ones are firmly learnt. These concepts form a schema in 
the student’s mind and if a concept is learnt and understood, the student does not 
need to remember it, he knows it. A change in a schema is always difficult since the 
existing schema needs to change (accommodate) when it is inadequate to assimilate 
new knowledge. Assimilation of new knowledge to an existing schema gives 
however a feeling of mastery (Skemp, 1993, pp. 29-42).  
Category 4: Tacit knowledge and obstruction by language 
Hadamard argued that thoughts die when they are embodied by word but that signs 
are nevertheless necessary support of thought (Hadamard, 1945, p. 75 & 96). Piaget 
(1970, p. 18-19) states that “the roots of logical thought are not to be found in 
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language alone, even though language coordination is important, but are to be found 
more generally in the coordination of actions, which are the basis of reflective 
abstraction”. Individual actions are thus the root of mathematical thought. In relation 
to tacit knowledge, one can observe that a person has a certain kind of knowledge but 
when one asks the person he is not aware that he knows this (Polanyi, 1967, p. 8).  
Category 5: Individual 
Constructivist epistemology is that “knowledge … is in the heads of persons, and that 
the thinking subject has no alternative but to construct what he or she knows on the 
basis of his or her own experience (Glasersfeld, 1995, p. 1). Piaget argues that the 
basis of abstraction is the action, not the object (Piaget, 1970, p. 16-18). The 
individual is therefore active and learning comes as the individual manipulates with 
the objects and reflects on this. These reflective abstractions are based on coordinated 
actions, not individual actions. Examples of coordinated actions are actions that are 
joined together or who succeed each other (Piaget, 1970, p. 18). Furthermore: “To 
know is to assimilate reality into systems of transformations. … knowing an object 
does not mean copying it - it means acting upon it” (Piaget, 1970, p. 15). Students 
therefore need to manipulate e.g. with concretization materials, algebraic concepts, or 
geometrical figures. It is important to leave time for students to do this individually 
since learning happens as the individual interacts with the surrounding.  

Category 6: Social 
Social interaction plays a fundamental role in shaping students’ internal cognitive 
structure. This is a gradual process that has two levels: “first between people … and 
then inside the child” (Vygotsky, 1978, p. 56-57). In the beginning a teacher controls 
and guides the student’s activity but gradually the student takes the initiative and the 
teacher corrects and guides, and at last the student is in control and the teacher is 
mainly supportive. The potential for learning is limited to the “zone of proximal 
development (ZPD)” (Vygotsky, 1978, p. 86), which is the area between the tasks a 
student can do without assistance and those that require help. The teacher is essential 
since on his own, the student might not enter his ZPD. Verbal thinking is an example 
of a social activity since “audible speech brings ideas into consciousness more clearly 
and fully than does sub-vocal speech” (Skemp, 1993, p. 91-92). Vision is therefore 
individual and hearing is collective (Skemp, 1993, p. 104). The students should 
appropriate and internalize. Also discussions among classmates facilitate learning. 

CONCLUSIONS 
A conclusion in Dahl (2004) is that if a teacher uses teaching methods that are too far 
away from teaching styles the students are used to, learning becomes difficult. 
However, the study also confirms that students learn in a variety of ways. Hence 
balance and eclectism is necessary. This does however not mean that anything is as 
good/bad as anything else but the teaching style must be targeted towards the specific 
students. Networks are good at helping teachers establishing new practices in their 
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classroom and CULTIS would be useful to gain input to ensure that the “area” of 
possible student learning processes is covered.  

Networks also respect both teachers’ knowledge and knowledge from research. 
CULTIS could therefore also be a tool from which to discuss the teachers’ 
experience. The teachers might in some of the theories recognize elements of ideas 
that they have developed from their experience. Kilpatrick argues: “Why is it that so 
many intelligent, well-trained, well-intentioned teachers put such a premium on 
developing students’ skill in the routines of arithmetic and algebra despite decades of 
advice to the contrary from so-called experts? What is it that teachers know that 
others do not?” (Kilpatrick, 1988). CULTIS is a holistic approach and we assume that 
since CULTIS shows a broad range of different theories, CULTIS might give 
teachers a language for theories that are not “in” for the moment and give them some 
arguments and reasons to hold on to their old stuff. We assume that any teacher in 
CULTIS can find something that “fits” the teacher’s own ideas. At the same time 
CULTIS might give the teachers new insight. It might therefore be a “safe” arena for 
discussing professional matters in an open manner and hopefully also create some 
openness for other ideas. Diversity of ideas, trust, and teachers feeling that they are 
being valued are also essential elements in Networks of Learning. 

Networks provide flexibility, informality, and a forum for discussing problems that 
often do not have an agreed-upon solution. This fits with CULTIS’s “neutrality” 
since it exhibits a wide range of learning theories. These theories are different, 
opposing, but they have been widely accepted at some point in time. They are 
thoughts where one might foresee revised versions recurring in the future. This 
insight is based on Hansen (2004) who argues that there seems to be pendulum 
swings between child centered/understanding and content centered/skills in the 
mathematics curriculum reforms. The teachers can disagree with the theories in 
CULTIS, but they nevertheless need to know the existence of these theories partly 
since it can provide insight into how to tackle individual student’s learning, and 
partly since it will give the teachers a tool to “recognize” the theoretical roots of 
future new theories and/or reforms. 

In Pakistan the Networks of Learning have up to now not focused on learning 
theories, but the CULTIS model could be a useful tool for the continual development 
of teachers focused on professional concerns such as student learning. The 
implementation of CULTIS into Networks of Learning has not yet happened but 
based on the experience we anticipate that this will be a useful tool to tackle the 
complexity of learning.  
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SITUATIONS OF PSYCHOLOGICAL COGNITIVE NO-GROWTH 
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We present and discuss three classroom situations where failure emerges 
unexpectedly after initial success and contend that they cannot be sufficiently 
explained by theories of psychological cognitive growth as surveyed in Tall [2004]. 
The discussion hinges on the social implication of psychoanalysis as developed by 
Slavoj Zizek [2002].    

INTRODUCTION 
Psychoanalysis has made its entrance into Mathematics Education via considerations 
of affect and cognition. Breen [2004] sought to deal with a case of a student’s anxiety 
through a change in the teacher’s attitude. Evans [2004] approaches the relationship 
of beliefs, emotions and motivations through the study of films that present 
mathematics as a work of genius. Falcão et al. [2003] discuss affect and cognition 
approaching the mathematics learner as possessor of a subjectivity that is always 
embedded in culture. Hannula, Maijala and Pehkonen [2004] point out that beliefs 
related to mathematics (self-confidence) have an influence on students’ 
achievements. Morselli and Furinghetti [2004] consider the connection between 
cognitive and affective aspects and look for answers in the domain of affect. 
Walshaw [2004] looks for a conceptualization in Lacan and Foucault that could aid 
the interpretation of subjectivity. Cabral [2004], Cabral and Baldino [2004], Carvalho 
and Cabral, [2003] assume a Lacanian perspective and introduce the concept of 
pedagogical transference. The importance of framing cognition in a wider 
sociological frame has been demonstrated in PME28 whose main theme was 
“inclusion and diversity” [Gates, 2004; Johnsen Høines, 2004]. 

In this paper, we take advantage of another slant of Lacanian Psychoanalysis that has 
been developed by Slavoj Zizek [2002] and leads to the analysis of social ideological 
formations. We contend that there is in cognition something more than cognition 
itself and that, in order to apprehend this surplus, theories of psychological cognitive 
growth do no suffice. We make an exercise of Hegel’s dialectics on Tall’s [2004] 
survey of theories on psychological cognitive growth in order to show that these 
theories have a built-in social exclusion bias. Then we present three episodes of what 
we call no-growth situations that, as such, escape the appreciation of cognitive 
growth theories. We interpret these situations eliciting their implicit discourse which 
has the form of present day ideologies: “Yes, I know, but nevertheless…”. “I know 
that school knowledge is important but nevertheless…” Our final discussion relates 
cognition to three forms of school authority that students, teachers and mathematics 
educators corroborate in order to disavow (the feeling of) castration: the institutional, 
the manipulative and the totalitarian forms. It will not be very pleasant to find 
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ourselves as mathematics educators implicated in the support of such forms of 
authority, but perhaps this is the unbearable dimension of the “P” in “PME”.                

THE EXCLUSION BIAS OF COGNITIVE THEORIES 
Tall [2004] seeks to dress an overall universal picture of PME meetings from the 
point of view of individual psychological cognitive growth. He makes a 
comprehensive survey of Piaget’s empirical, pseudo-empirical and reflective 
abstractions, Bruner’s enactive, iconic and symbolic representations, Fishbien’s 
intuitions, algorithms and formal aspects of mathematical thinking, Skemp’s 
perception, action and reflection types of activity, Van Hiele’s levels, Dubinsky’s 
APOS theory, Sfard’s operational operational/structural theory, Lakoff’s embodiment 
of thinking in biological activity. Grounded on the interplay of these theories, Tall 
attempts a synthesis intended to encompass the developments from conception to 
mature man and from discalculic children to research mathematicians. He arrives at 
“three worlds” into which cognitive growth can be categorized: the worlds of 
perception, of symbols and of properties. “Different individuals take very different 
journeys through the three worlds” he says [ibid: 285]. 

The reader is a little deceived since, instead of a synthesis, one could expect a global 
appreciation of such theories so that they could be sublated (afhoben) towards 
something new. After all, their similarities are much more striking than their 
differences. Why are there so many theories focusing on the same object, namely, 
psychological cognitive growth? Besides, they do not stem from an effort to make 
sense of a large amount of empirical data; on the contrary, they rely more or less 
heavily on their respective authors’ introspection. Experiences and studies tend to 
confirm, infirm or answer specific questions put by the theory, rather then to discover 
and tackle new phenomena.  

From a philosophical point of view, the general idea of growth implies a change in 
magnitude while a certain basic entity keeps its identity invariable: the “individual” 
who transits through the “worlds” remains an invariable seat of magnitude. “A 
magnitude is usually defined as that which can be increased or diminished” [Hegel, 
1998:186]. Hegel shows that this is a circular definition: “magnitude is that of which 
the magnitude can be altered” [ibid] but instead of discarding the definition as we 
would do in mathematics, he takes it up as the starting point of the very Notion of 
magnitude. Indeed, the definition has the merit of pointing out the external agent, the 
author, who first thought of it as a reasonable one. It is the author who provides the 
invariable background against which growth can be thought.  

In so far as theories of psychological cognitive growth refer to mathematics, they rely 
on a scale of values based on mathematical knowledge itself, a hierarchy rising from 
numerical pre-linguistic to the axiomatic and formal. Their authors speak from the 
position of one who has reached the apex of the stages or levels of their scales. They 
focus on psychological cognitive growth from the perspective of an autonomous ego 
hovering over the changes of magnitude of others, out of reach of any criticism. 
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Considering the transformation of quantity into quality, Hegel warns us that a field 
that gets too wet ceases to be a field and becomes a swamp. At what precise amount 
of humidity did it become a swamp? Which hair thread one has to lose in order to be 
considered bald? At what precise moment a graduate student becomes a research 
mathematician? At what precise moment a child surpasses its discalculic condition? 
These are symbolic determinations and as such they are intrinsically retroactive: once 
they are verified it is found out that the new situation they constitute existed a little 
before. Why? Essentially an external agent is responsible for the declaration of the 
new state of affairs. In order to be able to think changes of levels or states simply as 
“growth”, one has to abstract from the external social agent who attributes different 
magnitudes to an identical subtract. The identity resumes to the external social agent.  

Leaving their authors out, cognitive-growth theories assume the status of scientific 
subject-free theoretical speeches. This effort leads to an absolute scale of values in 
which all subjects are positioned, the author occupying the apex. The tendency is 
almost unavoidable to pass from “growth” to “lack”, “deficiency’, “shortage”, etc. 
This is the perverse social effect of cognitive theories. We do not claim that a further 
effort should be made towards a “perfect theory” that would be politically neutral. 
These theories represent an important logical moment. The contribution of 
psychoanalysis goes in the opposite direction: simply, the wills and desires of the 
authors must be brought to the fore. This is what we intend to do below.   

THREE NO-GROWTH SITUATIONS  
The episodes below were extracted from classes of two freshmen courses, one in 
Analytic Geometry (AG) the other on calculus (C1) given in August-December 2004 
for repeaters in the engineering program of our institution. Ten students enrolled in 
AG, six concludes the course and four passed; twelve enrolled in C1, seven 
concluded and two passed. Only one student of each course was not enrolled in the 
other. Classes met during four consecutive 50-minutes periods on Tuesdays (AG) and 
Thursdays (C1) totalizing 60 periods for each course. The text book was Stewart 
[1999] chapter 13 for AG and chapters 1 to 4 for C1. Classes had a tutorial format 
assisting individuals or couples of students. Each class ended with a 40-minutes 
hand-in individual exercise, graded and returned to the student’s scrutiny in the 
beginning of the following class. Very seldom students took photocopies of graded 
exercises. These exercises made 40% of the passing grade the other 60% came from 
two mid-terms and one final open-book written individual exams. Classes started 
with a proposition of exercises to be worked out. Students could never do more than 
two or three exercises per day. Pedagogical remarks stressing important points were 
inserted at each class as difficulties arose.     

Episode 1: Mary 
Mary had been our student in a high school course on elementary algebra. The only 
way she could solve algebraic equations was by trial and error. She entered the 
university, failed AG and C1 and became our student in the described environment.     
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In Agu-24, the exercise was: “Given points in the plane A, B, C and D, find x and y 
such that ACyABxAD += ”. Mary found the system of equations, tried to solve it by 
substitution but made a mistake:  

( ) 632/123 −=− xx . The class of Sep-9 was dedicated to solving algebraic equations by 
the “method of transformations”: 1) operate simultaneously on both members; 2) 
replace one member by an equal one. Mary showed some proficiency but made the 
same mistake again: ( ) 21/147 =+ xx . In the class of Sep-21 we made sure that all 
students could solve systems of two and three equations by Cramer’s rule. In Oct-10, 
one question of the mid-term exam was: Draw the straight lines ( ) ( ) 3,16,5 tt +=r  and 

xy 38 −= , write the first one in reduced form and determine their intersection up to 
three decimal places. Mary solved the system by substitution and this time she got it 
right. Would we say success?  

Mary passed AG but not C1. One of the questions of the second-chance C1 final 

exam in Dec-21 was: Find the intersection of the tangent line to 2 1
( )f x x

x
= +  at 2

1=x  

with the secant line through 1=x  and 2=x . Mary arrived at the system (with one 
wrong coefficient) and got stuck.   

Mary:         Where can I find “intersection of straight lines” in the book? 

We showed her the topics of intersection of lines and planes, of two lines in space 
and the statement of the question in the mid-term exam reminding her that she had 
got it right. She did not have a copy of the exam with her and her classroom work 
with a similar question was incomplete. When she finally handed her paper in with 
the question blank, we checked what sense she made of lines and equations. We drew 
two lines with their equations 32 −= xy , 53 +−= xy . She indicated the correspondence 
of x and y in the equation and points in the plane.  

Teacher:  (Pointing at the intersection): What happens at this point? What are the 
values of x and y?  

She recognized that the same x and the same y should fit into both equations. We 
insisted: 

Teacher:  How can you find this x and this y? (She remained silent, looking at the 
picture.) 

Teacher:  Are you making trials? 
Mary:      Yes. 

Resume: After one semester of intense tutoring work Mary reinforced her confidence 
in algebraic transformations and was able to solve a system of two equations by 
substitution. Yet, at the crucial pass/fail moment of the exam, she went back to her 
old high school strategy of trial and error.   

Episode 2: John 
In Dec-12 John was able to correctly solve the items below in the final exam. 
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He did not get a passing grade and had to take the second-chance final. In the 
question of finding the minimum distance of a point to a curve, he repeated the 
mistake that we had pointed out in his exam one week before: the derivative of 

( )22 3 5x x+ −  was simply ( )22 3 5x x+ −  and in the question of related rates he 

differentiated z=θcos3  as dz=− θsin3 .  

Resume: After one semester of tutoring John could show proficiency in applying the 
chain rule to rather involved composition of functions. However, at the final moment 
he seemed to have forgotten all and scribbled absurd equalities.    

Episode 3: Students 
During the first two weeks (Aug-19, 26) of C1 we made sure that all students could 
perform graphical exercises on derivatives and primitives reasonably well. Given the 
graph of an arbitrary function, draw tangent lines at several points, evaluate the 
slopes, plot the slopes as the graph of the derivative and conversely, starting from a 
given graph, interpret the ordinates as the slopes of a primitive and draw its graph 
through a given initial point. A protractor graduated in tangents was provided. The 
derivative was introduced as the “name” given to the slope of the tangent line and we 
made sure that every student could explain the meaning of this definition. 
Discussions of the relation of increasing/decreasing functions with the signs of 
derivatives were provided. In the next weeks we worked on algebraic equations 
(Sep−02), rules of differentiation (Sep-09), derivatives of elementary functions via 
limits (Sep-16) and graphs of cubics (Sep−23). Finally we came to optimization 
problems (Sep-30). Students were asked to read the first example in the text book. At 
a certain point they read: “So the function that we wish to maximize is 2( ) 2400 2A x x x= −  
0 1200x≤ ≤ ” [Stewart:278]. They had no problems so far. “The derivative is 

( ) 2400 4A x x′ = − , so to find the critical numbers we solve the equation 042400 =− x ” 
[ibid]. At this point the six students in class asked “Why?”  

Teacher:   Well, if you have a function like this (drawing a graph with a local 
maximum) how much do you think that the derivative will be at this 
point?  

Students:  I don’t know. 
Teacher:  The derivative is the name of what? 
Students:  (After some help for recollection): It is the slope of the tangent line. 

This seemed to suffice for two of the students but the other four still could not make 
any sense.   

Teacher:  (Showing a tangent line just a little to the left of the maximum): Is the 
slope of this line positive or negative? (The strategy was to move the 
tangent to the right until it reached the point of maximum.) 
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Students:  I don’t know. What do you mean by “slope”?  

The exercises of the first two weeks had had to be retaken before they could express 
any connection between extreme points and derivatives. This took most of the day. 
Resume: Everything that they had learned in the first two weeks about slopes and 
tangents was not available any more.   

DISCUSSION 
We presented a picture where the natural outcome would point towards growth and in 
many reports could be held as a bulletin of victory. Mary learned how to solve 
systems of equations by substitution and abandoned her empirical trial and error 
strategy; John proficiently learned the chain rule and all students could reasonably 
perform graphical correspondences between derivatives and primitives. However we 
went one step further and checked this success in the day after. It had fallen into a 
black hole! No-growth situations mean success followed by unexpected failure. 

A new notion such as no-growth situations naturally faces criticism. Is it necessary? 
Do these situations exist at all? Arguments may contend that we did not provide 
enough data in support of our concept: how was the affective teacher student 
relation? Were the student’s mistakes discussed in class? What sort of extra-class 
help was provided? Did the students have the necessary requisites to take a calculus 
course? An endless list of extra data may be required postponing the decision 
indefinitely or until a point is reached where the reported no-growth situation may be 
characterized as failed-growth: had the teacher behaved more friendly, had the 
method been adequately applied, had this or that been different, then growth could 
have occurred. True, the reported situations can be considered a peripheral problem 
in cognitive growth theories; we prefer to take them as a central problem in a new 
way of looking at “growth”. Should we call this new look “social cognition”? 

We argue that it is important but not sufficient to focus on growth when it occurs. We 
have to crucially consider what the student does overnight with what he has learned 
during the day, that is, what he does outside the school. Every day the students in the 
reported situations confirmed their will of becoming good professional engineers and 
behaved accordingly, coming to class and working hard on the exercises. However, 
from one day to the next they treated their learning in a way as to deny such good 
intentions. In our interpretation their implicit overnight discourse could be:  

Mary: ‘I know that my trial and error method to solve equations falls short of the 
course needs and I have learned other methods; nevertheless trial and error it is my 
method, my deep personal enjoyment and I will stick to it.’       

John: ‘I know how to operate differentials according to the strict chain rules as I have 
learned in this course; nevertheless I will do according to my former understanding: 
squares are replaced by twice the thing and cosine by minus sinus.’  

Students:  ‘We know that what we learn in one class will be necessary for the next 
one; nevertheless we do not take the trouble of keeping our learning under 
account.’  
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According to such interpretations (there may be others) the reported no-growth 
situations may be referred to one of the three elementary structures of the exercise of 
authority which function socially as three modes of disavowing castration.  

Traditional authority is based on what we could call the mystique of the Institution. 
Authority bases its charismatic power on symbolic ritual, on the form of the institution as 
such. (…) Socrates’ argument could thus actually be linked to the phrase ‘I know, but 
nevertheless…’: ‘I know that the verdict that condemned me to death is faulty, but 
nevertheless we must respect the form of the law as such’ . [Zizek,2002:249] 

‘I know that the value of school knowledge is questionable and that I will have to 
undergo training in my first job; nevertheless I believe that this knowledge represents 
the distinctive herald of my social group and I must endeavor to acquire it. The 
Emperor wears fine clothes because he is the Emperor.’ The interpretations we gave 
of the students’ overnight speeches certainly do not support this form of authority.     

The second mode corresponds to what might be called manipulative authority: authority 
which is no longer based on the mystique of the institution − on the performative power 
of symbolic ritual − but directly on the manipulation of its subjects. This kind of logic 
corresponds to a late-bourgeois society of ‘pathological Narcissism’ (…) constituted of 
individuals who take part in the social game externally, without ‘internal identifications’ 
– they ‘wear social masks’, ‘play their roles’, not taking them seriously’. (…) The social 
role of the mask is directly experienced as a manipulative imposture; the whole aim of 
the mask is to make an impression on the other. [Zizek, 2002:251. 

‘The social role of the school institution is directly experienced as a manipulative 
imposture; its whole aim is to make an impression on the other, school knowledge is 
useless, only the certificate counts.’ Would peripheral Third-World countries typify 
the “late bourgeois societies” mentioned by Zizek? These countries have received the 
“masks” of neo-liberalism, of globalization, of free trade, of international help and 
loans as impostures leading to increased exploitation. It is not surprising that such an 
understanding reflects itself in school, splitting knowledge and belief: ‘yes I know 
that the Emperor wears fine clothes, nevertheless I believe he is naked and I act 
accordingly’.  

 The third mode, fetishism stricto sensu, would be the matrix of totalitarian authority. 
(…) The totalitarian too does not believe in the symbolic fiction in his version of the 
Emperor’s clothes. He knows very well that the Emperor is naked (…).Yet in contrast to 
the traditional authority, what he adds is not “but nevertheless” but “just because”: just 
because the Emperor is naked we must hold together the more, work for the Good, our 
cause is all the more necessary. [Zizek, 2002:252].  

‘We know very well that imparting upper class central countries knowledge such as 
mathematics, to proletarian students of peripheral Third World countries is 
impossible, that raising the economy of a country through education is a hopeless 
dream, that all the efforts in favor of Mathematics Education have had a 
proportionally pale effect. Just because we know, since Freud, that education is one 
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of the four impossible endeavours, Mathematics Education is the more necessary. 
Commitment to it is our charming mode of disavowing castration.’  
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GOOD CAS WRITTEN RECORDS: INSIGHT FROM TEACHERS 
Lynda Ball and Kaye Stacey 

University of Melbourne 

Availability of a computer algebra system (CAS) provides a catalyst for teachers to 
reflect on long-standing practices of teaching mathematics, including how solutions 
to mathematical problems should be presented. This paper reports on how four 
teachers implementing CAS for the first time thought about this issue over a school 
year. The paper analyses their contributions to group discussions about their 
teaching practices at the beginning and end of the school year. New practice is 
needed to accommodate lack of intermediate steps available when CAS is used, and a 
cluster of issues relating to the use of CAS syntax. Their comments show considerable 
reflection about personal practice, the dominance of the external examination, and 
concern that new expectations might favour users of some brands of CAS over others. 

INTRODUCTION 
New availability of a computer algebra system (CAS) in the mathematics classroom 
and for formal assessment provides a catalyst for teachers to reflect on beliefs and 
long-accepted practices about teaching mathematics. This paper will report on how a 
group of teachers reflected on and reconsidered their long-standing practices of how 
to present written solutions to mathematical problems. They were prompted to 
reconsider this socio-mathematical norm (Krummheuer, 1995) by the perturbation to 
normal practice of working with our research team to implement the first 
mathematics subject permitting the use of CAS in secondary schools in their region. 
That having a complex calculator in the classroom perturbs normal practice is a 
common finding in the research literature (see, for example Artigue, 2002; Guin & 
Trouche, 1999; Stacey, 2003), and many aspects of this have been investigated.  

The four teachers, Ken, Lucy, Neil and Meg (not their real names) were participants 
in the CAS-CAT project (CAS-CAT, n.d.), which researched curriculum, assessment 
and teaching using CAS in three secondary schools. A new subject, Mathematical 
Methods (CAS), was accredited for the state examination system for years 11 and 12 
mathematics. In MMCAS, CAS could be used for all mathematical work, including 
in examinations, at the teacher’s or student’s discretion. Further descriptions and 
outcomes of the project are described in Stacey (2003), Ball (2003), Flynn and Asp 
(2002), and VCAA (2002). Previously, only graphics calculators without a symbolic 
facility had been permitted. The three project schools each used a different brand of 
CAS, with Lucy’s and Ken’s classes which were at the same school using the same 
machines.  

The project tracked the progress of the teachers and first cohort of students through 
the first two years of implementation – year 11 in 2001 and year 12 in 2002. At the 
end of 2002, the Year 12 students sat for the first externally-set state examinations in 



Ball & Stacey 

 

2- 114 PME29 — 2005 

the new subject. Their results contributed to their university entrance scores, and 
were regarded as very important by the teachers, students and schools. Teachers were 
always concerned with preparing their students well for examinations - it was a very 
high priority for them at all times. Ball (2003) and Ball and Stacey (2004) report on 
the way in which students’ recorded their solutions in the 2002 examinations.  

During 2001 and 2002, the project team provided extensive teaching material to 
assist teachers and students, training in the use of CAS and discussions about 
pedagogy. Consequently, teachers had considered implementation issues prior to the 
discussions reported in this paper in 2002. The data for this paper is from two 
meetings. The first was held at the beginning of the school year (February 2002) and 
involved all teachers and the researchers. The second meeting was at the end of the 
school year (November 2002) and, at the teachers’ request, involved the teachers 
only. Both meetings were audiotaped and transcribed by the researchers. 

HOW AND WHY DOES CAS CHANGE WRITTEN RECORDS? 
Early in the planning and implementation of MMCAS, it was evident to the research 
team, the teachers and also the state-appointed examination setters, that the use of 
CAS might require changes in the normal way in which students write solutions, and 
the way in which written solutions are assessed by examiners. The major reason is 
that, in the phrase of Flynn and Asp (2002), CAS “gobbles up” intermediate working. 
Figure 1a shows in TI89 syntax, how a CAS can solve simultaneous equations using 
one input ‘solve(x+y=7 and 2x−y=5,{x,y})’. The input line is second from the bottom 
(above MAIN) and the calculator display above is a restatement of the input followed 
by the answer x = 4 and y = 3. Figure 1b shows how multiple CAS steps can often be 
combined into one ‘nested’ procedure with one line of CAS syntax and one output. 
The expression sin(x)cos(x) was differentiated with respect to x using syntax 
d(sin(x)*cos(x),x) and then x=π substituted into the derivative to give the result 1. 
Note in particular, that the symbolic derivative is not outputted. In examinations, this 
intermediate step of finding a correct derivative would often have been awarded a 
mark, even if the derivative is not explicitly requested.  

One step solving (Fig. 1a)  Nested procedure (Fig. 1b) 

  

Figure 1. Examples of CAS procedures which do not provide intermediate results. 

The state authority, the VCAA, were concerned that partial credit should be able to 
be awarded for extended response questions and approved the instructions in Figure 2 
to appear on the examination papers. The third dot point is relevant here. Throughout 
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2002, teachers had to decide what ‘appropriate working’ meant for written records 
produced in the CAS context.  

In order to provide guidelines for the teachers, the research team had devised the 
RIPA rubric, described with examples in Ball and Stacey (2003), to help establish 
good practice for the written communication of mathematical solutions. The rubric 
suggested that students should make sure that their written solutions to problems 
make the plan of the overall solution (P) clear, specify what was inputted (I) to the 
calculator although not in calculator syntax, and provide reasons (R). However, they 
need record only selected answers (A) – there is no reason to transfer to the written 
record all of the intermediate outputs of the calculator to paper. The February 
meeting which provided data for this paper, began with researchers initiating a group 
discussion of how students should be trained to record their solutions in MMCAS 
classes, during which the RIPA ideas were raised. RIPA promoted much discussion 
among the researchers and teachers which continued throughout the year. Some 
teachers found RIPA helpful to share with their class, and others did not. 

Figure 2. Instructions for MMCAS examination 2002 (VCAA, 2002). 

PYTHAGORAS EXAMPLE 
The February discussion on teaching students to record solutions in a CAS 
environment began with examples such as those in Figure 1 but the teachers, 
planning how to raise these issues with students, wanted to discuss simple examples 
where students would not find the mathematics challenging. They suggested finding 
the hypotenuse of a right-angled triangle with sides 3cm and 5cm, and talked about 
various written solutions such as those in Figure 3, which also shows associated 
calculator screendumps. Comparing Figures 3a-3c shows that students might be using 
quite different syntax and calculator methods to solve even basic problems; an 
illustration of the explosion of methods observed in other studies (e.g. Artigue, 2002). 

Figure 3a is a typical solution using a scientific or graphics calculator: the inputs are 
not symbolic and it is not possible to obtain a surd answer. Ken noted, as a teaching 
difficulty, that his students (especially the less able students) would often include too 
many intermediate steps (e.g. 2 9 25c = + ) which were unnecessary to show in senior 
work, because they could be reasonably taken-as-shared. He attributed this to 
teachers of more junior classes not adjusting their expectations for written work to 
the presence of even scientific calculators. “And some junior teachers actually would 
make [students] write all of that because they’re not used to using technology”.  
This, and other comments by the teachers, indicated that the impact of scientific and 
graphics calculators on written work has not been thoroughly considered in schools.  
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Figure 3b shows a CAS solution using the TI89. The first input is the equation 
2 2 23 5c = + ; possible as a symbolic calculator is being used. The next step in the 

solution is to take the square root of both sides of the equation. The TI89 actually 
inputs and shows this as an operation on the equation as one entity 2( 34)c = : a move 
that is not part of standard mathematics. It is important for teachers to make sure that 
their students are aware of syntax such as this which is used by the CAS but is 
certainly not standard for mathematical written records. The result of this command 
(right hand side of line) is 34c = , a statement which looks unusual to students, who 
may not immediately deduce that 34c = ; instead they would expect 34c = ± .  
Dealing with unexpected output is another issue with which teachers using CAS need 
to assist students. The solution to this point has been worked with CAS in “exact 
mode”. Obtaining an approximate answer for c is not entirely trivial. Taking the 
square root of the equation has to be repeated in approximate mode, accessed in this 
case by pressing the “green diamond” button before ENTER, giving the output 
shown.  

Scientific/graphics (Fig. 3a) CAS solution 1 (Fig. 3b) CAS solution 2 (Fig. 3c) 

 
Using Pythagoras 

2 2 2

2

3 5

34

34 since 0

c

c

c c

= +
=

= >

 

5.83c =  

 
Using Pythagoras 

2 2 23 5c = +  
Square root of both sides 

34

34 since c>0

c

c

= ±

=
 

 
Solve (c2=a2+b2| 
a=3 and b=5, c) 

34 or 34

34 since c>0

c c

c

= − =

=
 

c≈5.83 

Figure 3. Several written solutions for Pythagoras example, with calculator output. 

On the Casio calculator, obtaining an approximate answer is embedded deeper within 
the menus, requiring the syntax TRNS (F1) then ALPHA then B (or TRNS (F1) then 
log button). Students became adept at those button sequences which they often used, 
but this created two issues for teachers. Firstly, students need to commit to memory 
sequences of button pushes which are not highly visible from the menu structure, and 
naturally begin to think in these terms. Neil commented “but my kids use language 
like TRNS ALPHA B APPROX” and was concerned that these might appear in their 
written records. Secondly, different brands of CAS use syntax that familiar users 
come to regard as intelligible and “standard” but which are very different to other 
brands. For students who are learning in a CAS classroom, how are they to 
distinguish between standard and non-standard notation?  
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Figure 3c shows a different CAS solution to the Pythagoras problem, using the TI89 
solve and substitute commands: Solve (c2=a2+b2| a=3 and b=5, c). This shows no 
intermediate working at all, although the plan of the solution seems clear. Should the 
teacher accept this written record which (a) shows no intermediate steps and (b) uses 
the calculator syntax directly? If this calculator syntax is permissible, is the illogical 
Solve (c2=a2+b2| a=3 and b=5, x), which produces the same output, also permissible? 

The Pythagoras example, simple as it is, shows that in addition to the problem of 
which steps should be shown in the written record, there are also a second set of 
issues arising for teachers related to the use of calculator syntax: what syntax can be 
accepted in written records, how will students know what it special to their learning 
environment and what is standard. Moreover, there are different problems arising for 
different brands of calculator. In the rest of this paper, we report on the teachers’ 
thinking on these two sets of issues. As we shall see, there are two aspects to this 
thinking – what is good mathematical practice and what is necessary to write in order 
to score marks on the important end-of-year external examination.  

CAS “GOBBLES” UP INTERMEDIATE STEPS 
When CAS “gobbles” up intermediate steps, what is the key information that should 
be recorded to show working? This question can be considered from the point of 
view of good mathematical practice which motivated the RIPA suggestions, or from 
the point of view of how marks will be allocated in examinations. It was the latter 
which dominated teachers’ comments on this issue in both the documented meetings, 
since they were always very concerned with maximizing students’ performance on 
the end of year high stakes examinations. Ken, for example, commented on one RIPA 
example: “But in an exam you would get maybe credit here and credit here and 
anything else here you’re doing for yourself, not for any marks”. It was probably 
because RIPA did not directly address the examination question that some teachers 
did not find it very useful.  

In November, Meg commented that her students were still unsure of the validity of a 
written record that just described the CAS steps, rather than showing intermediate 
algebraic manipulation. Meg believed that practice in previous years, requiring every 
step of by-hand working to be shown, made it difficult for her students to accept 
written records without all the steps that would be necessary in by-hand work. 

“… And my kids had a real problem showing the steps of the working. [They asked]: “If 
I just write down the process that I have to follow, the mathematical equation and write 
down that I need to solve for that equation and I need to do this and do that and then just 
use the calculator, is that enough?”  

In February, Ken had also commented that his students, especially the less able, 
wanted to record too many steps, even when working by-hand. In November Neil 
believed that it was his more capable students were recording too many steps, 
inserting algebraic manipulation. By the end of year 12 it might have been expected 
that students and teachers would feel more confident working in parallel with CAS 
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and pen-and-paper but it remained an issue, more for some students than the teachers. 
Here we see a struggle to establish a new socio-mathematical norm.  

The instruction on the examination paper (Figure 2) “Appropriate working must be 
shown if more than one mark is available” remained problematic throughout the year. 
Neil stated “Well, what does that [mean]? That’s meaningless now [with CAS]”. One 
teacher responded that a ‘bit of work’ should be shown, and Neil responded “Show a 
bit of work? Show the work that you value? I mean, we don’t show, even in year 7, all 
the work. Even year 7’s can skip steps”. There are decisions to be made everyday of 
what can be taken-as-shared. Lucy suggested that the focus for students might 
profitably shift from a command to “show your working” to a request “can you let us 
know what you’re doing”, which could be interpreted more broadly.  

Lucy clearly supported the idea that CAS might promote more of an overview of 
solution processes (reflected in a more condensed written record) and she had 
observed this in her classes.  

“… that’s surprised me a bit; just how good some of the kids can get at saying ‘Oh, I can 
see that what I need to do here is [solve] two equations in two unknowns’. They’re much 
clue-ier seeing that [a type of problem exists] inside a problem. [They might say]: ‘So 
now I know that I’ve got to solve, I’ve got to define this function that way and I’m going 
to solve it for this, for this and for that’…” 

Lucy believed her students had made progress in that they could focus on solving at a 
macro level and were content that the details, essentially routine procedures, were to 
be performed by CAS. If, as Lucy suggests, students see an overview of a solution 
and they can articulate the processes being used to solve then maybe they are going 
to be able to produce good written records to describe these solutions, without 
worrying too much about whether they should include detail within those processes.  

WHAT CAS SYNTAX IS ACCEPTABLE IN WRITTEN RECORDS? 
The teachers generally discouraged their students from using CAS syntax in their 
written records, but this was still an issue for them in November. Teachers 
acknowledged that students had started to use CAS words to communicate 
mathematical thinking. What represented accepted or CAS specific language was of 
concern to them in both meetings. Meg explained that she encouraged students to 
write a description of the process to be used: “I told them … to write down the 
procedure, what they were going to [use]; write it down, [such as] solve for x, solve 
for k, solve for whatever.” Neil was concerned with the “different feel” of the 
calculator used at his school. This included the different ways of approaching 
problems which it encouraged (space precludes examples of this interesting point) 
and also the different syntax. Neil dealt with this by explicitly instructing his students 
not to use CAS language: 

“Write down what a mathematician could understand. Write down a logical sequence but 
don’t use the calculator [language]’ … So just before the kids went into the exams I just 
said to them ‘Remember don’t say CALC-DIFF’…and they [asked] ‘what will we say?’ 
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And someone else in the group would say ‘[write] differentiate’ and then they’d say ‘Can 
we use the word SOLVE?’ I said, ‘Well, yes, because it’s a mathematical word’.” 

This shows that Neil categorised SOLVE as appropriate to record in contrast to 
CALC-DIFF (the first and second menu items required to carry out a differentiation) 
which he saw as brand specific CAS syntax. Here we see that some students were 
unsure of what was standard mathematical language and what was a specific CAS 
word right until the examination. Ken helped us to see this issue from another point 
of view. Ken was new to teaching senior mathematics, and so he was not as firmly 
enculturated into this world as the other teachers. For example, to him, the notation 
for solving simultaneous equations in Figure 1 was standard: “You could even put a 
and b in [curly] brackets …. That’s accepted notation, isn’t it.” Ken made comments 
such as this throughout the year. When Neil said that his students used the language 
TRNS ALPHA B APPROX, Ken observed that his brand of CAS “…doesn’t have 
that [nonstandard] calculator language…You don’t run into that problem.”, although 
later he agreed that the symbol | for substitute was an example of calculator language.  
Ken showed how CAS-specific language had become taken-as-shared in his 
classroom and highlighted the difficulties that novices may have in distinguishing 
standard from calculator-oriented practice. Ken also commented: “I used to say ‘Let y 
equal f(x)’, but now you say ‘DEFINE f(x) equal..” and Meg and Lucy both agreed 
with this, implying that this would be good practice in the examinations. In this case, 
DEFINE is a command used by the brands of calculators in their two schools. This 
claim by others that DEFINE should be used, perturbed Neil as he saw it as brand 
specific language (STORE has a somewhat similar function on his calculator).  

Fundamental to this is the question of what is considered ‘standard notation’ and 
what is ‘syntax’. Comments by teachers suggest that the line between these may be 
blurring and that some CAS language or syntax had become standard in these 
classrooms. Student examination scripts in fact showed some use of CAS syntax 
(Ball, 2003). This suggests that some commands that might be considered syntax by 
teachers may be standard mathematical practice from the perspective of students. 
This is not unexpected when CAS is the normal technology in the classroom. 

CONCLUDING REMARKS 
From February to November, teachers came to moderately comfortable personal 
positions about the advice they gave to their students. The first main issue was the 
conflict between expectations that students will show working, and the fact that CAS 
does not report intermediate results. However, as experience of CAS syntax and the 
differences between brands grew during the year, they became more aware that 
students needed explicit guidance about what calculator language was acceptable in 
written work. The teachers’ concern for students’ welfare meant that the demands of 
the examination dominated their actions. To differing extents, they also looked 
beyond this. Discussion with their students about written records and use of CAS 
seemed to be a key factor to helping students develop good practices. This involves 
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deciding what can be taken-as-shared and what are acceptable warrants for 
mathematical explanation, as teachers and students grapple to establish new socio-
mathematical norms for the new environment. These teachers raised issues and 
worked towards agreed understanding about good practice. 
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This paper describes sixth grade students’ performance in tasks related to arithmetic 
expressions in the context of a design experiment aimed at developing a principled 
approach to beginning symbolic algebra. This approach, which is centered on the 
concept of ‘term’, is described elsewhere. In the paper, students’ performance in two 
kinds of tasks over items that test procedural knowledge and items that test structural 
understanding is examined. We address questions of consistency in the use of 
procedures in different task items, and the transfer of procedural knowledge to the 
more structure-oriented items. The data shows that the relation between procedural 
knowledge and structural understanding is complex. Developing a structural 
understanding of expressions requires the consistent use of the procedures and rules 
in various situations/ contexts and making sense of the relationships between the 
components of the expression. We cite some preliminary evidence in favour of the 
effectiveness of the structure-oriented approach both in strengthening procedural 
knowledge and structural understanding. 

BACKGROUND 
A sound procedural knowledge in evaluating arithmetic expressions is clearly 
necessary to build a strong foundation for algebra. Manipulating algebraic 
expressions requires students to be well aware of the rules, properties and 
conventions with regard to numbers and operation signs. It has also been recognized 
that appreciating the structure of arithmetic expressions is useful for understanding 
algebraic expressions; algebra is at times described as generalized arithmetic 
exploiting the structure of arithmetic expressions (Bell, 1995). A poor understanding 
of operational laws might lead to conceptual obstacles and hinder generalizing and 
recognizing patterns between numbers (e.g. Williams and Cooper, 2001). 

Students’ experience with arithmetic expressions in traditional classrooms is mainly 
oriented to procedures but may be ineffective even in inducing sound procedural 
knowledge. Many studies have reported both the poor procedural knowledge of 
students and their lack of understanding of the structure of arithmetic expressions 
(Chaiklin and Lesgold, 1984; Kieran, 1989). Students are seen to use faulty rules of 
operations and are inconsistent in the way they evaluate an expression (Chaiklin and 
Lesgold, 1984). Many common and frequent errors are reported, such as doing 
addition before multiplication and detaching the numeral from the preceding negative 
sign (Linchevski and Livneh, 1999).  
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The larger project, of which this study forms a part, is aimed at developing an 
instructional sequence for beginning algebra that builds both sound procedural 
knowledge and understanding of structure of arithmetic and algebraic expressions.  

FRAMEWORK ADOPTED IN THE TEACHING APPROACH 
The teaching approach adopted in the project explicates the structure of arithmetic 
and algebraic expressions from the very beginning. It capitalizes on students’ prior 
arithmetic knowledge and is strongly centered around the concept of term. Hence we 
refer to this approach as the ‘terms approach’ below. Here we describe briefly the 
way in which the term concept is used in teaching procedures and concepts. More 
details of this approach have been described elsewhere (Kalyansundaram and 
Banerjee, 2004; Subramaniam, 2004).  
Students learn at the outset that an arithmetic expression stands for a number, which 
is the value of the expression. Two numerical expressions are equal if their values are 
equal. Equality of expressions can also be judged from the relationships between the 
components or parts of the expressions. This makes it essential for the students to 
learn to parse the expressions correctly, and explore and identify the relationships 
between the parts, and of the parts to the whole. We take structural understanding to 
include this group of skills. This is consistent with Kieran’s (1989) definition of 
structure, which is seen as comprising ‘surface’ and ‘systemic’ structure. 
The concept of ‘term’ has proved useful in this context. The concept of ‘term’ 
requires students to see the number/numeral together with its sign. Terms may be 
simple terms (+5) or complex terms. Complex terms can be of various types like 
product term (e.g. +3×2) and bracket term (e.g. -(4+2)). The product term may 
contain only numerical factor/s or letter factor/s or bracketed factor/s. While simple 
terms can be combined easily, a product term (or complex term) cannot be combined 
with a simple term unless the product term (or complex term) is converted into a 
simple term/s. Identifying the conditions when an expression remains invariant in 
value leads to the idea of equality of expressions. The meaning of “=” is thereby 
broadened from the ‘do something’ instruction to stand for a relation between two 
expressions which have the same value. The two concepts of terms and equality 
together give visual and conceptual support to the procedures for evaluating 
expressions (order of operations) and the rules for opening bracket, as they get 
reformulated using these two concepts.  

METHODOLOGY 
A design experiment methodology has been used in developing this instructional 
approach. The design experiment is conducted with grade 6 students (11 to 12 yr 
olds) from nearby English and vernacular medium (Marathi) schools. The English 
medium and the vernacular medium students form separate groups of instruction. The 
schools cater to low or mixed socio-economic strata. Four teaching intervention 
cycles have been conducted between summer 2003 and autumn 2004, during vacation 
periods of the schools.  
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The four teaching cycles were carried out in summer of 2003, autumn 2003, summer 
2004 and autumn 2004 respectively. The first cycle was mainly exploratory in 
character and is not reported in this paper. There were 3 groups of students in each of 
the cycles 2, 3 and 4. Each group had 11 to 13 instructional sessions of 90 minutes 
each. A and B groups in all the cycles were from the English medium, and C groups 
from the Marathi medium. Subscripts indicate the cycle to which the groups belong. 
All the nine groups across the three cycles are discussed separately. The students in 
groups A4 and C4 were students who had attended the course in Cycle 3 except a few 
in C4 who were first-timers. The students in all the groups in the previous cycles 
including B4 attended the course for the first time.  

Each group in a particular cycle had one teacher, except for A2 and A3, which had 
separate teachers for the arithmetic and algebra modules, who taught for about equal 
durations. Three teachers were involved in teaching the English groups across the 
cycles and one teacher for the vernacular group. Three out of the four teachers, which 
included the Marathi medium teacher, involved in the project were collaborators in 
the research project. 

The details of the instruction were worked out by the group of teacher-researchers in 
the course of discussions held both preceding as well as during the cycles. Discussion 
and reflection by the group on the different teaching cycles has brought out the 
salient features that are common to and different in the cycles. There is an increasing 
centrality and coherence to the use of the concept of ‘term’ over the cycles. In the 
earlier cycles, this concept was used only in the context of judging the equality of 
expressions, but in the later cycles, increasingly, the procedures for evaluating 
expressions were brought under this concept. In terms of the evolution and coherence 
of the approach, cycle 4 represents the most evolved form. 

The presence of multiple groups and teachers in and across the cycles helped us trace 
the development of students as they went through the course of instruction as well as 
observe the differences among them due to slight variations in the teaching sequence 
and their prior knowledge. It is therefore difficult to compare the groups directly. The 
students in Cycle 4 were exposed to the matured ‘terms approach’ and we will focus 
on their performance looking at the common errors and the extent of structural 
understanding. The data was collected through daily practice exercises, written tests, 
video-recordings, teacher’s log book and the pre and the post tests given to the 
students. Interviews were conducted with 22 students about 6 weeks after cycle 4. 
The students who showed either very consistent or somewhat inconsistent knowledge 
of procedures and structure sense during the course were selected from the three 
groups for the interviews, most of them falling in the average to high category of 
performance. In the context of the present paper, it is important to note that groups B2 
and B3 are slightly different in terms of the instruction received. Group B2 received 
no instruction in arithmetic, but only in algebra, the extra time being spent on 
activities in geometry. Group B3 received instruction mainly on arithmetic 
expressions that was centered around operations with signed whole numbers. 
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ANALYSIS OF DATA 
Here we discuss the performance of the students in the pre and post tests in tasks 
dealing with two types of expressions: (a) expressions with a ‘×’ and ‘+’ sign and   
(b) expressions with ‘+’ and ‘–’ signs only. For each type of expression, we examine 
a set of tasks: simple tasks and complex tasks requiring essentially procedural 
knowledge, and tasks that require some structural understanding. The latter tasks call 
for judging the equality or inequality of expressions based on their structure without 
recourse to calculation. Since consistent interpretation of conventions used in 
arithmetic expressions is an essential element in building a structure sense, we 
examine the consistency of student responses across simple and complex procedural 
tasks. Specifically we look for the influence of the structure oriented teaching 
approach using the concept of ‘terms’, on consistency and on developing a structure 
sense. 

Evaluation of expressions with a ‘+’ and ‘×’ sign 
Many children do not absorb the convention of multiplication before addition in 
evaluating arithmetic expressions even after it has been taught (Linchevski and 
Livneh, 1999). The most common ‘LR’ error in evaluating expressions like 7+3×4, is 
to first add and then multiply, that is, to move from left to right. An earlier study 
conducted by us (unpublished) showed that the ‘LR’ error accounted for about 50% 
of the errors in equivalent contexts made by a group of rural upper primary teachers. 
Table 1 summarizes the performance of students in the different groups in evaluating 
an expression with a ‘+’ and ‘×’ sign.  

 
 
 
 
 
 

N(A2, A3, A4)=(25, 23, 28); N(B2, B3, B4)=(21, 29, 26); N(C2, C3, C4)=(34, 38, 42) 

Table 1: Percentage correct in evaluating expressions with ‘+’ and ‘×’ 

Students in the present study were not introduced to the rule of operations before 
class 6, which accounts for the very low rate of correct answers in the pre test of 
Cycle 3 for all groups in the table. Students in cycles 2 and 4 were briefly exposed to 
the rules of order of operation during their school instruction before they came for the 
vacation course. The post test results show a significant improvement in their 
performance in both the cycles. Also noticeable is the better performance of the 
students in groups A and C in the pre test of Cycle 4, the students being not only 
exposed to the rules in the school but also during instruction in Cycle 3. Students in 
group B4 were fresh students and had only some idea of evaluating expressions from 
the school. The post-test scores of groups B2 and B3 remain low relative to the pre test 

Item  Cycle 2 Cycle 3 Cycle 4 
  Pre Post Pre Post Pre Post 

A 44 88 0 74 68 93 
B 50 62 0 24 15 92 

e.g., 7+3×4 
(one product 
term) C 23 89 21 82 74 91 
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and the other groups, because students received very little or no instruction on this 
aspect during the vacation program. While in Cycle 2, evaluating expressions was 
taught only as a set of rules, in Cycles 3 and 4, the ‘terms approach’ with increasing 
emphasis on the idea of product term was adopted. The incidence of LR error as a 
fraction of total errors in Cycles 2, 3 and 4 respectively are 6/7, 6/13 and 2/8, the 
remaining errors being mainly computational errors. (Groups B2 and B3, which did 
not receive instruction on this topic, have been excluded.) 

We now examine the consistency with which students applied the ‘×’ before ‘+’ 
convention across test items. Some of the tests contained two items of the above type, 
one with a ‘+’ sign and the other with a ‘–’ sign. Students were consistent in their 
responses to both questions, with a few (2 to 4) answering one of the questions 
correctly while making the ‘LR’ error in the other. However, when the second item 
was a more complex but similar item (Cycle 2: Evaluate 3×(6+3×5) ), around 17% of 
the students in all the groups made the ‘LR’ error while evaluating the expression 
inside the bracket although they had correctly evaluated the corresponding expression 
in the item without brackets.  
In a related item, where a substitution was required to be done prior to evaluation 
(Cycles 3 and 4: 7+3×x, x=2 ), the students’ performance was low (around 50% or 
lower, except for C4 which had around 70%). Although most of the students who 
performed poorly on this item had a problem with substitution, a significant number 
of students (12%) in all the groups made the ‘LR’ error after substituting correctly for 
the variable, although they had evaluated the corresponding arithmetic expression 
correctly. This inconsistency on the part of the students shows that although they 
learnt to parse the expression correctly and had absorbed the convention of 
multiplication before addition and subtraction in a simpler situation, in a more 
complex task the ‘LR’ error may resurface. In Cycle 4, where the ‘term’ approach 
was adopted more strongly and the overall occurrence of ‘LR’ error is low, the 
inconsistency in the substitution question (that is, responses showing ‘LR’ error after 
substitution but not in the evaluation item) is only 7% for all the groups.  

Figure 1a shows the performance of students in cycles 2 and 3 on the more structure-
oriented task of judging equality for expressions of the above type. These expressions 
were slightly more complex than the evaluation items and had two ‘+’ signs and one 
‘×’ sign each (therefore, two simple terms and one product term, like 28+34+21×19 
or 21+34×19+28). The data indicates that knowing how to evaluate expressions of 
this kind is necessary but not sufficient for judging equality. Nearly all the students 
who can make the correct judgment about the equality/ inequality of two expressions, 
can also evaluate the arithmetic expression with ‘+’ and ‘×’ sign (See Figure 1b). The 
percentage of students, who can succeed in the more complex task of judging the 
expressions equal to a given expression, is high for the groups C2, A3 and C3. In 
Cycle 4, the corresponding task was more complex with the options testing their 
ability to use brackets and splitting terms (like writing –9 as –4 –5) in the expression. 
We would not discuss the details of these results here.   
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Figure 1: (a) Percentage of correct responses in evaluation and judging equality tasks 
for different groups. (b) Overlap of students who perform correctly on the judging 

equality task (indicated by the region filled with small circles) and those who perform 
correctly on the evaluation task (indicated by the hatched region) in all groups.  

In the interviews conducted after Cycle 4, 19 students out of 22 justified their 
response by referring to the terms in the pair of expressions. This does not mean 
however that all were correct in their responses. For example, while comparing the 
expressions 18-15+13×4 and 4×15+18-13, 6 students identified the terms wrongly as 
+18, -15, +13 and ×4. This was consistent with their wrongly judging the expressions 
4×15+18-13 and 18-13+15×4 as unequal. From the above, it is clear that ability to 
correctly evaluate simple expressions consistent with the rules of operations does not 
transfer readily to the more structural task of judging equality. The interview data 
indicate that the concept of term is readily applied to judging equality and may aid 
students in forming a structural understanding of expressions. 

Evaluation of expressions with only ‘+’ and ‘-’ 
An expression like 19–3+6 appears to be easy to evaluate if students know the 
operations of addition and subtraction. However students frequently evaluate this 
expression as equal to 19 – 9 = 10, making what has been described the error of 
detaching the negative sign (Linchevski and Livneh, 1999). In the study with teachers 
referred to earlier, ‘detachment’ errors accounted for about 40% of the errors that 
teachers made in equivalent contexts. One reason for this error could be incorrect 
perceptual parsing, where students ‘detach’ the minus sign from the terms to the right 
of the sign. Another reason, as indicated by the interview responses of some students, 
is that students mislearn the rule of order of operations, thinking that addition 
precedes subtraction. (The ‘BODMAS’ mnemonic actually suggests this misleading 
rule.) Table 2 shows the performance of students across all the cycles in evaluating 
this type of expression. The post test results in the even cycles is slightly better than 
the odd cycle, which could be due to their enhanced exposure to the evaluation task, 
first in school and then in our project.  
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Item  Cycle 2 Cycle 3 Cycle 4 
  Pre Post Pre Post Pre Post 

A 64 84 61 74 68 86 
B 48 62 38 69 65 85 

19-3+6 (only simple 
terms) 

C 74 94 82 74 79 86 

Table 2: Percentage correct in evaluating expressions with ‘+’ and ‘–’ 

In designing the ‘terms’ approach, we expected students to avoid making the 
detachment error as they learnt to parse an expression into terms in the course of 
evaluating the expression. Although the performance in the even cycles is nearly 
same, in Cycle 2, the rate of occurrence of the detachment error for all groups in the 
pre test is 31% and in the post test 17%. In this cycle, it must be recalled, the concept 
of term was not used in evaluation tasks but only in judging equality tasks. In the post 
test for Cycle 3, there are only a few cases of detachment error, the rest being mainly 
calculation errors, and in Cycle 4 there are no detachment errors. This supports our 
hypothesis concerning the effectiveness of the ‘terms’ approach in avoiding the 
detachment error. 
Most of the students interviewed after Cycle 4 were confident that 25-10+5 cannot be 
written as 25-15. Some could not say why they thought so but others said it (i.e., 25-
15) can be done only if there is a bracket around 10+5 or that the term –10 has been 
incorrectly changed to +10 to get 15 and added that it could be -5. These students 
also evaluated the expressions not in the left to right fashion but combined terms 
flexibly as it suited them. 
The more structure-oriented tasks of judging equality for this type of expressions 
were specifically designed to test whether students make the detachment error. Only 
20%-35% of the students made correct judgments in this type of item in Cycle 2. In 
the slightly simpler item in Cycle 3 (comparing expressions such as 249+165-328 or 
328+165-249), 40%-60% of the students made correct judgments. The item in Cycle 
4 was more difficult with a product term included in each expression and was again 
designed to catch the detachment error (18-27+4×6-15 & 18-20+7+4×6-10+5). Here 
40% of the students made correct judgments. The fact that students were splitting the 
expressions into terms was corroborated in the interviews after Cycle 4. 21 out of 22 
students interviewed said that the expression 49-5-37+23-5 is not equal to the 
expression 49-37+23 because of the extra two ‘–5’s, but readily saw that the latter 
expression was equal to 49-5-37+23+5, because –5+5 gives 0. 

DISCUSSION 
The development of the teaching approach during the course of the project, which 
can be characterized as making the concept of term central to both structural (judging 
equality) tasks and procedural (evaluation) tasks, has proved fruitful from two points 
of view. Firstly, it has made the instructional approach internally coherent allowing 
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students to deal more meaningfully with symbolic expressions. Second, it has 
strengthened students’ procedural knowledge and has reduced the occurrence of well-
known errors. Subjective assessments of the interviews conducted at the end of Cycle 
4 suggest that students feel confident in the justification that they give for their 
responses. However, the performance in structure-oriented tasks is low even in the 
later cycles. This is partly due to the increased complexity of the tasks. Classroom 
discussions indicate that students are more confident in dealing with simpler 
expressions while judging equality. However, the data indicate to us that the 
formation of structure sense from a knowledge of procedures and rules is a difficult 
and long process. It would require abstracting the relationships within and between 
expressions. Further, it requires consistent use of the rules and procedures in various 
situations sharing the structural aspects.  
One other consequence of our teaching approach needs to be mentioned. Identifying 
and comparing terms between a pair of expression in order to judge their equality is 
something of a shortcut in carrying out the task. When this is taught explicitly, for 
some students it may assume a recipe-like quality, turning what we have called a 
structure-oriented task to a more procedural one. In the course of the interviews, we 
noticed that for some students this seems to be the case, while other students develop 
a more flexible and truly structural understanding. This is an aspect we intend to 
explore further. However, even for students who interpret the ‘terms approach’ in 
recipe-like ways, we hope that the transition to an understanding of structure will be 
easier than in the traditional approach. 
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Pursuing our investigation on students’ use and understanding of algebraic 
notations, this paper examines students’ cognitive difficulties related to the 
designation of an indeterminate but fixed object in the context of the generalization of 
patterns. Stressing the semiotic affinities and differences between unknowns, 
variables and parameters, we examine a Grade 11 mathematical activity in which the 
core of the students’ relationship to algebraic formula comes to light. We show how 
the semiotic problem of indeterminacy reveals the frailty of students’ understanding 
of algebraic formulas and how it puts into evidence the limited scope of the use of 
formulas as schemas, strongly rooted in student’s relationship to algebra. 

INTRODUCTION 
Making sense of letters is one of the fundamental problems in the learning of algebra. 
A letter is a sign, something that designates something else. In the generalization of 
patterns, letters such as ‘x’ or ‘n’ appear as designating particular objects −namely, 
variables. A variable is not a number in the arithmetic sense. A number, e.g. the 
number 3, does not vary. A variable is an algebraic object. Previous research has 
provided evidence concerning the meanings that students attribute to variables (e.g. 
MacGregor & Stacey, 1993; Trigueros & Ursini, 1999; Bednardz, Kieran, & Lee, 
1996). One of these meanings consists in conceiving of a variable as an indeterminate 
number of a specific kind: it is not an indeterminate number in its own. For many 
students, it is merely a temporally indeterminate number whose fate is to become 
determinate at a certain point. Aristotle would have said that for the students, 
variables are often seen as “potentially determinate” numbers, as opposed to the 
numbers in the elementary arithmetic of our Primary school (e.g. 1, 4, 2/3 and so on), 
which are “actual numbers”. Yet, the algebraic object “variable” should not be 
confounded with another algebraic object –the “unknown” (Schoenfeld & Arcavi, 
1988; Radford, 1996). Although both are not-known numbers and, from a symbolic 
viewpoint, the same syntactic operations can be carried out on them, their meaning is 
different. In the algebraic equations used in introductory algebra, such as ‘x+12 = 
2x+3’, the unknown exists only as the designation of a number whose identity will be 
disclosed at the end. The disclosing of the unknown’s identity is, in fact, the aim of 
solving an equation. In contrast, when ‘n’ refers to a variable (see e.g. the pattern in 
Fig 1 below), the focus of attention is not on finding actual numbers but on the 
variable as such. The same holds for the expression ‘2n+1’, that designates the 
variable “the number of toothpicks in figure ‘number n’” (see Fig 1 below). In other 
words, in equations, we go from symbols (alphanumeric expressions) to numbers, 
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while in patterns we go the other way around (of course, once established, a 
formulaic expression of a variable like ‘2n+1’ can be used to find out specific values 
of ‘n’ or ‘2n+1’). What previous research has suggested is that, for many students, 
letters (such as ‘n’ in ‘2n+1’) are considered as potential numbers −indeterminate 
ones waiting in a kind of limbo for their indeterminacy to come to its end. The letter 
is hence, for the students, an index (Radford, 2003), a sign that is indicating the place 
that an actual number will occupy in a process (Sfard, 1991) temporarily in abeyance 
(we shall come back to this point later). 

In this article, we pursue our investigations of students’ algebraic thinking about 
variables. We are interested in understanding the way that students cope with another 
algebraic object: a parameter, that is, an indeterminate but fixed element of the 
“values taken” by a variable. The paradoxical epistemic nature of this algebraic 
object rests on its apparent contradiction: it is a fixed, particular number, yet it 
remains indeterminate in that it is not an actual number. Like the variable from where 
it emerges, it is indeterminate and is not subjected to an inquisitorial procedure that 
would reveal (as is the case with unknowns) its hidden numeric identity. From an 
education viewpoint, the question is: How can such an object become an object of 
thought for the students? Because of its indeterminate and abstract nature this object 
cannot be pointed out through a gesture as we can point e.g. to one of the first terms 
in a given patter (see e.g., the pattern below; Fig 1). The only way that a parameter 
can become an object of thought is through the interplay of various sorts of signs. 
The next section provides some details about how we introduced this object in the 
course of a regular classroom mathematics lesson about patterns. The rest of the 
article is devoted to the analysis of some of the students’ difficulties in making sense 
of a parameter.  

METHODOLOGY 
Data collection: The paper reports parts of a five-year longitudinal classroom 
research program where teaching sequences were elaborated with the teachers. The 
research involved four northern-Ontarian classes of grade 11, from two different 
schools. The same methodology was applied in both schools: the classes were 
divided into small groups of three to encourage students to work together and share 
their ideas with the others members of the group; then the teacher conducted a 
general discussion allowing the students to expose, confront and discuss their 
different solutions. During the implementation of the teaching sequences in the 
classroom, both the teacher and the researcher were present, willing to answer the 
students queries as they solved the problem. In each class, three groups were video-
taped, the dialogues transcribed and written material was also collected. For the 
purpose of the present article, we will closely focus on one group we found 
representative of most students’ work. This group was formed by Denise, Daniel and 
Sam.  
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About the given task: The teaching sequence included three linked problems 
concerning the construction of geometric-numerical patterns. The figures that 
constituted the patterns were described as being composed of toothpicks, triangularly 
disposed.  

In the first problem the first figures of the pattern (also called “original” in the 
subsequent problems) were drawn (see Fig 1). After having been asked to find out the 
number of toothpicks for specific figures, the students had to write an algebraic 
formula to calculate the number of toothpicks in figure ‘number n’.  

 

 

 

Fig 1: Original pattern. 

The pattern in the second problem was related to a fictitious character (Mireille) 
who was said to have begun her pattern at the fourth “spot” of the original pattern (à 
la place numéro quatre, in French). The first figures of the pattern were also provided 
(see Fig 2) and the questions were similar to those of the first problem. 

 

 

 

Fig 2: Mireille’s pattern. 

In order to investigate the students’ cognitive difficulties in dealing with parameters, 
a new pattern (Shawn’s) was introduced in the fourth problem. The spot where the 
pattern began was given, yet not specified: students were told that Shawn had begun 
his pattern at the “spot m” of the original pattern. They were then asked to provide an 
algebraic formula, in terms of m, that indicates the number of toothpicks in figure 
number 1 of Shawn’s pattern. In what follows, we will focus on the fourth problem. 
Special attention will be given, however, to students prior answers, for it provides 
essential information about the students’ relationship to algebraic symbols and, in 
particular, to their use and understanding of letters.  

STUDENTS’ RESPONSES  
The semiotic problem of multiple referents 
Both the first and second problem were easily solved. Thus, in the first problem, right 
after a quick numerical examination of the link between the number of the first 
figures and their corresponding amount of toothpicks, the students rapidly worded the 
description of a sequence of numeric actions: Denise said: “So it’s times 2 plus 1, 
right?” and, to calculate the number of toothpicks in figure number, 25 effected the 
calculation 25×2+1. 

Figure 1 Figure 2 Figure 3 

Figure 1 Figure 2 Figure 3 Figure 4 
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Denise’s utterance is the description of a numeric schema (in Piaget’s sense) that 
allowed the students to obtain the formula by translating it into symbols. However, 
when translating the worded schema into an algebraic formula, students produced a 
response attesting some lack of precision in the meaning that they gave to symbols:  

 

Fig 3: Students’ answer to the last question of Problem 1. 

Indeed, the translation of the worded schema of the students’ response suggests that 
they do not interpret the letter ‘n’ as standing for the number of an unspecified figure 
(despite the fact this had been suggested in the text). Instead, by writing “n = 2x+1” 
(see line 2 Fig 3), ‘n’ designates an amount of toothpicks. Furthermore, a new letter 
was introduced to designate something that remained implicit at the verbal level but 
which was nonetheless substituted by actual numbers (such as 25, to answer the 
question of the number of toothpicks in Figure 25). The letter ‘x’ used by the students 
to designate the number of the figure (see line 1 Fig 3) plays the role of index, i.e. 
something indicating a place that will be occupied by a number. The letter ‘x’ 
designates a “temporarily indeterminate” number, suffering from indeterminacy, seen 
as a kind of sickness that, like a cold, should sooner or later come to its end. The 
letter ‘n’ designates the schema ‘2x+1’. Instead of considering ‘n’ as a genuine 
algebraic variable, the transcripts and video analyses of this and other groups suggest 
that ‘n’ is seen as a “potentially determinate” number, a number that will become 
“actual” (in the Aristotelian sense) as soon as ‘x’ takes on its numerical value. 

Bearing these antecedents in mind, let us now turn to the forth problem, where the 
students encountered the concept of parameter. Imagining the letter ‘m’ as an 
indeterminate yet fixed number at the starting point of a new pattern posed many 
difficulties to them: 

1.1  Daniel:  OK, but if it begins at spot number m, and we want to know figure 
number 1, isn’t this 1? Isn’t m [equal to] 1?[...] 

1.2  Daniel:  But isn’t m the number of the figure? 
1.3  Denise:  It’s... the place where... 
1.4  Daniel:  OK, it’s not... OK, it’s a number of figure, but, OK… 

The above excerpt illustrates some of the fundamental student difficulties in trying to 
make sense of the question. In order to understand these difficulties, we need to 
discuss three different ways of referring to the figures. In the previous problems, 
indeed, the figures can be seen from different perspectives: 

Figure as substance: Each figure can be referred to through the number of 
toothpicks it is made of. For instance, in the original pattern, there is one 3-toothpick 
figure, one 9-toothpick figure (namely Figure 1 and Figure 4 respectively). In 
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Mireille’s pattern, there are no figures with 3 toothpicks, but there is one 9-toothpick 
and one 11-toothpick figures (Figure 1 and Figure 2, respectively).  

Names as part of a system: Each figure can also be referred to by a “label”. This 
label is its “name” (Figure 1, Figure 2, etc.). This name corresponds to the relative 
position among the others figures of the same pattern. For instance, in the original 
pattern, as well as in Mireille’s pattern, “Figure 1” is the label of the first figure, 
“Figure 2” of the second figure, etc.  

Relativeness of the object’s name: Since Mireille’s and Shawn’s patterns begin at a 
given place or “spot” in the “original” pattern, the place that each figure occupies 
inside a certain sequence must be distinguished from the place these figures occupy 
in the original pattern. For instance, the figure called “Figure 2” in Mireille’s pattern 
is called “Figure 5” in the original pattern. 

Line 1.1 is representative of the difficulty in seeing the subtle relativeness of the 
object’s name. Indeed, from the point of view of the original pattern, Shawn’s Figure 
1 is at the spot ‘m’. But each first figure in a pattern starts at spot 1 of its own pattern. 
By saying that ‘m’ is 1, Daniel, probably uncomfortable with the indeterminacy, 
merges the two referents. 
Besides being related to a place in the pattern, ‘m’ also corresponds to the number of 
the figure that occupies this place. In this sense, in Line 1.2 Daniel was right when 
saying that ‘m’ corresponds to the number of a figure: if we consider the original 
pattern as reference, ‘m’ is indeed the number of the figure. In Shawn’s pattern, 
however, this figure is no longer “Figure m”: it becomes “Figure 1”. 
The effect of the indeterminate origin on using a schematic formula 
As we saw previously, the students rapidly came up with a formulaic schema for the 
number of toothpicks of a figure located at an indeterminate place −namely, ‘n’ (see 
Fig 3). The formulaic schema made sense for the students insofar as it was 
considered as a process in abeyance. Now, how were they to find an algebraic 
expression for the number of toothpicks in a figure for which the place (“m”) was no 
longer to be considered temporally indeterminate but indeterminate as such? 
Noticing the students’ struggle to make sense of the question and their reaching an 
impasse, the researcher went to talk to the group: 

2.1 Researcher: They ask you to find an algebraic expression, in terms of ‘m’, that 
indicates the amount of toothpicks that there are in the new pattern. It 
starts at figure ‘m’ […] How many toothpicks will its first figure have? 

2.2 Sam:  Yeah, well we don’t know this. 
2.3 Daniel:  Well, that’s what we have to find out. [...] 
2.4 Daniel:  His 1, his 1, where is it located according to this (pointing the 

“original” pattern) . (...) Where is the ‘m’ according to this? [...] 
2.5 Denise:  So, if you want to find the amount of toothpicks in his pattern (sic), if 

you had the number of the figure you could do it, but we don’t have it. 
That’s the only thing I don’t know how to do. 
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The difficulty of conceiving of the indeterminacy of the spot ‘m’, not as a temporal 
indeterminacy but as indeterminacy as such, checkmated the students’ formulaic 
schema (see lines 2.3, 2.4 and 2.5). The students needed to understand that a 
parameter is an indeterminate but fixed element of the “values taken” by the variable 
and that despite its indeterminacy it makes sense to think about it and of the figure at 
that place, even if no numerical value can be attributed to them. Understanding this 
entails understanding that there is a new layer of mathematical generality, a layer 
where the “existence” of the objects does not depend on numerical determinacy, 
whether actual or potential. The fact that this indeterminacy directly concerned the 
first figure of the pattern –its origin− was for the students, to say the least, most 
disconcerting: 

3.1 Daniel: We don’t have Shawn’s pattern. [...] We don’t know where it starts at and 
where it ends... We can almost not do it […] 

3.2 Sam: I’m going insane.[...] We have nothing...  

Acceptance of indeterminacy is a real obstacle to the students. As their dialogue 
indicates, they seem to feel the need to attribute a numerical value in order to 
progress in the mathematical activity. This particularity reveals the students’ 
understanding and use of letters in algebraic formulas, suggested elsewhere in their 
answers for prior problems. For them, even though they are able to produce a formula 
and manipulate it (e.g. substituting), the formula is still seen as a process and not yet 
as an object (Sfard, 1991). In other words, we might say that they accept dealing with 
formulas, dealing with the indeterminacy, but only for a while, for the formulas have 
to provide a result:  

4.1 Daniel:   We just don’t know how to find ‘m’. [...] What did you say?  
4.2 Denise:  x = 2m+1. 
4.3 Researcher: Do you agree with that? [...] 
4.4 Sam: Yeah, but it takes you nowhere. It’s nice to have a formula, but you 

have to get a number. 
4.5 Researcher: We don’t have to have a number! 
4.6 Denise:   We have nothing.  

The students focused on trying to determine m and, by analogy with previous 
problems, they struggled to provide a formula that, at the end, would give an output 
for m. But what exactly is m for them? How did the students express it in a formula? 

Among all the referents that characterize the figures, there is one to which the 
students granted a privilege: the number of toothpicks that a figure is made up of 
(influenced maybe by the questions in the first problems that focused on finding the 
number of toothpicks in particular figures or on finding a formula that would 
generalize this amount). As students progressed in solving the problems, their 
associating of the figure with its number of toothpicks became, indeed, more and 
more evident: 
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5.1 Researcher:  What spot did Mireille start at? 
5.2 Denise and Daniel: At 9. 

Not surprisingly, the first attempt in interpreting ‘m’ was hence to consider it as 
representing the number of toothpicks and, by analogy with the formula that they 
provided in the first problem (‘n = 2x+1’), Denise suggested the formula ‘m = 2x+1’ 
for the first question of Shawn’s problem: “(...) It’s the same formula as this one 
(pointing at the formula ‘n = 2x+1’) (...) So m = 2x+1?”. As previously mentioned, in 
the students’ response to the first problem, ‘n’ designated the number of toothpicks of 
the figure ‘number n’. When Denise proceeded by analogy to solve the problem 4, 
this would mean that she considered ‘m’ for the number of toothpicks in figure ‘m’. 
But the question was to provide a formula that would indicate the number of 
toothpicks in figure number 1 of Shawn’s pattern. Because of their merging of the 
multiple referents and, more precisely, because of the confusion between the place 
where Shawn’s pattern began (in the original pattern –that is, place m) and the name 
of the related figure in Shawn’s pattern (that is, of its first figure –Figure 1), the 
formula ‘m = 2x+1’ stands for the number of toothpicks in figure 1 of Shawn’s 
pattern. But Denise feels uncomfortable with the formula that she has just provided 
and says: “That’s strange, they say how many toothpicks there will be in figure 1 of 
Shawn’s pattern, but we don’t have x.” Notice that Denise has transformed the 
original question into a different one: finding an algebraic expression has been 
“translated” into finding an amount of toothpicks. What Denise finds strange is that 
one could ask such a question without providing her with an actual number. 

It is only after having realized the difference between the multiple referents –and 
only then− that Denise is able to provide the expected formula: “x = 2m+1, because if 
‘m’ is the place where he starts his pattern at, that’s still not figure number 1, oh, 
yeah!”. Yet, because the inquisitorial procedure is strongly rooted in students’ 
conceptions of formulas, they do not find this answer acceptable: 

6.1 Daniel: Yeah, this would work, yeah, it’s just m that we don’t know how to find.  
6.2 Denise: We don’t know how to find it. Yeah, that’s the thing. 

CONCLUDING REMARKS  
The mathematical activity reported in this paper suggests a context in which the core 
of students’ understanding of letters and their conception of formulas comes to light. 
When considering the ease with which the students solved the first problems, one 
may be tempted to conclude that the students have successfully conceptualized letters 
as variables and have been able to meaningfully produce and even manipulate 
formulas. Indeed, the students were perfectly at ease dealing with the concept of 
‘figure n’ −a concept that posed great difficulties to them and that took time to 
overcome when first introduced in Grade 8 (see Radford, 2000). Yet, the semiotic 
problem of indeterminacy brought forward by the concept of parameter in problem 4 
reveals the frailty of students’ understanding of algebraic formulas that the answers 
provided in first problems hide. In particular, it highlights the frailty of perceiving 
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formulas as schemas, putting into evidence their limited scope. It required a different 
situation –one demanding the students to deal with a new level of generality− to 
reveal the students’ difficulties. In the context of the generalization of patterns, this 
means making the students consider the figures not as necessarily characterized by 
actual or potential numbers but as genuine conceptual objects, objects that can only 
be referred to through signs. Perhaps the philosopher Immanuel Kant was right in 
asserting that the possibility of (elementary) geometry resides in our intuition of 
space and that the same cannot be said of the objects of algebra, whose possibility 
cannot even be attributed to our intuition of time. Their possibility resides in 
symbols. From an education viewpoint, our results suggest that a pedagogical effort 
has to be made in order to make the students understand that there is layer of 
generality in which mathematical objects can only be referred to symbolically, 
detached in a significant manner from space and time. The students need to learn to 
cope with the kind of indeterminacy that constitutes a central element of the concepts 
of variable and parameter. Although one may very well be asked to begin from 
“nothing” (see Sam in passage 3.2) there is no reason to go insane: one still can go 
somewhere else −to symbolic algebra. 
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EXPLORING HOW POWER IS ENACTED IN SMALL GROUPS  
Mary Barnes 

University of Melbourne 

This paper presents an analysis of the enactment of power during group discussions 
in high school mathematics. The class studied was working on introductory calculus 
using a collaborative learning approach. In analysing a group discussion, I first 
traced the flow of ideas, looking at when and by whom a new idea was introduced, 
and how others responded. I next divided the transcript into “negotiative events” and  
looked at how transitions from one event to the next came about. These analyses 
made it clear that some students had more power than others to influence the course 
of the discussion, but that this was not related to their mathematical capabilities. 

INTRODUCTION 
The research reported here is part of a larger study of student-student interactions 
during collaborative learning in mathematics (Barnes, 2003) conducted in classrooms 
where students worked in small groups, with shared goals, on challenging unfamiliar 
tasks. They were not taught standard solution procedures in advance, but were 
encouraged to construct new concepts by recalling prior knowledge and combining 
and applying it in new ways. In whole-class discussions following the group work, 
students explained solutions, asked questions, and shared insights, and the class tried 
to reach a consensus. Collaborative learning is encouraged by recent mathematics 
curriculum documents that emphasize the importance of fostering communication 
skills and encouraging mathematical dialogue (e.g., AAMT, 2002). Collaborative 
learning is not always successful, however. This paper explores ways in which social 
interactions within collaborative groups can interfere with the learning process. 

THEORETICAL FRAMEWORK AND LITERATURE REVIEW 
The theoretical perspective underlying the study is that of sociocultural theory (see 
Davydov, 1995; Lerman, 2001). Based on the work of Vygotsky, sociocultural theory 
asserts that all learning is inherently social, resulting from the internalisation of 
processes developed in interaction with others. In addition, the theory claims that 
learning is mediated by signs and cultural tools, including language (both oral and 
written), symbols, gestures and artefacts. This means that studies of small-group 
learning need to attend not only to spoken discourse, but also to the participants’ 
body-language, tone of voice, direction of attention, and the artefacts they are using. 

Recent research on collaborative learning has studied the interactions within 
collaborating groups. Most of this has focussed on cognitive and metacognitive 
aspects of the interactions (e.g., Forster & Taylor, 1999; Goos, Galbraith & Renshaw, 
2002), but I believe that social aspects need to be considered also, because poor 
communication and social relationships within a group can result in failure to engage 
fully with the task, or can limit the range of solution pathways considered. For 



Barnes 

 

2- 138 PME29 — 2005 

collaboration to be effective, appropriate socio-mathematical norms (Yackel & Cobb, 
1996) need to be established. These include expectations that everyone will 
contribute, that others will attend to what is said, and that assertions will be justified.  

Cohen (1997) describes status inequalities as a cause of unequal interaction within 
groups, resulting in unequal learning opportunities. Factors that determine a student’s 
status include perceived ability, popularity with peers, as well as gender, social class 
and ethnicity. Cohen draws on Expectation States Theory to explain how a student’s 
status sets up performance expectations that can be resistant to change. Cohen and 
her colleagues used mainly quantitative methods to study inequalities in interactions 
within groups. My research question was to find ways of using qualitative techniques 
to investigate how power is enacted, and unequal interaction patterns come about.  

THE STUDY 
My research was a multi-site case study of classes engaging in collaborative learning, 
using video to capture classroom interactions. During group work, the camera 
focussed on one group, and a desk microphone captured their speech. Additional data 
included interviews with teachers and selected students. This paper focuses on a class 
of Year 10 students who were following an accelerated mathematics curriculum. The 
lesson described took place near the end of a sequence on introductory calculus. The 
class had already investigated gradients of curves, discussed limits, and worked out 
rules for differentiating polynomials, and how to use calculus in curve sketching. Up 
to this point, calculus had been presented in an abstract mathematical context, with 
no discussion of potential applications. The following problem was then presented: 

You have a sheet of cardboard with dimensions 20 cm by 12 cm. You cut equivalent 
squares out of each corner and fold up the sides to form a box without a lid. What should 
be the length of the sides of the squares cut out for the box to have maximum volume? 

This is a standard problem found in most calculus textbooks, but to these students it 
was a true investigative task. They had no prior experience of similar problems and 
no idea of how to proceed. They were not even sure if it was related to their work on 
calculus, and the teacher gave no hints. There are many possible ways of tackling the 
problem, with and without calculus. I chose this lesson for detailed analysis, not 
because it was “typical” in any sense, but because of the contrasting personalities in 
the group and the complexity of the discussion. This revealed interesting group 
dynamics which helped to cast light on how power is enacted within small groups. 

Introducing the group 
During the small-group discussion part of the lesson the camera was focussed on four 
students, whom I call Vic, Zoe, Charles and Selena. Like everyone in this accelerated 
class, they were high achievers in mathematics. Vic was a champion athlete, held an 
elected leadership position within the student body, played in the school band and 
was popular and confident. He seemed, however, to have a short attention-span and 
to crave attention. Zoe too was popular and confident, and generally very articulate. 
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She spoke up frequently in class discussions. In contrast, Charles was awkward, shy 
and diffident. He appeared to be a loner, with no friends in the class. The teacher 
commented in an interview on his poor social and communication skills, adding that 
he was “very bright, a critic”. Finally Selena, a new student, and the only class 
member of Asian background, was shy but eager to be accepted. Other students were 
unaware of her mathematical thinking capabilities, but did know that some topics 
which they had studied had not been covered at her previous school, so they may 
have tended to assume that in general she knew less than they did. 

A brief outline of the discussion 
During the lesson, the group worked for 35 minutes, following a tortuous solution 
path that involved many false leads and dead ends. But by the end of the time they 
had solved the problem by two different methods, one of which used calculus. 

They began by trying to make sense of the problem. Although “maximum volume” 
was stated clearly, Selena and Zoe interpreted it as asking for maximum base area, 
and discussed how small an edge they could turn up and still call the result a box. 
Selena talked about turning up an edge “as close as possible” to zero, and speculated 
whether limits were relevant to the problem. Eventually Zoe grasped that the problem 
was about volume, not area, and claimed that they were now on the right track.  

Charles suggested that they let the side of the square cut out be x, and find a formula 
for the volume in terms of x. Zoe agreed at first, but then abandoned this approach for 
what she thought was a simpler way and Vic supported her. Selena pointed out a flaw 
in their reasoning, and the group finally agreed on an expression for the area of the 
base. After some digressions, Charles prompted them to write the volume as a cubic 
polynomial, and suggested graphing it (see first transcript below). The others did not 
think a graph would help, but Selena began to draw the graph on her graphics 
calculator. Charles explained that a graph would tell them which value of x gave the 
greatest volume. Zoe ignored this, and proposed asking Miss James if they were on 
the right track. Miss James first asked them to explain what they had done, followed 
this with questions like “What are you going to do next?”, and then left them. 

Zoe invited ideas about what to do, and Selena asked, hesitantly, if they should “do 
the derivative”. Zoe could not see how it would help. Charles supported Selena, and 
explained why (see second transcript, below). Vic grasped part of what Charles said 
(about the graph showing where the maximum lay, but not about using the derivative) 
and acted on it, using a graphics calculator to find the x-coordinate of the maximum 
turning point. Again, Zoe sidetracked them with the seemingly pointless suggestion 
of equating the volume to zero, but this eventually led them to conclude that x was 
between 0 and 6. After an unnecessary substitution to find the greatset volume (not 
realising that they could read it off the graph) they substituted values of x on either 
side of their answer to verify that it was indeed a maximum, and announced that they 
had “done it”. The teacher prompted them to explain what they had done, and asked 
if they could think of another way to solve it, and if they could justify their result. 
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Selena suggested using the derivative to find the turning point, Charles supported her, 
(see lines 369-375 below) and Zoe agreed. When they equated the derivative to zero 
to find the turning points, they struggled for a long time to factorise the resulting 
quadratic equation. Selena suggested using the quadratic formula, but Zoe and Vic 
resisted and continued trying to factorise. Eventually Charles concluded that they 
would have to use the formula, Vic agreed, and he and Selena did the calculation, 
obtaining the same answer as by the graphical method. As they were explaining to 
the teacher what they had done, the bell rang bringing the lesson to an end. 

ANALYSIS 
The complexity of both the range of ideas discussed and the interactions among the 
students made the transcript difficult to follow and interpret. It was necessary to find 
methods of data reduction that would help to make visible the phenomena of interest: 
the interplay between mathematical ideas and the interactions among the students. 

Identifying the ideas involved 
A first step was to list the different ideas the group discussed, including those that 
were helpful, and those that proved to be ‘red herrings’ that led the group astray. I list 
here the helpful ideas. For reasons of space the ‘red herrings’ are omitted. 
Ideas which helped the group move forward towards a solution: 

• Introduce x for the length of the sides of the squares cut out, and find an 
expression for the area of the base of the box and hence its volume. 

• Graph the volume function and, from the graph, find where it is greatest. 
• The value of x must be between 0 and 6. 
• Substitute the x-value of the maximum point into the volume function to 

find the greatest volume (only necessary because they did not recognise that 
the y in their graph represented the volume). 

• Check function values on either side of this to verify that it is a maximum. 
• Find the derivative and equate it to zero to find turning points. 
• Factorise the expression for the derivative to find its zeroes. 
• (When factorising proved impossible) Use the quadratic formula. 

Tracing the flow of ideas 
From the transcript, it was possible to trace the way in which an idea was introduced 
by one group member, accepted or rejected by others, and perhaps reintroduced later, 
maybe more than once. To illustrate, I use the idea of graphing the volume function.  
(Note: A key to the symbols used in the transcript is given at the end of the paper.) 

First mention of idea: Having introduced x to represent the length of the side of the 
corner square, the group (with some difficulty) found an expression for the volume of 
the box. They were then unsure what to do. After a short silence, Charles spoke: 

298. Chas: Perhaps we should graph it. 
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299.  [8 sec pause. The girls sit back. They seem to be thinking. Vic moves as if 
stretching his neck. Charles glances a little anxiously in Vic’s direction.]  

300. Zoe: Wait a minute … Um, okay … Hang on, that was this time … We have to 
find the limit when X equals zero, maybe / 

301. Sel: /How does the graph help it? 
302. Zoe: I don’t think it does. Oh it might. 
303. Sel: Hang on, I’ll just see / [begins to draw the graph on her calculator] 
304. Vic: /Not in particular, what does it do? It just gives you two points on the axis. 
305.  [Vic turns round to watch what other groups are doing for 24 seconds.] 
306. Zoe: Mm. Well, what we’re trying to do is, we’re trying to find the value across 

here. [Points to her diagram] We have to find that. 
307. Sel: Um [Uses graphics calculator, murmuring to herself as she presses keys] 
308. Chas: Well, that’s / 
309. Sel: /the graph / 
310. Chas: /what value of X gives us the most volume. 
311. Chas: [Selena holds out her calculator to Charles.] Is there a turning point there? 
312. Sel: Yeah. Two. Um, yeah two. 
313. Chas: Yeah, one of them’s down there / 
314. Zoe: /Shall we ask Miss James if we’re on the right track? 
315. Sel: Yeah. [Vic has turned back to the group again. He nods.]  

Summary 1: Charles’ suggestion initially met with no response. Then Zoe expressed 
doubt and proposed an alternative, based on a misconception. Selena questioned the 
idea. Vic was dismissive. Then Selena began to draw the graph on her calculator. She 
and Charles were making progress when Zoe brought the discussion to an end by 
suggesting that they talk to the teacher, and everyone but Charles agreed. 

Second mention of idea: Zoe called the teacher over to them and spoke for the group, 
but she did not explain everything they had done, and in particular did not mention 
graphing. As Miss James turned to go, Charles said “We need to graph this”. Miss 
James did not hear, and Zoe interrupted excitedly to propose an unhelpful idea. 

Third mention of idea: They discussed a number of suggestions about what to do. 
Selena asked if they should use the derivative and Charles, in expressing his support, 
referred to the graph that Selena had drawn on her calculator: 

369. Chas: Basically, what I think here is that this turning point [points to the graph 
on Selena’s calculator] um, at the turning point, that’s going to be your 
maximum value for um / 

370. Sel: /which is that? [points to something on the table in front of her, possibly 
on the worksheet, but exactly what is not visible to the camera] 

371. Chas: Yeah. Well, maximum value for X, // to get us 
372. Vic: //Obviously, so we’ve to find the value / 
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373. Chas: /the maximum volume. 
374. Vic: [Picks up Selena’s calculator] So, trace 
375. Chas: So basically you do need to work out the derivative. 

Summary 2: Charles was trying to explain why the maximum turning point would 
give them the answer. This time Vic listened to him, took in part of what he was 
saying, and acted on it, but gave no sign that he had heard Charles’ final statement. 
Overview: In this sequence of excerpts, Charles repeatedly made a suggestion without 
success. Selena was willing to give it a try, but Zoe and Vic repeatedly rejected or 
ignored what he said. It was not until Vic endorsed part of Charles’ final statement 
that the whole group focused on drawing a graph and used this to find a solution.  
I give a second example in less detail. The idea of differentiating the volume function 
and using the derivative to find turning points was first raised by Selena while they 
were brainstorming what to do (line, 363, just before the start of the second excerpt 
above). She expressed it tentatively, as a question: “Are we doing, do we do the 
derivative in that?” Zoe expressed doubt: “Like, what for?” but Charles supported 
Selena by explaining why it would help (second excerpt). Vic pre-empted him by 
beginning to use the Trace function on the calculator. The derivative idea seemed to 
be forgotten until Miss James asked them to think of alternative ways they could use 
to solve the problem. Selena hesitantly said, “Use the der- deriva-” (line 623). Zoe 
interrupted to repeat an idea of her own, but Charles spoke in support of Selena. Zoe 
suddenly seemed to catch on, exclaiming “Yeah, the derivative. It’s the turning 
point.” (line 629) and gesturing to show the shape of the graph. The group then used 
the derivative to find the maximum turning point and hence the maximum volume. 
Overview: Again one student, this time Selena, repeatedly tried to make a point, but it 
was rejected by the group until Zoe gave it her support. 
I carried out a similar analysis for each idea discussed. Of eight helpful ideas, Selena 
initiated three, Charles three, and Zoe and Vic one each, but none were acted upon 
unless supported by Zoe or Vic or both. This makes it clear that it was not the 
potential value of an idea that determined its adoption by the group, but whether or 
not it was supported by at least one of the two students Zoe and Vic. This insight 
prompted a more detailed look at how the topic of discussion was determined.  
Control of the topic of discussion 
Clarke (2001) proposed a way of structuring lesson transcripts by dividing them into 
episodes and further subdividing episodes into negotiative events. I adapted his 
definition slightly to suit the classes I was observing, and defined a negotiative event 
to be the smallest unit of conversation involving two or more people with a consistent 
topic or goal. A negotiative event may be an entire episode, consisting of many turns 
or it may be a single utterance followed by tacit assent by another person. 
After subdividing the transcript into negotiative events, I set out to investigate how 
transitions between events came about. Transitions require the complicity of the 
group: an utterance does not initiate a new negotiative event unless other group 
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members begin to discuss it, or at least assent to it; nor does a declaration such as 
“That’s done!” necessarily terminate an event, unless other group members agree.  
To illustrate, Excerpt 1 is a single negotiative event, initiated when Charles proposed 
graphing the volume function (line 298) and terminated when Zoe suggested asking 
Miss James (and Selena and Vic assented). Excerpt 3 shows the end of one 
negotiative event and the beginning of another. The first (deciding what to do) ended 
when Vic said “obviously, so we’ve got to find the value” (line 372). The next event 
(using the graphics calculator to find the maximum) began when Vic said “So, trace” 
(line 374). Charles’ utterance at line 373 was a continuation of what he had been 
trying to say in his previous four turns and was ignored by the others.  
When the entire discussion had been divided into negotiative events, I analysed who 
initiated and who terminated each and in what way, and recorded this in a table. 
These were then counted and the results displayed in another table (see Table 1). 

 Zoe Vic Selena Charles 

Initiations 16 7 4 3 

Terminations 14 9 2 1 

Table 1: Negotiative events initiated and terminated by each group member 
This clearly shows Zoe’s dominance, and the relative lack of influence of Charles and 
Selena. Vic spent a lot of time talking to other groups, so had less influence than Zoe. 

DISCUSSION AND CONCLUSIONS 
The results support the findings by Cohen and her colleagues about the effects of 
inequalities in status on interactions within groups. To determine a student’s status in 
the classroom, Cohen (1997) used a combination of peer status (i.e., popularity) and 
academic status, measured by asking students to nominate who in the class were best 
at the subject. If such an instrument had been used, it is clear that both Vic and Zoe 
would have been assigned high status. Both were popular in the class and contributed 
often to class and small group discussions. In contrast, Charles would have had low 
status. He was unpopular and inarticulate. The teacher recognised him as “bright” but 
poor writing skills meant that he did not get high grades in assignments, so it is 
unlikely that other students would have recognised the quality of his thinking. Selena 
was new to the class, so had not had enough time become popular, and there was 
little evidence on which other students could form judgements about her academic 
ability. Thus, at the time of the study, she too would have had a low status. My 
analysis has shown that high status students influenced the discussion in the 
following ways: their ideas (useful or otherwise) were more likely to be accepted by 
the group; and on most occasions they determined what the group would discuss 
next. Both of the low status students put forward good ideas, but these were only 
accepted when endorsed by a high status student. And they had very little opportunity 
to influence the course of the discussion. By making more transparent the 
mechanisms by which students establish dominance within a group, this study may 
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help in planning instructional strategies designed to reduce inequities in the 
classroom and enhance learning for all students. 
Cohen and her colleagues identified inequality in participation by counting the 
number of turns for each student. Looking instead at whose ideas were accepted or 
rejected, and who determined the topic of discussion, provides a more detailed and 
more powerful picture of the ways in which power is enacted within small groups. 

Finally, a methodological point: tracing the flow of ideas is an innovative approach to 
analysing complex discussions, as is studying the structure of a discussion to identify 
how transitions from one topic to another come about. These potentially have wider 
applications, for example in studying whole-class teaching, or discussions of other 
kinds, especially in situations where the enactment of power is at issue.  

Note 1 
Key to symbols used in transcripts:  
/ no noticeable pause between turns, along with indications that the first turn was incomplete 
// marks the beginning of overlapping speech  
… a brief pause of 3 seconds or less. (For longer pauses, duration is stated.)  
[text] descriptions of actions, body language facial expressions or tone of voice. 
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A FRAMEWORK FOR THE COMPARISON OF PME RESEARCH 
INTO MULTILINGUAL MATHEMATICS EDUCATION IN 

DIFFERENT SOCIOLINGUISTIC SETTINGS 
Richard Barwell 

Graduate School of Education, University of Bristol 

The effects of multilingualism have been an explicit focus of a number of PME 
research reports in recent years. These reports, however,  are located in a wide 
range of socio-linguistic circumstances, making it difficult to compare findings and 
develop a clearer understanding of the relationship between the teaching, learning or 
understanding of mathematics. In this paper, I describe a framework that organises 
the different socio-linguistic settings in which multilingual mathematics classrooms 
are commonly found. I use this framework to analyse recent PME research reports 
that focus on multilingualism in mathematics education. My analysis shows that, 
although the English language has a strong influence in a range of settings, the 
manifestation of this influence varies. 

RESEARCH INTO MULTILINGUAL MATHEMATICS EDUCATION 
The prevalence of multilingualism (including bilingualism) in mathematics 
classrooms around the world is increasingly reflected in research in mathematics 
education. Research reports at PME meetings in the past 10 years include several 
concerned with different aspects of the relationship between multilingualism and 
psychological dimensions of the teaching and learning of mathematics. These papers 
report research from many parts of the world and with a range of foci, including, for 
example: 

• Clarkson’s (1996; Clarkson and Dawe, 1997) research into how multilingual 
learners from non-English-speaking backgrounds make use of their different 
languages in solving mathematics problems in Australia; 

• Hofmannová et al.’s (2001) research in the Czech Republic into the 
development and implementation of a curriculum in which mathematics is 
studied using a language from outside the country; 

• Khisty’s (2001) ethnographic study of how different languages are used in 
English/Spanish bilingual classrooms in the United States; 

• Setati’s (2003) investigation into the relationship between the politics of 
language and language use in mathematics classrooms in South Africa. 

As these examples suggest, PME research in the area of multilingual mathematics 
education is highly diverse. In this paper, I will focus, in particular, on sociolinguistic 
setting, that is, the constellation of languages available and used within different parts 
of a society, and the different power and values associated with each of these 
languages. It is clear that PME research in this area has been conducted in a wide 
range of sociolinguistic settings. Such settings include, for example, classrooms in 
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which many languages are used (e.g., South Africa), and, in contrast, classrooms in 
which only one language is used, despite the presence of multilingual students (e.g., 
Australia). This diversity can be both a strength and a weakness. Diversity can be a 
strength, in that the dangers of generalising from particular situations, or of 
privileging particular languages or issues are avoided. Research conducted in a range 
of settings potentially provides a broader picture of the role of multilingualism in the 
teaching, learning and understanding of mathematics. Diversity can be a weakness, 
however, if it becomes difficult to build up such a picture, particularly when the 
number of studies reported remains low. Much of the research, moreover, is 
concerned with particular issues arising from particular settings. Findings are likely 
to be highly circumscribed by the particular setting in which the research was 
conducted. Cummins (2000, pp. 43-44) has argued, for example, that broad social 
factors, such as sociolinguistic setting, are implicated in patterns of classroom 
interaction. A current problem for research within mathematics education, however, 
is that there is no way of comparing, contrasting or otherwise analysing different 
studies on the basis of sociolinguistic setting. In the rest of this paper, I propose a 
framework which makes such comparison possible and offer some initial analysis of 
PME research in this area. 

FRAMING SOCIOLINGUISTIC SETTINGS 
In applied linguistics, a number of ways of classifying sociolinguistic settings of 
multilingual education have been proposed (e.g., Skutnab-Kangas, 1988; Baker, 
2001, p. 194), many of which are focused on the different institutional approaches to 
the teaching and learning of second or additional languages (L2), such as second 
language immersion, for example. This approach does not easily transfer to 
consideration of classrooms where the focus is on the teaching and learning of 
mathematics, rather than language. An alternative approach, based on Siegel (2003, 
p. 179) is to focus on the role of the learner’s L2 in the society in which the 
classroom is situated. Siegel describes 5 different settings using this approach: 

Dominant L2: The main classroom language is the dominant or majority language in 
wider society. Multilingual students are speakers of minority languages, such as many 
immigrants or indigenous peoples. E.g. Turks learning German in Germany; Native 
Americans learning Spanish in Peru. 

External L2: The main classroom language is a foreign or distant language. Multilingual 
students are speakers of the dominant language. E.g. Japanese learning English in Japan; 
English speakers in Western Canada learning French. 

Coexisting L2: The main classroom language is a nearby language spoken by a large 
proportion of the population. Students are from a broadly multilingual environment. E.g. 
German speakers learning French in Switzerland. 

Institutional L2: The main classroom language is an indigenous or imported language 
with a wide range of official uses. Students speak several local languages and inhabit 
highly multilingual environments. E.g. learning English in India; Swahili in Tanzania. 
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Minority L2: The main classroom language is that of a minority group (indigenous or 
immigrant). Students are speakers of the dominant or majority language. E.g English 
speakers learning Welsh or Panjabi in the UK. 

In Siegel’s framework, the five settings describe most situations in which school 
students may use or learn an L2. The term L2 should be seen as referring to any 
additional language: the framework does not preclude the use of more than two 
languages. The framework offers a way of analysing research in mathematics 
classrooms in different sociolinguistic settings. It is not, however, a precise 
description of interaction in a classroom. Many classrooms in South Africa, for 
example, officially use English as the medium of instruction and would be classified 
as ‘Institutional L2’ but this does not mean that other languages are not used by 
students or teachers during mathematics lessons. Finally, different settings may apply 
within the same geographical area. In the UK, for example, there are examples of 
mathematics classrooms within the dominant L2 (e.g., with immigrant communities), 
minority L2 (e.g., English speakers learning Welsh) and external L2 (e.g., French 
immersion) settings. The framework is, therefore, probably best used at the level of 
individual classrooms, rather than whole communities or schools.  

COMPARING PME RESEARCH ON MULTILINGUAL MATHEMATICS 
EDUCATION 
I have located examples of relevant PME research reports within Siegel’s framework 
(see table, below). I have included all research reports with a clear focus on the role 
of multilingualism in different aspects of the psychology of mathematics education 
presented at PME conferences in the past 10 years. I have not included reports in 
which multilingual issues were tangentially noted or referred to. Nor have I include 
reports in which the focus was on the relationship between the structure of a language 
and students’ mathematical learning. This survey resulted in the inclusion of 13 
research reports. 

In applying the framework, I have modified one of the categories. I have divided 
dominant L2 settings into ‘monolingual’ and ‘bilingual’ forms. The former refers to 
dominant L2 settings in which English is the main language of the curriculum and of 
classroom interaction, as in the UK, for example. Bilingual dominant L2 settings are 
those in which both learners’ L1 and L2 are legitimately used in the mathematics 
classroom (a scenario that does not generally occur in language-focused classrooms). 
Examples include Spanish-English bilingual mathematics classrooms in the USA, 
where both English and Spanish are used. 
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Mathematics 
classroom 

setting 

PME research 
reports 

Location Focus 

Dominant L2 
(monolingual) 

Barwell (2001; 
2003) 

UK (mainstream 
classrooms) 

How learners of English make 
sense of word problems when the 
classroom language is English 

 Czarnocha & 
Prabhu (2000) 

USA (ESL 
classrooms) 

Relationship between learning 
algebra and learning English as a 
second language (ESL) 

 Clarkson (1996) 
Clarkson & 
Dawe (1997) 

Australia 
(mainstream 
classrooms) 

Comparing attainment of bilingual 
and monolingual students; 
languages learners use ‘privately’; 
reasons for ‘switching’ between 
languages in problem solving 

Dominant L2 
(bilingual) 

Khisty et al. 
(2003) 

Khisty (2001) 

Role of multimodality in a 
bilingual mathematics lesson 

Features of effective teaching in 
bilingual mathematics 

 Moschkovich, J. 
(1996) 

USA 
(Spanish/English 
bilingual 
classrooms) 

‘Discontinuity’ and ‘situated’ 
models of bilingualism in 
mathematics classrooms 

External L2 Hofmannová et 
al. (2003) 

Czech Republic 
(English-medium 
classrooms) 

Emotional barriers of students 
training to teach mathematics in 
English in the Czech Republic 

Coexisting L2 NO REPORTS   

Institutional 
L2 

Adler (1995) Multilingual learners’ ability to 
express themselves; how a teacher 
supports them to do this; 
challenges for teaching 

 Prins (1997) Multilingualism, problem solving 
and problem readability  

 Setati (1999, 
2003) 

South Africa 
(multilingual 
classrooms) 

Politics of language and teachers’ 
use of different languages and 
language practices in mathematics 
lessons  

Minority L2 NO REPORTS   

Table 1: PME research into multilingual mathematics education  
and sociolinguistic setting 
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APPLYING THE FRAMEWORK 
My first observation is that two settings are not represented in PME research. The 
minority L2 setting involves mathematics classrooms in which the main language 
used is a minority language within wider society. Whilst there has been research in 
such settings, such work has not been reported at PME meetings. This absence may 
be because such research draws more on sociological, anthropological or 
sociopolitical frameworks, rather than the explicitly psychological perspectives seen 
to be favoured at PME. This does not mean, however, that there are not important 
issues relevant to PME research. How, for example, is mathematical understanding 
influenced by the use of what are generally less widely-used languages? How are 
learners’ motivations to study mathematics related to the use of such languages? The 
co-existing L2 setting is also not represented, perhaps reflecting its geographical 
confinement to one or two locations (e.g. Switzerland, Québec). The research reports 
I have identified are fairly evenly distributed between the remaining 4 settings. In the 
rest of this paper, I critically compare the research reported from the three settings 
represented by more than one report: monolingual dominant L2, bilingual dominant 
L2 and institutional L2. 

The dominance of English in the monolingual dominant L2 setting is reflected in the 
research reports. Clarkson (1996) compares the performance of bi/multilingual 
students with monolingual English-speakers, setting the latter as the norm. The 
students’ home languages, such as Vietnamese are portrayed as ‘other’. Clarkson 
seeks to show how these ‘other’ languages are used by students in solving arithmetic 
problems. Indeed, his research implies that these languages are largely used covertly. 
Czarnocha & Prabhu (2000) are interested in how students’ mathematical learning 
can contribute to their learning of English. Similarly, the research reported in my own 
papers reflects the general absence of languages other than English in the 
mathematics classrooms reported, despite the students being speakers of one or more 
languages other than English. It is apparent that both questions and findings in these 
research reports are closely related to the setting in which they are located. 

The three papers from the bilingual dominant L2 setting are all from the USA, where 
the use of two languages such as Spanish and English to teach mathematics has been 
common. Again, the dominance of English is apparent. There is a concern, for 
example, that students should appropriate mathematical ways of talking, that is, 
mathematical ways of talking in English. Khisty (2001), for example, gives an 
example of how an effective mathematics teacher introduces the English word 
‘congruent’. As Moschkovich (1996) discusses in her paper, in most of the research 
in Spanish-English settings, the relationship between language and learning is 
described in terms of ‘discontinuities’. In particular, the relationship between English 
in Spanish is seen as a discontinuity. This approach is problematic in several ways, 
such as its connection to deficit models of bilingual students, who may be penalised 
for using ‘incorrect’ mathematical English. Moschkovich does not speculate on the 
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origins or persistence of this approach, but it is arguably related to the nature of the 
bilingual dominant L2 setting, in which Spanish would be seen as an obstacle that 
must be overcome on the way to learning to do mathematics in English. 

The concerns of the papers in the institutional L2 setting are recognizably different 
from those located in dominant L2 settings. All the contributions come from South 
Africa, a nation of 11 official languages, with English as the main language of 
education in most schools. Firstly, it is clear that multilingualism is a clear feature of 
the research. Indeed, in the case of Prins (1997), the research is a comparison 
between students who have English as L1, L2 or L3, showing that L3 learners were 
more likely to score badly on written test items, and that this trend is related to the 
readability of the items, an essentially linguistic issue. On the other hand, Prins’s 
study, like Clarkson’s, treats English as the main language. There was no attempt to 
use test items in Afrikaans or Xhosa, for example, reflecting the institutional 
importance of English. This institutional position is also apparent in Adler’s (1995) 
paper, in which she explores how a student struggles to explain his thinking due to a 
lack of familiarity with mathematical language (concerning triangles) in English. 
Thus, the influence of English is apparent in both dominant L2 and institutional L2 
settings. This influence is due to the power and opportunities associated with English 
in both settings. Indeed, Setati (2003) shows how the status of English in society can 
be related to language use in South African mathematics classrooms. The institutional 
dominance of English manifests itself in its use for more formal and procedural 
mathematical talk, such as talking through a standard algorithm. African languages, 
on the other hand, tend to be used in informal talk, including, for example, conceptual 
discussions of the mathematics involved in a problem.  

The power and opportunities of English arise in different ways in the different 
settings. In the South African institutional L2 setting, although English has some 
institutional prestige, other languages are widely used. In the monolingual dominant 
L2 settings of the UK and Australia, languages other than English are silenced. It is 
notable, for example, that Clarkson (1997) had to ask students if they used languages 
other than English in working on mathematics; such usage was not generally easily 
observable. In the bilingual dominant L2 setting represented by Spanish-English 
classrooms in the USA, Spanish has some institutional recognition and is used in 
classrooms – a position in between monolingual dominant and Institutional L2 
settings. The difference is that Spanish is seen as a stepping stone to English in the 
US; English is the norm. Dual language mathematics classrooms are part of a system 
designed to turn students into competent speakers of English.  

The differences in the manifestation of the influence of English identified in the 
above analysis raise questions concerning the teaching and learning of mathematics. 
What effect does covert L2 use have on students’ understanding of mathematics, their 
relationship with the subject, their motivation and engagement? If a Spanish-speaking 
students struggles to express their mathematical thinking in English, in a setting in 
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which Spanish is seen as a stepping-stone to English, how do they then value their 
mathematical understanding? 

CONCLUSION 
Siegel’s framework provides a useful starting point from which to develop a more 
nuanced understanding of the relationship between multilingualism and the teaching 
and learning of mathematics. The framework facilitates the comparison of research in 
different parts of the world. Through such comparisons, it becomes possible, for 
example, to identify phenomena that are specific to one or more setting and those that 
arise more widely. Recent research reports at PME have been fairly evenly spread 
around four different settings, although nothing has been reported from two settings.  

Finally, most mathematics classrooms around the world are multilingual, in the sense 
that most classrooms include teachers or students who are speakers of two or more 
languages in their day-to-day lives. This multilingualism is rarely acknowledged in 
PME research reports, perhaps because of the difficulty of concisely describing 
complex settings when these settings do not form part of the focus of the research. 
Siegel’s framework offers a way in which multilingualism can be acknowledged 
whenever and wherever it occurs.  
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VYGOTSKY’S THEORY OF CONCEPT FORMATION AND 
MATHEMATICS EDUCATION 

Margot Berger 

University of Witwatersrand 

I argue that Vygotsky’s theory of concept formation (1986) is a powerful framework 
within which to explore how an individual at university level constructs a new 
mathematical concept. In particular, this theory is able to bridge the divide between 
an individual’s mathematical knowledge and the body of socially sanctioned 
mathematical knowledge. It can also be used to explain how idiosyncratic usages of 
mathematical signs by students (particularly when just introduced to a new 
mathematical object) get transformed into mathematically acceptable usages and it 
can be used to elucidate the link between usages of mathematical signs and the 
attainment of meaningful mathematical concepts by an individual.    

INTRODUCTION 
The issue of how an individual makes personal meaning of a mathematical object 
presented in the form of a definition is particularly relevant to the study of advanced 
mathematical thinking. In this domain, the learner is frequently expected to construct 
the properties of the object from the definition (Tall, 1995). In many instances neither 
diagrams nor exemplars of the mathematical object are presented alongside the 
definition; initial access to the mathematical object is through the various signs (such 
as words and symbols) of the definition. 

In this talk, I argue that Vygotsky’s theory of concept formation (1986) provides an 
appropriate framework within which to explore the above issue of concept formation. 
Specifically I claim that this framework has constructs and notions well−suited to an 
explication of the links between the individual’s concept construction and socially 
sanctioned mathematical knowledge. Also the framework is apposite to an 
examination of how the individual relates to and gives meaning to the signs (such as 
symbols and words) of the mathematical definition.  

BACKGROUND 
Several mathematics education researchers have considered how an individual, at 
university level, constructs a mathematics concept and some have developed 
significant theories in response. The most influential of these theories focus on the 
transformation of a process into an object (for example, Tall, 1995; Dubinsky, 1991; 
Czarnocha et al, 1999).  

According to Tall et al. (2000), the idea of a process−object duality originated in the 
1950’s in the work of Piaget who spoke of how “actions and operations become 
thematized objects of thought or assimilation” (cited in Tall et al, 2000: 1).  
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In adopting a neo−Piagetian perspective, these researchers and their various followers 
successfully extend Piaget’s work regarding elementary mathematics to advanced 
mathematical thinking. For example, Czarnocha et al. (1999) theorise that in order to 
understand a mathematical concept, the learner needs to move between different 
stages. She has to manipulate previously constructed objects to form actions. 
“Actions are then interiorised to form processes which are then encapsulated to form 
objects” (1999: 98). Processes and objects are then organised in schemas.  

But much of this process−object theory does not resonate with a great deal of what I 
see in my mathematics classroom. For example, it does not help me explain or 
describe what is happening when a learner fumbles around with ‘new’ mathematical 
signs making what appear to be arbitrary connections between these new signs and 
other apparently unrelated signs. Similarly, it does not explain how these 
incoherent−seeming activities can lead to usages of mathematical signs that are both 
acceptable to professional members of the mathematical world and that are 
personally meaningful to the learner.  

I suggest that the central drawback of these neo−Piagetian theories is that they are 
rooted in a framework in which conceptual understanding is regarded as deriving 
largely from interiorised actions; the crucial role of language (or signs) and the role 
of social regulation and the social constitution of the body of mathematical 
knowledge is not integrated into the theoretical framework.  

What is required is a framework in which the link between an individual’s 
construction of a concept and social knowledge (existing in the community of 
mathematicians and in reified form in textbooks) is foregrounded. Furthermore, given 
that mathematics can be regarded as the “quintessential study of abstract sign 
systems” (Ernest, 1997) and mathematics education as “the study of how persons 
come to master and use these systems” (ibid.), a framework which postulates 
semiotic mediation as the mechanism of learning, seems apposite. I claim that 
Vygotsky’s much−neglected theory of concept formation, allied with his notion of 
the functional usage of a sign (1986), is such a framework.  

VYGOTSKY’S THEORY OF CONCEPT FORMATION 
Although Vygotskian theory (but not the theory of concept formation) has been 
applied extensively in mathematics education, most of the research has focused on 
the mathematical activities of a group of learners or a dyad rather than the individual 
(Van der Veer and Valsiner, 1994). Furthermore it has been applied most frequently 
to primary school or high school learners (for example, van Oers, 1996; Radford, 
2001) rather than to individuals at undergraduate level.  

Indeed, Van der Veer and Valsiner (1994) claim that the use of Vygotsky in the West 
has been highly selective. In particular they argue that “the focus on the individual 
developing person which Vygotsky clearly had … has been persistently overlooked” 
(p. 6; italics in original).  
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It is important to note that a focus on the individual (possibly with a textbook or in 
consultation with a lecturer) does not contradict the fundamental Vygotskian notion 
that “social relations or relations among people genetically underlie all higher 
functions and their relationships” (Vygotsky, 1981, p. 163). After all, a situation 
consisting of a learner with a text is necessarily social; the textbook or exercises have 
been written by an expert (and can be regarded as a reification of the expert’s ideas); 
also the text may have been prescribed by the lecturer with pedagogic intent. Thus a 
focus on the individual does not undermine the significance of the social.  

Functional use of the sign 
In order to understand Vygotsky’s theory, one needs to understand how Vygotsky 
used the term ‘word’. Vygotsky regarded a word as embodying a generalisation and 
hence a concept.  

As such, Vygotsky postulated that the child uses a word for communication purposes 
before that child has a fully developed understanding of that word. As a result of this 
use in communication, the meaning of that word (i.e., the concept) evolves for the 
child:  

Words take over the function of concepts and may serve as means of communication 
long before they reach the level of concepts characteristic of fully developed thought 
(Uznadze, cited in Vygotsky, 1986: 101). 

The use of a word or sign to refer to an object (real or virtual) prior to ‘full’ 
understanding resonates with my sense of how an undergraduate student makes a new 
mathematical object meaningful to herself. In practice, the student starts 
communicating with peers, with lecturers or the potential other (when writing) using 
the signs of the new mathematical object (symbols and words) before she has full 
comprehension of the mathematical sign. It is this communication with signs that 
gives initial access to the new object.  

It is a functional use of the word, or any other sign, as a means of focusing one’s 
attention, selecting distinctive features and analysing and synthesizing them, that plays a 
central role in concept formation (Vygotsky, 1986: 106). 

Secondly but closely linked to the above notion, is Vygotsky’s argument that the 
child does not spontaneously develop concepts independent of their meaning in the 
social world:  

He does not choose the meaning of his words… The meaning of the words is given to 
him in his conversations with adults (Vygotsky, 1986: 122).  

That is, the meaning of a concept (as expressed by words or a mathematical sign) is 
‘imposed’ upon the child and this meaning is not assimilated in a ready−made form. 
Rather it undergoes substantial development for the child as she uses the word or sign 
in her communication with more socialised others. 
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Thus the social world, with its already established definitions (as given in dictionaries 
or books) of different words, determines the way in which the child’s generalisations 
need to develop.  

Analogously, I argue that in mathematics, a student is expected to construct a concept 
whose use and meaning is compatible with its use in the mathematics community. To 
do this, that student needs to use the mathematical signs in communication with more 
socialised others (including the use of textbooks which embody the knowledge of 
more learned others). In this way, concept construction becomes socially regulated.  

Semiotic mediation  
Vygotsky (1978) regarded all higher human mental functions as products of mediated 
activity. The role of the mediator is played by a psychological tool or sign, such as 
words, graphs, algebra symbols, or a physical tool. These forms of mediation, which 
are themselves products of the socio-historical context, do not just facilitate activity; 
they define and shape inner processes. Thus Vygotsky saw action mediated by signs 
as the fundamental mechanism which links the external social world to internal 
human mental processes and he argued that it is  

by mastering semiotically mediated processes and categories in social interaction that 
human consciousness is formed in the individual (Wertsch and Stone, 1985: 166). 

Allied to this, concept formation, as discussed above, is only possible because the 
word or mathematical object can be expressed and communicated via a word or sign 
whose meaning is already established in the social world. 

In mathematics, the same mathematical signs mediate two processes: the 
development of a mathematical concept in the individual and that individual’s 
interaction with the already codified and socially sanctioned mathematical world 
(Radford, 2000). In this way, the individual’s mathematical knowledge is both 
cognitively and socially constituted. 

This dual role of a mathematical sign by a learner before ‘full’ understanding is not 
well appreciated by the mathematics education community; indeed, its manifestations 
in the form of activities such as manipulations, imitations and associations are often 
regarded disparagingly by mathematics educators. That is, they regard such activities 
as ‘meaningless’ and without worth. (Conversely, back−to−basics mathematics 
educators may regard adequate use of a mathematical sign as sufficient evidence of a 
student’s understanding of the relevant mathematical concept. Of course, in terms of 
Vygotsky’s theory, this is not the case).  

Vygotsky’s theory, that usages of the sign are a necessary part of concept formation, 
manages to provide a link between certain types of mathematical activities (including 
those activities regarded pejoratively by many educators) and the formation of 
concepts. 
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Different stages 
Vygotsky further elaborated his theory by detailing the stages in the formation of a 
concept. He claimed that the formation of a concept entails different preconceptual 
stages (heaps, complexes and potential concepts).  

During the syncretic heap stage, the child groups together objects or ideas which are 
objectively unrelated. This grouping takes place according to chance, circumstance or 
subjective impressions in the child’s mind. In the mathematical domain, a student is 
using heap thinking if she associates one mathematical sign with another because of, 
say, the layout of the page.  

The syncretic heap stage gives way to the complex stage. In this stage, ideas are 
linked in the child’s mind by associations or common attributes which exist 
objectively between the ideas.   

Complex thinking is crucial to the formation of concepts in that it allows the learner 
to think in coherent terms and to communicate via words and symbols about a mental 
entity. And, as I have argued above, it is this communication with more 
knowledgeable others which enables the development of a personally meaningful 
concept whose use is congruent with its use by the wider mathematical community.  

Complexes corresponding to word meanings are not spontaneously developed by the 
child: The lines along which a complex develops are predetermined by the meaning a 
given word already has in the language of adults (Vygotsky, 1986: 120).  

Furthermore, in complex thinking the learner begins to abstract or isolate different 
attributes of the ideas or objects, and the learner starts organizing ideas with 
particular properties into groups thus creating the basis for later more sophisticated 
generalisations.  

With complex thinking, the learner is not using logic; rather she is using some form 
of non−logical or experiential association. Thus complex thinking often manifests as 
bizarre or idiosyncratic usage of mathematical signs.   

For example, the learner is using complex thinking when she associates the properties 
of a ‘new’ mathematical sign with an ‘old’ mathematical sign with which she is 
familiar and which is epistemologically more accessible.  

As an illustration, on first encountering the derivative, f ′′′′ (x), of a function f(x), the 
learner may associate the properties of f ′′′′ (x) with the properties of f(x). Accordingly, 
many learners assume or imply that since f(x) is continuous, so is f ′′′′ (x). Clearly this is 
not logical; indeed it is mathematically incorrect.  

Another example of activity guided by complex thinking is when the student seems 
to focus on a particular aspect of the mathematical expression and to associate these 
symbols or words with a new sign. For instance, when dealing with the greatest 
integer function x� 	� 	
 �
 �= greatest integer ≤ x, many students latch onto the word 
‘greatest’ ignoring the condition ≤ x. They then link the word ‘greatest’ to the idea of 
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‘greater than’ and accordingly state that, say, 4.3� 	� 	
 �
 �= 5 (whereas of course, the 
answer should be 4).  

My point here is not how the student uses the signs but rather that she uses the signs. 
Through this use, the student gains access to the ‘new’ mathematical object and is 
able to communicate (to better or worse effect) about it. Through social regulation or 
reflection (in tandem with the socially constituted definition and for an attenuated or 
extended time period) the learner will eventually come to use and understand the 
signs in ways that are congruent with official mathematics.  

My observations of undergraduate students over the years ties in very well with the 
idea that preconceptual thinking is a necessary part of successful mathematics 
concept construction (this is evidenced by many of these students’ apparently 
confused mathematical assertions prior to mathematical coherence). Of course, the 
time spent using complex thinking may be very brief or very long, depending on the 
student, the particular mathematical object, the task, the context and the social 
interventions. 

Vygotsky distinguished between five different types of complexes. For the purposes 
of this talk it is sufficient to elaborate on the pseudoconcept, which is a construct 
which effectively bridges the divide between the individual and the social and 
between complex and concept. (For elaboration and exemplification of the different 
types of complexes, see Sierpinska (1993), Berger (2004a, 2004b)). 

The pseudoconcept: a bridge between the individual and the social 
In order to understand the pseudoconcept one needs to know how Vygotsky used the 
word ‘concept’: in a concept, the bonds between the parts of an idea and between 
different ideas are logical and the ideas form part of a socially-accepted system of 
hierarchical knowledge.  

According to Vygotsky, the transition from complexes to concepts is made possible 
by the use of pseudoconcepts. Hence the pseudoconcept is a very special form of 
complex.  

Pseudoconcepts resemble true concepts in their use, but the thinking behind these 
pseudoconcepts is still complex in character. This is because the bonds between the 
different elements of a pseudoconcept are associative and experiential rather than 
logical and abstract. But the learner is able to use the pseudoconcept in 
communication and activities as if it were a true concept.  

The use of pseudoconcepts is ubiquitous in mathematics and is analogous to a child 
using a word in conversation with an adult before fully understanding the meaning of 
that word. Pseudoconcepts occur whenever a student uses a particular mathematical 
object in a way that coincides with the use of a genuine concept, even though the 
student has not fully constructed that concept for herself. For example, a student may 
use the definition of the derivative of a function to compute the derivative of the 
function before she ‘understands’ the nature of the derivative or its properties.  
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Vygotsky (1986) argued that the use of pseudoconcepts enables children to 
communicate effectively with adults and that this communication (the intermental 
aspect) is necessary for the transformation of the complex into a genuine concept (the 
intramental aspect) for the learner.  

Verbal communication with adults (…) become a powerful factor in the development of 
the child’s concepts. The transition from thinking in complexes to thinking in concepts 
passes unnoticed by the child because his pseudoconcepts already coincide in content 
with adult concepts (Vygotsky, 1986: 123). 

Thus the pseudoconcept functions as the bridge between concepts whose meaning is 
more or less fixed and constant in the social world (such as that body of knowledge 
we call mathematics) and the learner’s need to make and shape these concepts so that 
they become personally meaningful. This bridging function of the pseudoconcept is 
the basis for my contention that the pseudoconcept can be regarded as the link 
between the individual and the social. As such pseudoconcepts are a necessary stage 
in the child’s or student’s development of true concepts. Furthermore the notion of 
the pseudoconcept is entirely consistent with the functional use of a sign. 

The pseudoconcept can be used to explain how the student is able to use 
mathematical signs (in algorithms, definitions, theorems, problem−solving, and so 
on) in effective ways that are commensurate with that of the mathematical 
community even though the student may not fully ‘understand’ the mathematical 
object. The hope is that through appropriate use and social interventions, the 
pseudoconcept will get transformed into a concept. 

CONCLUSION 
In this paper, I have argued that Vygotsky’s theory of concept formation provides an 
apposite framework within which to elaborate how an individual constructs a concept 
that is personally meaningful and whose usage is commensurate with that of the 
mathematical community. 

In particular, I argued that the notion of functional usage of the sign, together with 
the construct of the pseudoconcept, can be used to bridge the divide between an 
individual’s concept formation and a socially sanctioned mathematical definition. 
Related to this, idiosyncratic mathematical activities can be regarded as 
manifestations of complex thinking. With social regulation, these complexes can be 
transformed into pseudoconcepts and ultimately concepts can be formed. Finally, I 
argued that Vygotsky’s notion that all knowledge is semiotically mediated is 
necessary for understanding how students use mathematical signs to gain access to 
mathematical objects. 

What is now required is empirical research which illuminates the bridges between 
personal and socially sanctified usages of mathematical signs, explicates the 
transformations from complexes to pseudoconcepts to concepts, and explores the 
relationships between different usages of signs and meaning−making.  
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PRESERVICE TEACHERS’ UNDERSTANDINGS OF 
RELATIONAL AND INSTRUMENTAL UNDERSTANDING 

Kim Beswick 

University of Tasmania 

 
This paper reports on the responses of a cohort of preservice primary teachers to a 
statement about the extent to which helping children achieve relational 
understanding is a realistic expectation. Although the preservice teachers’ course 
had included teaching about understanding a number of misconceptions about the 
meanings of relational and instrumental understanding were evident in the responses 
of a sizeable minority, along with evidence that many held beliefs that were likely to 
result in them teaching instrumentally. The findings highlight the idiosyncratic nature 
of preservice teachers’ knowledge construction and draw attention to a range of 
disparate meanings that may be attached to the term ‘understanding’ even when it is 
qualified with other words such as ‘instrumental’ or ‘relational’. 

BACKGROUND AND THEORETICAL FRAMEWORK 
Ongoing calls for reform in education generally and mathematics education in 
particular have stressed the importance of teaching for understanding (e.g. NCTM, 
2000). In several Australian states, including Tasmania where this study was 
conducted, significant shifts to values-based curricula that place a heavy emphasis on 
the development deep understanding are underway (Department of Education, 
Tasmania, DoET, 2002). It thus behoves mathematics teacher educators to prepare 
preservice teachers to teach for understanding. 

This task is by no means simple, with the difficulty due at least in part to the 
difficulty of defining exactly what is meant by understanding. Madison (1982) 
sourced the difficulty in the tendency to equate our understandings with reality, and 
stressed that understandings can really only be described as beliefs. Much that has 
been written about understanding, including in the two documents cited above, does 
not attempt to define the concept, but rather a shared ‘understanding’ of the meaning 
is assumed. The danger of such an assumption was highlighted by Skemp (1978) in 
relation to mathematics when he described the existence of two disparate uses of the 
term that resulted in, in his view, two quite distinct mathematics curricula. Skemp 
(1978) labelled these types of understanding instrumental and relational and it is the 
latter which is implied by authors writing from a reform perspective (e.g. Hannula, 
Maijala, & Pehkonen, 2004). The term relational implies connections and indeed the 
development of connections is central to advice on teaching for understanding 
(Mousley, 2004). Mousley (2004) lists three types of connections that are commonly 
intended. These are connections between: new and existing knowledge; various 
mathematical ideas and representations; and mathematics learned in school and 
everyday life. It was the second of these that Skemp (1978) described. 
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The process by which understanding is achieved (or connections of various kinds are 
made) has been described by Pirie and Kieren (1989) as recursive in that rather than 
more sophisticated understandings developing from more primitive ones, there is a 
need to revisit earlier understandings and view them from a different perspective in 
order to develop the next level of understanding. Sierpinska (1994) described 
understanding as emerging in response to difficulties encountered when current 
knowledge meets new, not readily reconcilable experiences. Wiggins and McTighe 
(1998), whose work has been influential in the Tasmanian curriculum reforms, 
provided a framework comprising six not necessarily discrete facets of understanding 
that they believed could be helpful for teachers in designing learning experiences that 
fostered the development of understanding. These views have in common that they 
present the development of understanding as complex, non-linear and unpredictable 
phenomenon. 

All of these perspectives, as well as the underpinning philosophy of calls to reform 
curricula and specifically mathematics education, are consistent with a constructivist 
view of learning (Confrey, 1990; Simon, 2000). In describing understandings as 
beliefs, Madison (1982), is essentially equating understandings with a constructivist 
view of knowledge in which the distinction between knowledge and beliefs is 
principally a matter of the degree of consensus attracted by virtue of the amount and 
quality of information on which they are based, and their powerfulness in terms of 
explaining and predicting experience (Guba & Lincoln, 1989). Lerman (1997) 
maintained that researchers should be mindful that theories of learning apply equally 
to attempts to change the beliefs and practices of teachers. That is, from a 
constructivist perspective, teachers, including preservice teachers such as those in this 
study, actively construct knowledge for the purpose of making sense of their 
experiences (von Glasersfeld, 1990). A further dimension of constructivism derives 
from the work of Vygotsky (Ernest, 1998) who stressed the critical role of language 
in social contexts in the development of thinking.  

The task of assisting preservice teachers to construct a notion of mathematical 
understanding as relational (Skemp, 1978) and to value this perspective to the extent 
that they are likely to teach in ways that foster the development of relational 
understanding in their students, thus amounts to an effort to change their beliefs about 
what it means to understand mathematics. Given the established difficulty of 
influencing beliefs (Lerman, 1997), the strong tendency of teachers to teach in the 
ways that they were taught (Ball, 1990), the fact that many will have experienced 
mathematics teaching aimed at achieving instrumental understanding, and the 
complexities involved in developing understanding of anything, including 
understanding itself (Pirie & Kieran, 1994; Sierpinska, 1994; Wiggins & McTighe, 
1998) this is likely to be a difficult undertaking. In this context it should be 
remembered that the perception of misunderstanding on the part of a student is also a 
belief of the teacher. Essentially teachers or educators operating from a constructivist 
perspective but with particular outcomes for their students in mind are attempting to a 
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greater or lesser extent to replicate their own understandings in their students, with 
misunderstanding deduced from evidence that students do not share their 
understanding. 

THE STUDY 
The study was motivated by a concern that, almost 30 years after Skemp (1978) 
articulated the problem, teachers including preservice teachers, still attached differing 
and conflicting meanings to the term ‘understanding’. It was designed to provide 
evidence in relation to the extent that this was indeed the case for preservice teachers 
who had notionally ‘been taught’ about understanding in relation to mathematics and 
was thus part of ongoing course evaluations. 

Context of the study 
At the University of Tasmania, where this study was conducted, students are required 
to study mathematics curriculum in three semesters of the B. Ed. program - one in 
each of their second, third and fourth years. Mathematics curriculum studies are 
combined with English curriculum studies, and so the students study three half units 
of mathematics curriculum. Each half-unit is conducted over 13 weeks in a single 
semester, delivered via a weekly one hour lecture and a one hour tutorial in second 
and third year, and via a two hour weekly tutorial in the fourth year. Tutorials are 
conducted in groups of 25-30 students. Instruction in this context is designed to be 
interactive with students working cooperatively on activities designed to illustrate 
and explore information presented in the lectures. In the tutorials, the lecturers in the 
program aimed to model an approach to teaching that was consistent with the 
principles of constructivism. In both lectures and tutorials the emphasis of teaching 
was on promoting students’ awareness of broad pedagogical ideas for meaningful 
learning of mathematics, such as the importance of rich mathematical learning 
environments for conceptual development, a mathematics curriculum that focuses on 
problem solving and thinking skills, and appropriate materials for concept 
representation. In lectures and tutorials, it was the lecturers’ intention to 
communicate these ideas through modelling best practice, using lecture and 
particularly tutorial times, to engage students in activities designed for such notions 
to surface. A further objective of the program in total was to promote students’ 
beliefs in the importance of mathematics and its teaching, whilst enhancing their 
confidence in their ability to understand basic mathematics, and fostering positive 
attitudes to the teaching of mathematics.  

Subjects 
The subjects were 174 preservice primary teachers enrolled in the first mathematics 
curriculum half unit, in the second year of the preservice teachers’ study. 

Instrument 
The statement to which students were asked to respond was contained in question 
eight of the examination paper for the unit. The two hour examination was comprised 
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13 questions requiring short answers in the spaces provided (two lines per mark), 
accounted for 40% of students’ result for the unit, and was designed to assess 
students’ understandings of the material covered in the unit rather than simply their 
ability to recall information. The specific question was: 

Indicate your agreement or otherwise with the following statement, giving reasons for 
your choice: “Helping children to achieve relational understanding is too time-
consuming. There is so much in the curriculum to cover that it is an unrealistic 
expectation.” (4 marks [of a total of 53])  

Procedure 
Teaching mathematics for understanding was a topic of one lecture. The 
corresponding tutorial included a discussion of the understanding based on a section 
of the prescribed text, Van de Walle (2002), and Skemp’s (1978) article on 
instrumental and relational understanding. Incidental references to the importance of 
teaching mathematics for understanding (relational) were made throughout the course 
and modelled in tutorials. 

At the end of the semester students sat the examination and, after the assessment of 
the unit had been finalised, their responses to question eight were re-examined 
specifically for evidence of their understandings of understanding. Those that clearly 
evidenced misunderstandings were further examined in order to identify categories 
into which these responses could be divided. Some of the responses that 
demonstrated misunderstandings were allocated to more than one category on the 
grounds that they showed evidence of more than one type of misunderstanding. 

RESULTS AND DISCUSSION 
Of the 174 answers examined 52 (30%) showed evidence of misunderstanding. Table 
1 shows the categories of misunderstandings identified, the number of responses 
falling in each and an example of a response allocated to each category.  

Fifteen of the preservice teachers clearly agreed with the statement presented in the 
question. Given that they responded under examination conditions and that the views 
of the lecturers who would be marking their papers were likely to have been well 
known, this figure is likely to be an under-estimation of the numbers who in fact 
believed that relation understanding was an unrealistic expectation. It seems likely 
that at least some students in classes taught by these teachers will not be taught with 
relational understanding of mathematics as the goal. 

Categories two to seven all contained responses that presented relational 
understanding as something additional that should be aimed for, rather than essential, 
and hence the argument presented in the statement that time is a constraint on 
teaching for relational understanding is likely to have some merit in the view of these 
preservice teachers. A likely consequence is that amongst the demands of classroom 
life the goal of relational understanding will not survive. These preservice teachers 
may well be among the many who revert to teaching as they were taught (Ball, 1990).  
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Category of misunderstanding Example No. of 
responses 
(% of 174) 

a. For some 
students 

Ideally it would be great to have every 
student with relational understanding … 
not every student in the class is going to 
achieve relational understanding. 

10 (5.7) 1. Relational 
understanding 
is an unrealistic 
expectation: 

b. Under some 
circumstances 

… sometimes there is too much pressure 
from students, parents and government to 
allow time for it. 

5 (2.9) 

2. Relational understanding 
follows from instrumental 
understanding 

… Children need to move from 
instrumental understanding so that they 
can see why … 

9 (5.2) 

3. Relational/instrumental 
understanding is a curriculum 
topic  

A well organised teacher can afford to 
cover such a topic … 

13 (7.5) 

4. Relational understanding is 
about relating mathematics to 
other curriculum areas/real life 

… Students should be able to relate 
mathematics to almost anything as it is 
ever changing and growing  

7 (4.0) 

5. Relational understanding is 
about knowing the 
purpose/relevance of 
mathematics topics 

… if children only have an instrumental 
understanding then they are merely 
memorising concepts and not truly 
understanding what they’re learning and 
why it is learned … 

9 (5.2) 

6. Relational understanding is a 
skill that can be applied to 
problems in mathematics and 
other curriculum areas 

… it would save time as students would 
be able to learn to relate the way to 
understanding one question to another … 

9 (5.2) 

7. Both relational and 
instrumental understanding are 
needed 

A child needs to have at least some 
relational understanding they also need 
some instrumental understanding … 

3 (1.7) 

8. Relational understanding is a 
teaching technique 

… Although more time consuming this 
method is far more beneficial than the 
instrumental method … 

4 (2.3) 

Table 1: Types of misunderstandings of understanding 

The idea that relational understanding develops from instrumental understanding 
(Category 2) is perhaps related to the way in which these preservice teachers have 
experienced coming to understand mathematics. Brown, McNamara, Hanley and 



Beswick 

 

2- 166 PME29 — 2005 

Jones (1999) reported that many primary preservice teachers are pleasantly surprised 
by their initial experiences of learning mathematics for teaching and in particular 
enjoy achieving what could be described as relational understanding of various topics 
for the first time. For them, and arguably for many teachers who have been taught 
mathematics instrumentally, relational understanding, if it has been achieved at all, 
has followed instrumental understanding. 

The belief that relational understanding is an additional topic in the mathematics 
curriculum (Category 3) was conveyed in 7.5% of all responses. It would seem that 
for these preservice teachers the course has been ineffectual in influencing their 
beliefs in relation to the nature of mathematical understanding.  

Categories four and five contained responses that associated relational understanding 
with versions of the third kind of connections described by Mousley (2004). These 
students may have been influenced by the word “relational”. Their views may also 
have reflected personal experiences of learning mathematics devoid of context, 
meaning or applicability to their lives. The importance of connecting school 
mathematics with the lives of students is emphasised in curriculum documents 
(NCTM, 2000; DoET, 2002) and born out by research that suggests many students 
cannot see any use for the mathematics they learn at school beyond passing tests and 
achieving qualifications (Onion, 2004). While having merit, this view of 
understanding is neither complete nor that described by Skemp (1978). 

Pre-service teachers whose responses fell in Category six saw relational 
understanding as a skill rather than a quality of understanding. It is possible that at 
least some of these preservice teachers in fact saw relational understanding in terms 
of the development of connections between mathematics topics which consequently 
enhanced students’ ability to apply mathematics in a range of contexts. To the extent 
to which this was the case, and this is not clear, this category is unproblematic and in 
fact would not represent a misunderstanding. 

The view that instrumental and relational understanding are both necessary (Category 
7) may be based on the characterisation provided by Skemp (1978) of these types of 
understanding as respectively knowing ‘what’ and ‘how’, and knowing ‘why’. As 
Hannula et al. (2004) pointed out knowledge (what) and skill (how) are inherent in 
mathematical understanding. The extent to which these preservice teachers regarded 
instrumental understanding as included within relational understanding is not clear 
but none articulated this view. 

Responses in Category eight conveyed a belief that relational and instrumental 
understandings are teaching methods. These preservice teachers may have focussed 
on the descriptions by Skemp (1978) of instrumental and relational teaching. The 
emphasis on how to teach is consistent with Brown et al.’s (1999) observation that 
preservice primary teachers wanted to be told how to teach.  
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CONCLUSION 
Up to one third of the 174 preservice teachers in this cohort held some kind of 
misunderstanding about understanding at the end of a semester in which the topic had 
been approached in a variety of ways. It is recognised that the use of lectures is 
neither pedagogically desirable nor effective for many students, as this study attests, 
but they are sometimes fiscally necessary. There is a need for research on how the 
effectiveness of courses that are constrained to operate in non ideal modes can be 
maximised. In the particular context of this study, the findings have lead to the use of 
an electronic discussion board on which understanding is one of the topics and a 
variety of questions, similar in nature to that discussed in this paper, are provided to 
stimulate the discussion. There are also plans to modify the assessment of the unit to 
facilitate, to the limited extent possible, preservice teachers working with primary 
school students with a focus on analysing the understandings that students display. 

The findings of this study add weight to calls to increase the integration of teacher 
education in on-campus settings and in schools (Ball & Bass, 2000). Preservice 
teachers need to experience examples of ‘unlikely’ students achieving relational 
understanding. They need powerful evidence that their own experience is not the only 
possible experience of learning mathematics. Mathematics educators approaching 
their task from a constructivist perspective should not of course be surprised that their 
students construct idiosyncratic understandings. Findings such as these highlight the 
inherent difficulty of teaching from such a stance and remind us of the challenging 
task for which we are preparing preservice teachers. Despite the prominence of the 
notion of understanding over several decades there clearly remains a need to carefully 
unpack the meaning attached to it by various users of the term. 
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THE TRANSFORMATION OF MATHEMATICS IN ON-LINE 
COURSES1  

Marcelo C. Borba 

GPIMEM, Mathematics Department  

UNESP- São Paulo State University  

This paper presents some research findings regarding the changes in the 
mathematics produced by mathematics teachers in on-line distance courses.  
Predicated on the belief that knowledge is generated by collectives of humans-with-
media, and that different technologies modify the nature of the knowledge generated, 
we have sought to understand how the Internet modifies interactions and knowledge 
production in the context of distance courses. The research was conducted over a 
period of several years, during distance courses proffered annually from the 
mathematics department at UNESP, São Paulo State University, to teachers 
throughout Brazil, conducted mainly via weekly chat sessions. Findings presented 
contrast teachers’ knowledge production when using the Internet with production of 
knowledge when using regular dynamic geometry software or plotters.  

INTRODUCTION 
In this paper, I will report on partial results and new questions that our practice, as a 
research group, have raised in the process of engaging in virtual interactions with 
teachers from different parts of Brazil (and in smaller numbers, from other countries 
in South America). We have developed Internet-based extension courses for 
mathematics teachers from different levels as one means of addressing social 
inequalities in Brazil and, at the same time, to research and learn about Internet-based 
education. Different research questions are being addressed in this project, some of 
which are related to the nature of the needs that teachers who participate in on-line 
courses will have, and others to the different opportunities that teachers and 
researchers may have with the new possibilities offered by the Internet. In this paper, 
however we will discuss how mathematics can be transformed by the Internet, which 
we consider to be an interface. There has been a significant amount of research 
showing that function or geometry software transform the nature of the mathematics 
that is produced (Noss & Hoyles, 1997). Our own research (Borba, 2004a; Borba & 
Gracias, 2004) has strongly suggested that different software lead to different 
possibilities and different mathematics. The most popular case has been the "click 
and drag" resource of geometry software which enabled many students and teachers 
to generate conjectures, test them and connect them to "different levels" of 
demonstration, depending on the level of the students and the teaching objectives.  

                                                      
1 Although they are not responsible for the content, I would like to thank Anne Kepple and Ana Paula 
Malheiros for their comments in earlier versions of this paper. This research was sponsored by FAPESP, 
TIDIA-Ae grant (03/08105-4) and CNPq grant (520033/95-7 and 471697/2003-6). 
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However, it appears no questions have been posed regarding the nature of change that 
on-line interfaces bring to the production of mathematics. In this paper, we will 
present one model of on-line course that stresses the use of chat, and how such an 
interface is changing the nature of the mathematics that is being generated in on-line 
communities such as the one described. Before we do this, however, we will present 
theoretical views regarding computers and knowledge production, and 
methodological issues. No literature review on Internet based courses will be 
presented as very little has been published in most mathematics education journals in 
English or PME proceedings (see for instance, Pateman, Dougherty & Zilliox, 2003; 
Høines & Fuglestad, 2004). 

THEORETICAL AND METHODOLOGICAL ISSUES 
Our research group, GPIMEM2, has been developing research on the use of different 
information and communication technologies (ICT) in mathematics education for 
eleven years. We have developed the theoretical notion of humans-with-media as a 
means of stressing that knowledge is always constructed by collectives that involve 
humans and different technologies of intelligence (Levy, 1993), such as orality, 
paper-and-pencil, and ICT. Different humans, or different technologies, result in 
different kinds of knowledge production. There is no knowledge produced without 
humans nor without media.  
This notion has provided important insight as we have analyzed how different 
interfaces, such as graphing calculators or dynamic geometry software, play an 
important role in knowledge production (BORBA, 2004). In the last five years, we 
have also started to conduct research on the possibilities provided by Internet. To this 
end, some members of our group have been researching how collectives formed of 
humans-with-Internet have constructed knowledge. In particular, we have offered 
several on-line courses for mathematics teachers as a means of searching for theories 
and research methodologies that emerge from engagement in different practices 
(Lincoln & Guba, 1985; Borba & Araújo, 2004). In this sense, we believe that we 
need to be involved in on-line courses in order to focus on helpful questions and 
theories. 
One transformation that we soon noticed, in terms of research procedures, is that data 
collection is much more "natural" than in usual face-to-face educational 
environments. If we are researching in a regular classroom, on a lab environment, we 
have to deal with issues about how invasive a video-camera may be, or to struggle 
with students/teachers to write reports on their findings. In on-line distance education 
courses, filming, voice recording and/or transcribing are "natural" and non-invasive.  
For instance, using chat as a means of communication generates transcribed data that 
can be electronically stored (as the reader will see, the use of chat also has other 
implications in terms of results). Triangulation of data and "member checks" (Lincoln 
& Guba, 1985) can be easily done through e-mail, as we can always ask: "what did 

                                                      
2 www.rc.unesp.br/igce/pgem.gpimem.html 
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you mean when you wrote such-and-such" in a chat session, or in a forum. On the 
other hand, an immense amount of data is generated by chats, e-mails and forums 
and, more recently, by video-conferences.   
In theoretical terms, some of us have been emphasizing how theoretical perspectives, 
research questions and research methodologies shape one another (Borba & Araújo, 
2004). I believe that the notion that knowledge is always produced by collectives of 
human-with-media is consistent with the discussion in the last paragraph, in the sense 
that research procedures and the nature of the interaction change as different media 
are being used. Research procedures, results and theoretical frameworks shape each 
other. In the same way, the research question of this paper interacts with these other 
components: what is the nature of the change provoked by the Internet, a non-human 
actor, in the production of mathematics? Next we will describe the context of the 
study. 
The On-line practice developed by GPIMEM 
Over the last five years, our research group, GPIMEM, has made efforts to connect 
teachers and researchers who are interested in fostering change in their classrooms. 
We have offered on-line courses in "Trends in Mathematics Education", or specific 
topics such as "Teaching and Learning Geometry Using Software”. These courses 
have fostered the development of communities that discuss issues related to the topics 
presented - teaching and learning of functions and geometry using software, 
ethnomathematics, modeling, adult education in mathematics, critical mathematics 
education, and so on.  
Courses such as these are of paramount importance in Brazil due to the size of the 
country and the concentration of knowledge production in the southeastern region, 
where the states of São Paulo and Rio de Janeiro are located. Internet-based courses 
are one way of connecting research centers such as São Paulo State University 
(UNESP) with people in remote locations, where the closest university may be more 
than several hundred kilometers way.  
Each course connects about 20 teachers on-line at regularly scheduled times for a 
period of about four months. They are designed in such a way that interaction is the 
key word. The model, which has undergone changes over the last four years, is based 
on synchronous and asynchronous relationships. We have three-hour chat sessions 
every week for a four months, and also have bulletin boards and e-mail lists. In the 
last two versions of the course (2003 and 2004), we used a freeware software 
environment, Teleduc3, which requires a server in Linux, but can be accessed by 
computers that use different platforms. Five courses have been offered since 2000.  
These extension courses for teachers have become an environment for research. Our 
research has shown the transformation of the interaction in these courses, when we 

                                                      
3 TelEduc é um ambiente de suporte para educação a distância, desenvolvido pelo Nied e Instituto de 
Computação da Unicamp, sob a coordenação da Profª Drª Heloísa Vieira da Rocha, e disponibilizado no 
endereço: http://hera.nied.unicamp.br/teleduc. 
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compare it to our interactions in our regular graduate courses, in which teachers and 
researchers take part (Gracias, 2003; Borba & Villarreal; in press). Based on the 
assessment made at the end of each course, this model has had a significant impact in 
terms of bringing members of different communities into the discussion regarding 
mathematics education, and giving them access to professors from one of the most 
prestigious mathematics education graduate programs in Brazil, with whom they 
would otherwise not have an opportunity to interact. The chat has become the 
principle means of interaction of the course. Forum, an asynchronous tool in on-line 
environments, has not been used extensively, and the use of e-mail has decreased. A 
typical course consisted of 11 three-hour synchronous chat sessions. Preparation for a 
session would be done through asynchronous interactions, mainly e-mail and regular 
mail. For instance, prior to a session on ethnomathematics, participants would be 
mailed a book by D'Ambrosio (2001). All the participants were expected to have read 
it before the session, and two of them (together with myself) would be responsible for 
raising questions to generate discussion. After the class, a third teacher would 
generate a summary of the class which would be published in the virtual environment 
of the course. A different kind of preparation was required when the objective of the 
class involved doing mathematics; problems regarding the use of function, for 
instance, would be sent beforehand to the teachers, and they would attempt to solve 
them before the class. During the chat session, different solutions would be 
discussed.   

The problems were designed to be solved with the use of plotters such as winplot4. 
Since this software is free, teachers could have their own copies installed in their 
computers. On the other hand, it was not possible to share a figure with the other 
participants of the course simultaneously. An attached file could be sent to TeLeduc, 
and everyone could access it minutes later. In this sense, this course was joining 
together "old" computer interfaces, such as plotters, and "new" ones, such as the 
Internet. In this paper, we present some of our findings regarding the interaction 
between teachers and these two types of interfaces. 

As a means of explaining this further, I would like to re-emphasize my belief that 
knowledge is always constructed by collectives of humans-with-media. If the media 
change, paper and pencil to a plotter, for instance, the manner of teaching the concept 
of function, for example, will change. For example, a problem that might be 
particularly provocative and engaging for a collective of students-with-paper-and-
pencil could be entirely simple and uninteresting for collectives that include graphing 
calculators. Might there be analogous changes with intensive use of the Internet? In 
this paper, we will be presenting excerpts of the interaction of collectives of humans-
with-Internet-winplot.   

The 20 teachers who took the course each time were, for the most part, high school 
teachers, but university level teachers, teacher educators and others, such as 

                                                      
4 http://www.gregosetroianos.mat.br/softwinplot.asp 
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curriculum developers, have also taken part. It was common in these chat sessions to 
have simultaneous dialogues, since different teachers would pursue different aspects 
of a given problem, or would pose a different problem, or talk about something that 
happened recently in their classroom. 

RESULTS 
Before we present the main set of data from the 2004 class, we would like to present 
a short episode that led us to look at the data we have been generating with the on-
line courses with different eyes. In the 2003 class, prior to a scheduled chat meeting 
with all twenty teachers participating in one of the courses, a problem was posed to 
them regarding Euclidean geometry. Different solutions and questions were raised by 
all the participants, but one of the student’s reflections called our attention. During 
the discussion, Eliane5, said: “I confess that, for the first time, I felt the need for a 
face-to-face meeting right away . . . it lacks eye-to-eye contact”. She then followed 
up, explaining that discussing geometry made her want to see people and to share a 
common blackboard. In this case, there was no follow-up discussion that to clarify 
what she meant. While this comment raised some design issues regarding the 
development of distance education environments, in this paper, we will focus on the 
conjecture it evoked regarding possible changes in the mathematics practiced in 
Internet-based environments. 

In year that followed, we posed the following problem6 to the teachers who 
participated in the course: 

Biology students at UNESP, São Paulo State University, take an introductory course in 
pre-calculus/calculus. The teacher of this course asks the students to explore, using a 
graphing calculator, what happens with 'a', 'b' and 'c' in y=ax2+bx+c. Students have to 
report on their findings. One of them stated: "When b is greater than zero, the increasing 
part of the parabola will cross the y-axis . . . When b is less than zero, the decreasing 
part of the parabola will cross the y-axis.". What do you think of this statement? Justify 
your response.  

The mathematics involved in the conjecture, and its accuracy according to academic 
mathematics, is developed in detail in Borba & Villarreal (in press). But it is 
interesting to see how these teachers dealt with it. Some aspects of it were 
suppressed, since they were seen as irrelevant to the understanding of the dialogue, or 
because they were part of a different dialogue, as explained in the previous section. 

Carlos, a high school teacher, started the debate at 19:49:07 (these numbers indicate 
the hour, minutes and seconds in when the message reached the on-line course), 
reporting on what one of his students had said: “When a is negative, or b is positive, 
the parabola goes more to the right, but when a is negative and b is also negative, the 

                                                      
5 Eliane Matesco Cristovão, High School teacher, from the 2003 class. 
6 Translation of this problem and of the excerpt from Portuguese into English was done by the author and 
Anne Kepple. 
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parabola goes more to the left”. He challenged the group to see if the student’s 
sentence could lead them to solve the problem.  

Since the debate was not gaining momentum, the professor of the course, the author 
of this paper, tried to bring the group back to what Carlos had said: 

 (19:53:15) Marcelo Borba: The solution that Carlos' student presented regarding 'a' and 
'b'. Does anyone have an algebraic explanation for it? 

(19:54:53) Taís: It has something to do with the x coordinate of the vertex of the 
parabola.  
(19:55:30) Carlos: after a few attempts (constructing many graphs changing the value of 
'a', 'b, and 'c') the students concluded that what was proposed by Renata is really true.  

The issues at stake are distinct. Carlos tried to do what the professor proposed to the 
group, but Taís raised a new issue, the vertex idea. As can be observed on the excerpt 
below, the two issues also have intersections: 

 (19:57:07) Taís : Xv=-b/2a...if 'a' e 'b' have different signs, Xv is positive.  

(19:59:16) Norma: I constructed many graphs and I checked that it is correct, afterwards 
I analyzed the coordinates of the parabola vertex Xv= - b / 2a, and developed an analysis 
of the 'b' sign as a function of 'a' being positive or negative, then I verified the sign of the 
vertex crossing. . . . with the concavity upwards or downwards, and checked if it was 
increasing or decreasing. . . .did I make myself clear? 

Norma presented her ideas, which according to my analysis, are similar to the one 
made by Taís, and can be labeled the vertex solution. After further discussion about 
this, the professor presents another solution based on the derivative of y, y'=2ax+b: 

 (20:07:03) Marcelo Borba: Sandra, . . I just saw it a little differently. I saw it . I 
calculated y'(0)=b, . . and therefore when 'b' is positive the parabola will be increasing 
and analogously. . . .  

Since a few people said they did not understand this comment, he went back to 
explain his solution. 

(20:10:59) Marcelo Borba: . . . as I calculate the value of y', y'>0, then the function is 
increasing, and therefore I consider y'(0), which is equivalent to the point at which y 
crosses the y-axis, and y'(0)=b, and therefore 'b' decides the whole thing!!!! Got it? 

(20:29:24) Badin: The parabola always intercepts the y-axis at the point where the x 
coordinate is zero. In order for this point to belong to the increasing "half" of the 
parabola (a>0), it should be left of the xv, this means xv should be less than zero. 
Therefore, -b/2a < 0 is equivalent to -b<0 (remember, a>0). But -b<0 is equivalent to 
b>0. In other words, if b>0, the point where the graph crosses the y-axis is in the 
increasing part of the parabola. The demonstration por a<0 is analagous.  

At this point, some of the teachers had been discussing the problem and both 
solutions - the vertex and the derivative – for 40 minutes. The large spaces shown by 
the clock between the different citations from participants of the course, indicate the 
size and amount of sections which were not transcribed in this paper, as there were 
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about four messages per minute. For ten more minutes, additional refinement and 
shared understanding of the solutions were presented. More examples of people’s 
writing about their understanding in the chat are available in the naturally recorded 
data. Educational issues regarding the use of winplot, to explore the problem and 
generate conjectures, were discussed. But what is new about Internet in this case? 
This is the topic of the next section. 

DISCUSSION 
Before going further, the reader should be aware that some sentences were omitted to 
make it easier to follow the interaction, and that the translation suppressed most of 
the informality and typos that normally occur in this kind of environment. There were 
other actors involved in the discussion and refinement of the solutions of the 
problem, but for the purpose of clarity, only a few were included here. When we 
compare the solution presented by the teachers, the vertex one, to the original 
situation that took place in a normal classroom situation in 1997, there are similarities 
and differences. Students used graphing calculators to generate many conjectures for 
the problem relating coefficients of parabolas of the type y=ax2+bx+c to different 
graphs. Similarly, the teachers used winplot (or other software, in some instances) to 
investigate the problem just described, and later the problem related to Renata's 
conjecture. In the face-to-face classroom, the professor/author led the discussion, and 
eventually presented the vertex solution (as he did not know the answer either, at 
first). The explanation for the conjecture was never written by the students. In an on-
line learning environment based on chat, writing is natural, and everyone involved 
had to express themselves in writing. Although we know that some aspects of writing 
in a chat situation are different compared to writing with paper and pencil, there is a 
fair amount of research showing the benefits of writing for learning (see, for instance, 
Sterret, 1990). The data presented here is insufficient, and the design of the study is 
inappropriate, to support arguments about "benefits". However, it can be argued that 
chats transform mathematics education in a similar way that it changed research 
procedures. Chats, together with human beings, generate a kind of written 
mathematics that is different from that developed in the face-to-face classroom, 
where gestures and looks form part of the communication, as well. I believe that 
collectives of humans-with-Internet-winplot generate a different kind of knowledge, 
which does not mean that the mathematical results were different. But if process is 
considered, I believe that we may be on the way to discovering a qualitatively 
different medium that, like the "click and drag" tool of the dynamic geometry, offers 
a new way of doing mathematics that has the potential to change the mathematics 
produced, because writing in non-mathematical language becomes a part of doing 
mathematics. At this point, it is too early to confirm this, but I believe that this 
"working hypothesis" (Lincoln & Guba, 1985) regarding the transformation of 
mathematics by the Internet is one to be pursued in further research. 
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USING COGNITIVE AND SITUATIVE PERSPECTIVES TO 
UNDERSTAND TEACHER INTERACTIONS WITH LEARNER 

ERRORS 
Karin Brodie 

University of the Witwatersrand 

 
Cognitive and situative theories have both proved very useful in furthering our 
understandings of mathematics learning. An important current area of investigation 
is to synthesize these perspectives in order to provide more robust theories of 
learning and to bring theory and practice into better relations with each other. This 
paper contributes to this endeavour in two ways: 1. by using both theories to 
understand learner errors, and 2. by focusing on teaching as well as learning. 

COGNITIVE AND SITUATIVE1 PERSPECTIVES 
The differences between cognitive and situative perspectives are best captured by 
Sfard (1998). She argues that cognitive/constructivist2 perspectives view knowledge 
as a commodity and the metaphor for learning this knowledge is one of acquisition. 
We acquire or gain knowledge, through the construction of ever more powerful 
schemata, concepts or logical structures (Hatano, 1996; Sfard, 1998). Self-regulation 
is the primary mechanism for learning in this perspective. Contextual and social 
influences, including teaching, are either ignored, or are seen as means for enabling 
the acquisition of individual knowledge (Greeno & MMAP, 1998). Social processes 
are secondary processes, which constrain and influence the primary process of self-
regulation (Piaget, 1964). 

Situative perspectives view learning as participation in communities of practice (Lave 
& Wenger, 1991; Wenger, 1998). To learn mathematics is to become a better 
participant in a mathematical community and its practices, using the physical and 
discursive tools and resources that the community provides (Forman & Ansell, 2002; 
Greeno & MMAP, 1998), and adding to them (Wenger, 1998). Situative perspectives 
argue that a focus on conceptual structures is not sufficient to account for learning. 
Rather, interaction with others and resources are both the process and the product of 
learning and so learning cannot be analysed without analysing interactional systems.  

Researchers who suggest syntheses of cognitive and situative approaches argue for 
different possibilities in such syntheses. Schoenfeld (1999) and Sfard (1998) argue 

                                                      
1 I follow Greeno et al. (1998) in using “situative” rather than “situated” to distinguish a perspective 
on learning from a particular way of learning. A situative perspective argues that all learning is 
situated. 
2 Sfard points to differences between information processing views of cognition and neo-Piagetian 
views, which take a more constructivist and meaning-making approach. I work with neo-Piagetian 
notions of cognition and constructivism and use these interchangeably in this paper.  
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that each approach has its strengths and weaknesses, and that we should draw on each 
in ways that enable coherent progress on particular research projects. For example, 
Sfard argues that while it may not be helpful to account for learners’ thinking only in 
terms of cognitive structures, it is also not helpful to suggest that we do not impose 
structure on the world, and that this structuring does not somehow become part of us 
and help us to make better sense of new situations. Greeno et al. (1998) argue that a 
situative view is in fact an expanded cognitive view and that we need to develop 
concepts that will enable us to take features of both into account.  

TEACHING MATHEMATICS 
Cognitive and situative theories are primarily theories of learning and as such they 
entail theories of knowledge. It is more difficult to speak about cognitive and 
situative approaches to teaching mathematics because while theories of learning offer 
implications for pedagogy and general pedagogical principles, they do not directly 
lead to particular pedagogical approaches. Pedagogical principles do not derive from 
theories of learning in a one-to-one relationship. The two different theories might 
suggest very similar approaches, which are distinguished at the level of explanation 
rather than the level of practice.  

One example of this is the common classroom practice of group work. Both cognitive 
and situative theories suggest that learners talking through their ideas in groups is a 
useful pedagogical approach. A cognitive perspective suggests that as learners 
articulate their ideas, they are likely to clarify their thinking, and develop more 
complex concepts or schemata (Hoyles, 1985; Mercer, 1995). A situative perspective 
suggests that as learners consider, question and add to each other’s thinking, 
important mathematical ideas and connections can be co-produced. For cognitive 
perspectives the group is a social influence on the individual; for situative 
perspectives the group is the important unit, which produces mathematical ideas 
beyond the individual ideas. Either one, or both, of these purposes for group work 
might be operating in a classroom at any particular time. 

As learners talk through their ideas, either in groups or in whole class situations, they 
make errors. Teachers’ understandings of learner errors and misconceptions are key 
to reform visions in many countries. In this paper, I begin to develop ways in which 
we might think about learner errors from both cognitive and situative perspectives. 
This is an exploratory paper, drawing on an example of classroom interaction where 
the teacher deals with a number of errors, one of which proves particularly resistant. I 
argue that this error needs to be seen in both cognitive and situative terms, and in so 
doing, I begin to expand the notion of misconceptions to take account of situational 
factors and teaching-learning interactions. 

ERRORS AND MISCONCEPTIONS 
Research into learners’ misconceptions has been a key strand of constructivist 
research (Smith, DiSessa, & Roschelle, 1993). This research shows that many errors 
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are systematic and consistent across time and place, remarkably resistant to 
instruction, and extremely reasonable when viewed from the perspective of the 
learner. To account for these errors, researchers posit the existence of 
misconceptions, which are underlying conceptual structures that explain why a 
learner might produce a particular error or set of errors. Misconceptions make sense 
when understood in relation to the current conceptual system of the learner, which is 
usually a more limited version of a mature conceptual system3. Misconceptions alert 
us to the fact that “building” on current knowledge also means transforming it; 
current conceptual structures must change in order to become more powerful or more 
applicable to an increased range of situations. At the same time the new structures 
have their roots in and include earlier limited conceptions. Learners’ misconceptions, 
when appropriately coordinated with other ideas, can and do provide points of 
continuity for the restructuring of current knowledge into new knowledge (Hatano, 
1996; Smith et al., 1993). 

Misconceptions can also produce correct contributions (Nesher, 1987). The seminal 
story of Benny (Erlwanger, 1975) is an example of a learner who constructed many 
of his own rules for mathematical operations. His rules were partially sensible 
modifications of appropriate mathematical operations. They were derived from his 
instructional program and his correct understanding of some mathematical principles. 
They produced many correct answers and Benny was considered to be a good 
mathematics student by his teacher. However, many of his underlying understandings 
of mathematics were incorrect and were never picked up by his teacher. 

The notion of misconceptions as part of a cognitive framework suggests that an 
individual’s conceptual structure can account for her productions in the classroom, 
and that shifts in conceptual structure can account for learning. Situative perspectives 
argue that a focus on conceptual structures is not sufficient to account for learning 
and certainly cannot account for teacher-learner interaction in the classroom. 
Therefore situative perspectives have not focused explicitly on errors or 
misconceptions. This is of concern for reform visions of teaching, where teachers are 
asked to focus on learners’ thinking, which often exhibits errors or misconceptions. 
However, situative perspectives can give us additional ways to understand learners’ 
errors. Situative perspectives view learning mathematics as increasingly appropriate 
participation in mathematical practices using mathematical tools (Forman & Ansell, 
2002; Greeno & MMAP, 1998). From this perspective, correct contributions are seen 
as appropriate uses of tools and resources in a setting. Incorrect productions can be 
seen as partial or inappropriate uses of the tools and resources in the setting, the use 
of inappropriate tools and resources, or non-engagement in mathematical practices. 
Situative perspectives argue that what a learner says and does in the classroom makes 
sense from the perspective of her current ways of knowing and being, her developing 
                                                      
3 For this reason, many authors prefer the terms “alternative conceptions” or “naive conceptions” 
(Smith et al., 1993), preferring to indicate presence rather than absence. I use the term 
misconceptions to indicate an absence in relation to accepted mathematical knowledge. 
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identity in relation to mathematics, and to her previous experiences of learning 
mathematics, both in and out of school. If learners have come to expect particular 
ways of working in a mathematics classroom, and of what counts as an appropriate 
contribution in a classroom, they will continue to make use of these expectations. A 
learner contribution can be an attempt at speaking about an idea in order to grapple 
with it, to engage someone else in a process of solving a problem or coming to a joint 
understanding, or to participate in the conversation, either appropriately or 
innappropriately. It can also be an attempt to resist the classroom conversation or to 
disrupt it. Researchers can attempt to document these patterns of interaction and 
show that patterned regularities exist in these kinds of interactions (Greeno & 
MMAP, 1998). Social and cultural attunements and patterned regularities may be just 
as widespread, systematic and resistant to instructional intervention as 
misconceptions are.  

AN EXAMPLE 
This example comes from a larger research study in which I look at how teachers 
interact with learners’ contributions. In the study, I videotaped and analysed two 
weeks of lessons of five Grade 10 and 11 teachers in South Africa, and conducted a 
set of interviews with each teacher. For the classroom analysis, I developed a coding 
scheme for learner contributions (including errors) and teacher moves in response to 
learner contributions. My methods have been discussed in detail elsewhere. In this 
paper, I draw on one example from one of the Grade 10 classrooms to show how 
cognitive and situative perspectives can help to understand a learner error.  

The learners had worked on a task the previous day in pairs and handed their work to 
the teacher. The task was:  

Consider the following conjecture: “x2 + 1 can never be zero”. Prove whether this 
statement is true or false if x ε R. 

The teacher, Mr. Peters, had read all the responses and chosen three, which he used to 
structure his lesson the following day. The first response was from Grace and 
Rethabile, that x2 + 1 cannot be 0 because x2 and 1 are unlike terms and so cannot be 
added together. Many other learners had made the same argument. Mr. Peters asked 
them to explain their reasoning and Rethabile argued:  

what we wrote here, I was going to say that the x2 is an unknown value and the 1 is a real 
number, sir, so making it an unknown number and a real number and both unlike terms, 
they cannot be, you cannot get a 0, sir, you can only get x2 + 1 

and 
Yes, sir. There’s nothing else that we can get, sir. but the 0, sir 

As other learners contributed to this discussion, some made a different error, saying 
that x2 + 1=2x2, i.e., they completed the expression, which is a well known algebraic 
error (Tirosh, Even, & Robinson, 1998). Mr. Peters dealt relatively easily with this 
error, creating a class discussion and helping many of the students to see their 
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mistake. Grace and Rethabile’s error was of a different kind and proved more 
resistant. They had not completed the expression incorrectly, and they had the correct 
answer, that x2 + 1 cannot be 0, but for the wrong reasons. Their justification was 
incorrect and, as the second contribution above shows, their reasoning was confused.  

Mr. Peters’ interpretation of the girls’ error4 was that they saw x2 + 1 as an 
immutable unit which could not be simplified, rather than as a variable expression 
that could take different values depending on the values of x. He therefore asked the 
following question: 

So it will only give you x2 + 1, it won’t give you another value. Will it give us the value 
of 1, will it give us the value of 2? 

By asking whether x2 + 1 could take a range of values and suggesting some 
possibilities other than zero, Mr. Peters was trying to help the learners to see x2 + 1 as 
a variable expression. Rethabile drew on the first part of Mr. Peters’ question to 
argue: 

It will give us only 1, sir, because x is equal to 1, sir 

Mr. Peters followed up this response by asking: 

How do you know x is equal to 1? 

which led to Grace making the following, rather confusing contribution: 
Sir, not always sir, because, this time we dealing with a 1, sir, that’s why we saying x2 
equals to 1, sir, because, that’s how I see my x equals to 1, sir, because, a value of 1, only 
for this thing, sir 

Subsequent contributions by Rethabile and other learners suggested that they thought 
x = 1 because, as they justified it: “there is a 1 in front of the x”. Again, this is a 
common error that many experienced teachers would recognise. Mr. Peters noticed 
this error and worked on it with the class, as he did with many other common errors. 
In his interviews Mr. Peters showed a deep understanding of the mathematical 
thinking and misconceptions that might underlie common errors. However, the 
crucial error made by Grace and Rethabile proved both more difficult to work with, 
and more difficult for both Mr. Peters and myself as the researcher to understand. 
There are many points of contradictory arguments and confused reasoning, for 
example, if they saw x as 1, why did they not argue that x2 + 1 was 2?  

Mr. Peters spend the remainder of the lesson having the class discuss two other 
solutions, the first where learners substituted different values to show that x2 + 1 
could produce a range of positive values, and the second where learners argued that 
x2 was always positive or 0, so x2 + 1 would always be positive. Mr Peters spent a lot 
of time on each of these solutions, emphasising both the testing of the conjecture by 
substitution and the justification of it by logical argument. In this way, he made 
available other learners’ reasoning as resources for Grace and Rethabile to help them 

                                                      
4 Mr. Peters discussed this in an interview with me. 
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think about the parameters of the task. Even after this substantial discussion, Grace 
was not convinced, and asked the question: 

What about, what’s the final, if it’s not the zero what is it, sir, if it’s not the zero, sir, 
what’s the answer? 

Her question suggests that she was still seeing the expression as one that needed to be 
completed, rather than one that could take on a range of values. Even though others 
in the class had reached a conclusion that agreed with hers (that x2 + 1 could not be 
zero), she did not understand the basis for their conclusion, and needed to know what 
x2 + 1 could be, given that it was not 0. She did not seem to accept that it could take a 
range of positive values At the end of the lesson, I asked Grace whether x2 + 1 could 
equal 10 and suggested that she think about it at home and write a response for me 
for the next day. She wrote two solutions: first that x2 + 1 could not equal 10 or any 
other number because x2 + 1 = x2 + 1; and second that x2 + 1 could equal 10, if x = 3.  

DISCUSSION  
How can we best understand this interaction from cognitive and situative 
perspectives? From a cognitive perspective, the two girls and many other learners in 
the class were struggling with the idea of x2 + 1 as a variable expression that could 
take multiple values. Mr. Peters understood this and worked with the learners’ ideas, 
building the lesson around them and using other learners’ contributions to do this. He 
focused on the mathematical reasoning that was required to do the task. However this 
approach did not help Grace, and possibly other learners, to understand what was 
faulty in their argument and to restructure their thinking to accept a mathematically 
correct argument for their conclusion. From a situative perspective, Mr. Peters had 
provided the learners with a task, which would enable their engagement with the 
mathematical practices of reasoning and justification. He set up pair work to enable 
learners’ communication and justification processes. In the whole-class discussions 
he required learners to justify their answers, he probed and pressed their thinking and 
spoke to them about how they should justify. He also spent much time on other 
learners’ appropriate mathematical reasoning to provide resources for Grace and 
Rethabile to draw on. Yet Grace and Rethabile still struggled to participate 
appropriately in the classroom. When asked to justify their thinking, both by the 
teacher and the researcher, they showed further errors in their thinking. These errors 
show a number of ways in which the girls were not comfortable in participating in 
mathematical practices. They did not appreciate the justificatory nature of the task. 
Having spent many years simplifying expressions, they wanted to continue to do so. 
They were uncomfortable in reasoning mathematically in the ways in which the task 
required. They complied with the teacher’s requests for justification by trying to say 
something, even if it was contradictory to their previous position. Grace’s written 
response to the researcher’s question shows that she had serious difficulties in 
reasoning mathematically and could comfortably hold two contradictory positions at 
the same time. It might also show that she wrote whatever she could think of, hoping 
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that some of it would satisfy me. This might also have been the case in class 
discussions; that the learners drew on whatever they could think of to be able to 
comply with the teacher’s requests to participate. This relates to the learners’ 
identities as participants in school discourse, rather than mathematical practices. The 
ways in which they accessed the resources that Mr. Peters provided did not help them 
to shift their ways of reasoning mathematically nor to participate appropriately in a 
mathematics discussion. We might even say that through the interaction they co-
produced further errors, inappropriate mathematical reasoning and little engagement 
with important mathematical practices.  

In the larger study, I show that Mr. Peters dealt with errors that were relatively 
familiar to him as an experienced teacher and that he had mathematical and cognitive 
explanations for them (see also Tirosh et al, 1998). In addition, he understood that his 
learners were struggling to come to terms with a different way of engaging in 
mathematics, that of mathematical reasoning and justification, and talked to them 
about how to do this. He knew that their prior experiences of school mathematics 
made it difficult for them to engage in the practices that he was trying to teach. As 
experienced and successful as he was in his teaching, he was still faced with 
systematic, patterned errors that came out of both the learners’ conceptual structures 
and their ways of participating in mathematics classrooms. How might he go forward 
with his quest to teach more genuine mathematics to his learners? Taking a situative 
perspective, some literature suggests teaching the norms of inquiry classrooms 
(McClain & Cobb, 2001) or the learning practices required to engage in mathematics 
in this way (Boaler, 2002). These both take account of the patterns of schooling that 
need to be changed. From a more cognitive perspective, Sasman et al. (1998) have 
documented how learners easily hold contradictory mathematical positions, or change 
their positions from one day to the next. In this paper, I have argued that we have to 
bring these explanations together. We have to understand both the cognitive 
misconceptions that learners are working with and their difficulties with 
mathematical reasoning, as well as their issues of participation in class, including 
identity issues in defending their positions for the teacher and other learners and the 
ways in which they understand and use the mathematical tasks and resources 
presented to them. 
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IDENTIFICATION OF AFFORDANCES OF A TECHNOLOGY-
RICH TEACHING AND LEARNING ENVIRONMENT (TRTLE) 

 Jill P Brown 

The University of Melbourne 

 
This paper describes how a researcher developed task and four different data 
collection instruments provide evidence for the identification of various affordances 
of a technology-rich teaching and learning environment (TRTLE) that were perceived 
and/or enacted by Year 9 students in their solution of a linear function task utilising a 
graphing calculator. Each instrument proved valuable in the identification process, 
with post task interviews being particularly useful in identifying rejected affordances 
and others that had not been perceived until post task questioning and reflection. 

INTRODUCTION 
At ICME 5, Pollak (1986) insightfully commented on the power of electronic 
technologies to transform mathematics, mathematical activity, and mathematics 
thinking which many proponents of the use of these technologies in secondary school 
classrooms would have expected to be realised by now. Despite several decades 
where electronic technologies have played a role in many industralised countries in 
the mathematics classroom and curriculum documents have advocated their use, the 
transformational power of a technology-rich teaching and learning environment 
(TRTLE) in secondary classrooms has yet to be universally realised. This 
transformation includes teaching old things better, new mathematics that was unable 
to be taught without technology, and increasing the breadth and depth of key 
concepts such as function (DeMarios & Tall, 1996). Many affordances that would be 
useful in the teaching and learning of function are offered by classroom environments 
involving these technologies. However, the realisation of any affordances depends 
not only on “the technological tool, but [also] on the exploitation of these affordances 
embedded in the educational context and managed by the teacher” (Drijvers, 2003, p. 
78).  

The term affordance was first coined in 1966 by the perceptual psychologist J. J. 
Gibson who used the word for  

something that refers to both the environment and the animal in a way that no existing 
term does. It implies the complementarity of the animal and the environment … . They 
are not just abstract physical properties. (1979, p. 127) 

Gibson (1977) considered affordances to be relationships between objects and actors 
involved in interactive activity. They are what the environment offers to a particular 
animal. Following Scarantino (2003), the affordances of a teaching and learning 
environment incorporating electronic technologies will be taken to mean the 
offerings of such an environment for both facilitating learning (the promises or 
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positive affordances) and impeding learning (the threats or negative affordances). An 
affordance of a TRTLE is the opportunity for interactivity between the user and the 
technology for some specific purpose, for example, check-ability.  

“Affordances describe how the interaction between perceiver and perceived works - 
and that is exactly what we need to understand in educational research” (Laurillard, 
Stratfold, Luckin, Plowman, & Taylor, 2000, p. 3). “Research examining the concept 
of affordances is crucial if we are to build … a more flexible design orientation to the 
practices of education” (Pea, 1993, p. 52). Electronic technologies “enhance the 
individual’s capacity to act” (Smitsman & Bonger, 2003, p. 176) but “cannot be 
considered independently from … the environment” (p. 173).  

THE STUDY 
The data analysed here are part of a larger study which aims to construct a theory 
(Strauss & Corbin, 1990) of how teachers and secondary students perceive and enact 
affordances in a TRTLE so as to maximise the learning of functions. From a research 
perspective it is necessary to establish what conditions exist in TRTLEs enabling or 
impeding the realisation of offered affordances for the teaching and learning of 
functions. The purpose of this paper is to determine which combination of research 
instruments provide optimal evidence for identifying affordances of a TRTLE 
perceived by Year 9 students in their solution of a linear function task utilising a 
graphing calculator. 

METHODOLOGY 
A case based approach has been adopted for the study proper. In intrinsic case studies 
“the case itself is of primary, not secondary, interest” (Stake, 1995, p. 171) whereas 
in instrumental case studies “the case study serves to help us understand the 
phenomena or relationships within it” (p. 171) as is the situation in this study. The 
phenomenon being studied is the perception of affordances by secondary teachers 
and students after the teaching of functions in a TRTLE. The study is an instrumental 
multiple case study, but only data from one teacher’s classes will be analysed in this 
paper.  

A case based approach typically begins with a descriptive phase within which 
exploratory-descriptive work is undertaken the goal of which is to examine, 
investigate, and document the phenomenon on its own terms in an open-minded 
fashion (Edwards, 1998). In the aspects of the case to be reported here, the purpose of 
data collection has been to undergo this documentation of the affordances perceived 
by the Year 9 students in a TRTLE and to evaluate the research instruments being 
used for this purpose. 

Forty two students (14-15 year olds), from two Year 9 classes taught by the same 
teacher (24 from class A and 18 from class B), participated in the data collection. 
Various electronic technologies, including both laptop computers and graphing 
calculators owned by the students, have been used extensively by them throughout 
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Year 9. Both classes had completed a unit of work on linear functions utilising a 
range of electronic technologies before data collection began.  

A graphing calculator program, Hidden, developed by the author, was utilised as the 
basis of the Hidden Function task to generate a (linear) function and edit TABLE 
settings controlling the display of TABLE values by changing from automatic to user 
initiated display of both. On execution of the program, students were presented with a 
blank TABLE. The task was attempted in pairs. The pairs were asked to identify 
several ‘hidden functions’ and then describe a general method to do so. The program 
and the methods for accessing numerical data in the TABLE were demonstrated by 
the author at the beginning of the task. A second task version provided a split-screen 
view with TABLE and GRAPH side-by-side when the TABLE was accessed. 

The task was implemented once in each class during a 50 minute lesson. In both 
classes two focus pairs were video taped in their regular classroom setting, during the 
task solution. Six and four pairs of students, from class A and B respectively were 
interviewed immediately after the task sessions. These included all focus pairs. In 
Class B the split-screen version of the task was used with four pairs. An application 
from Freudenthal Institute website that records key strokes of graphing calculator 
users, KeyRecorder, was successfully implemented with five pairs of students in 
Class B. The application was not functional when class A was administered the task.  

Data collected included task record sheets (21 pairs), video transcripts (4 focus pairs), 
key screens (5 pairs), and post task interviews (10 pairs). The responses of the student 
pairs to the Hidden Function task and subsequent interviews of some pairs were used 
to document the range of affordances perceived by the students either during the 
solution process or subsequent discussion of the task in the interview. 

AFFORDANCES PERCEIVED BY THE STUDENT PAIRS 
All students successfully interacted with the PROGRAM: Hidden and the graphing 
calculator TABLE feature to generate numerical data from which to engage with the 
task. Eleven additional affordances were perceived by some pairs either during their 
task solution or the post task interview. These were affordances of the TRTLE to: 

1: Access the general equation of the Hidden Function (i.e., y0 = mx+c) in the TABLE 
heading and recognise the function as linear and/or the need to identify m and c.  

2: Use the HOMESCREEN to undertake calculations (e.g., to determine required values, 
or evaluate values of a conjectured function). 

3: Generate numerical values in the TABLE and link these to the graphical representation 
of the function, (e.g., to determine y(0) to find the y intercept). 

4: Use the LISTS and LinReg (linear regression feature) to determine the algebraic 
representation of a function. 

5: Make deliberate choices of entering consecutive values for x in the TABLE to simplify 
the solution path. 
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6: Use the graphical representation to identify the hidden function as linear (i.e., visually 
or by displaying y0 = mx+c in this representation). 

7: To access stored values in the graphing calculator (e.g., ALPHA M, ALPHA C) to 
identify the gradient and y intercept of the function. 

8: Use the graphical representation to identify the sign of the gradient, or the y intercept, 
or to think about the function in some other way. 

9: Use the TABLE to perform a local check of conjectured values of the function (e.g., 
by generating additional pairs of numerical values). 

10: Use the function window (y=) and TABLE to provide a numerical representation of a 
given function to verify a conjectured function as the hidden function. 

11: Use LIST OPERATIONS to verify a conjectured function (i.e., with data in two lists 
enter a conjectured function rule in a third list and compare values). 

The frequency of identification of these affordances and the sources of evidence for 
this identification are shown in Table 1. Sources of evidence are record sheets (RS), 
video transcripts (focus pairs only) (VT), keys screens (KS), or post task interviews 
(I). Evidence for a pair percieving an affordance may be gained from multiple 
sources. Affordances that student pairs considered only during the post task interview 
are indicated by an asterisk (*). 

Of the eleven affordances listed in Table 1 the record sheet was evidence for 7 of 
these, the video transcript for 7, the key screen record for 5, and post task interview 
for 10. Whilst the greatest number of instances was identified using record sheets (21 

Affordance  Number of pairs  Source of Evidence (number of pairs) 

Number class A, class B RS VT KS I 

1 1, 4 2 2 3 1 

2 2, 4 0 4 2 2 

3 7, 1 6 2 0 4 

4 2, 1* 2 0 0 1+1* 

5 4, 1 1 1 0 3 

6 0, 2 1 1 1 0 

7 0, 1* 0 0 0 1* 

8 6, 5 1 2 3 5*3 

9 4, 7 8 2 2 3 

10 0, 1* 0 0 0 1* 

11 2*, 1* 0 0 0 3* 

Table 1: Frequency and source of perception of various affordances. 
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in total), this instrument was used to collect data from all pairs unlike the other 
instruments. Three affordances, 7, 10, and 11, the latter two being opportunities for 
solution verification, were identified by only the post task interview. A further three 
affordances, 1, 8, and 9, were identified by all data sources. One of these will be used 
to illustrate how each instrument contributed evidence for perception of affordances.  

EVIDENCE FOR AN AFFORDANCE  
One affordance of the TRTLE was to use the graphical representation to identify the 
sign of the gradient, or the y intercept, or to think about the function in some other 
way (Affordance 8). The perception of this affordance was identified from the record 
sheet of Hala and Kay, where in describing their general method they stated, “Also, 
look at the graph to get an idea of what operations and how large they are”. 
Additional evidence from their post task interview suggested the graph allowed them 
to identify the sign of the gradient. Whilst other pairs may have perceived this 
affordance, no other record sheets provided evidence for this.The video transcript of 
Michelle and Tim provided evidence of Tim using the graphical representation to 
think about the relationship between the numbers. 

Tim:  Timesing by 10.1, so 30, the y value, is y the across, is it? [Whilst looking 
at the graphical representation on the split screen view, he runs his finger 
across screen above and parallel to the x axis]. 

Michelle:  The x axis is along. The y axis is down. 

Tim:  That's right. So it's hitting the y [indicating by running his hand vertically 
across the screen parallel to the x axis], x axis at 30 and the y axis at 310.  

The key screens of Di and Fiona provided evidence of their observing the graphical 
representation on three occasions as they unsuccessfully tried to identify a third 
‘hidden function’. Their view of the function in the standard window did little to 
assist this identification, however. In contrast Obi and Luke’s key screens suggest the 
graphical representation afforded them the opportunity to think about the ‘hidden 
function’. This is evidenced by the time spent viewing the graph and moving the 
cursor around the screen. In conjuction with their video transcript, it is apparent that 
not only did the graphical representation allow this thinking to occur but also it 
facilitated enactment of the more specific affordance offered by the graphical 
representation (Affordance 6) as they identified the general equation and y intercept.  

Obi:  [Presses TRACE] y = mx + c according to this. 
Luke:  I thought it was y = mx + c. 
Obi:  Just write that down. [Passes graphing calculator back to Luke] 
Luke:  Yep, say, yes ... Look at this [shows screen to Obi]. Zero is three. Y = 3.  

Post task interviews provided evidence of extra affordances perceived but rejected 
during task solution. The conversation between interviewer and students allowed 
reflection on the task by the pairs and consideration of affordances other than those 
utilised or rejected during task solution. The instrument, therefore, allowed 
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identification of additional affordances that students could have used. These 
affordances may well have facilitated solution verification had the students felt there 
was a need for this. One pair, Rick and Kris, rejected the affordances offered by the 
graphical representation during their task solution although this was not explicitly 
evident from their record sheet or the video transcript. The following dialogue shows 
Kris accessed the graphical representation, and considered the offered affordances. 
Rick, focussed on an independent solution pathway at the time, was unaware of this. 

Interviewer:  Could you have used the graph? Could you have solved it graphically? 
Rick:  No, no graph. 
Kris:  We did look. We could find out the y intercept using it and then ...  
Interviewer:  So you did look at the graph in the class then? 
Rick:  Never! 
Kris:  Once. We did once but then …   

However, the perceived affordance was rejected for other affordances, both students 
clearly believed other offerings of the TRTLE enabled more efficient task solution. 

Kris:  Although you can use a, umm, function, the intercept function to find the 
y intercept, but it is easier to just go to table and to do zero. 

Rick:  Zero. 
Interviewer:  But you could have done it with the graph as well? 
Kris & Rick:  Yes 

Tim and Michelle used a split-screen version of the task. Whilst TABLE values 
needed to be deliberately selected, a portion of the graph was visible at all times in 
the graph window. Whilst saying they ignored the affordances offered (contrary to 
video tape evidence cited earlier), this pair actually perceived and rejected these as 
not meeting their current needs.  

Interviewer:  Are there other ways that you could have found the hidden function? 
Michelle:  There is usually a graph we could probably have used, which ...   
Interviewer:  Didn't you have a graph on your screen?   
Tim: Yeah.  
Michelle:  Yeah, but we didn't look at it. 
Tim:  It didn't have any really [pause] numbers. It just had [pause] the line. 

Interview questions asking student pairs not only about the choices they made, but 
also about other choices that could have been made during their task solution enabled 
the gathering of evidence of a broad range of perceived affordances of the TRTLE. 

THE VALUE OF THE POST TASK INTERVIEWS 
Of particular interest was the enactment of affordances for checking or verification of 
the solution. Checking, where it occurred, was generally at a local level. The post 
task interviews and in particular questions about other choices and how their equation 
could be checked allowed the identification of affordances that students may not have 
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considered during task solution, but were possibilities in an environment where 
solution verification was expected. Evidence of this is presented for Obi and Luke. 

After spending much of the allocated task time engaged in off-task behaviour, Obi 
and Luke’s record sheet showed numerical data generated for five hidden functions 
with only two algebraic representations recorded (both correctly). The post task 
interview began in a similar fashion as they generated five ordered pairs for a ‘hidden 
function’ then appeared to have little idea how to proceed. They started to ‘wander 
around’ the various calculator features, reflecting their behaviour at times during task 
solution. The graphical representation was considered and rejected, as they had 
forgotten how it proved helpful previously. They continued searching calculator 
features until Obi appeared to have an idea whilst looking at a statistics menu.  

Obi:  Do you want to do that one? ax + b =, umm. 

Interviewer: You went to linear regression? Have you used linear regression in class? 

Obi:  No, we haven't. 

Their teacher who expected most students would use linear regression on the 
calculator to solve the task would disagree with this comment. This pair recognised 
an error message meant they had no data in their LISTS, proceeded to enter their data 
into the LISTS, and used linear regression to correctly identify the ‘hidden function’ 
(Affordance 4), supporting the teacher’s comments from a post task interview.  

In reponse to questions about checking their equation, Obi immediately suggested 
using LIST OPERATIONS but then said he preferred to use the function window 
(y=). Obi worked with Luke to use LISTS to verify their function (Affordance 11).  

Interviewer:  Okay. Then L3 = 4*L1+ 6, yes? [Describing what the pair entered.] And? 
Luke:  And the answer is 26, 42, 54, 66. 
Interviewer:  So LIST 2 and LIST 3 are the same? 
Obi:   Yeah. 

Obi was then asked about his alternative idea to check their solution. The pair entered 
their function as y1, accessed the table values for y1 and noted these were identical to 
the values of the hidden function (Affordance 10). This pair, although relatively 
unsuccessful during task solution, clearly, when focussed on the task were able to 
successfully perceive and enact a number of affordances of the TRTLE that allowed 
both task solution and solution verification. 

DISCUSSION OF RESULTS 
This study has shown that in the TRTLE’s involving these two classes a range of 
affordances were perceived and rejected or enacted for various purposes. Each of the 
four instruments proved valuable in identifying these affordances. This identification 
occurred through use of a single instrument, multiple methods of identifying the same 
instance of an affordance perceived, and, at times, two or more instruments 
contributing evidence which when combined identified the perception of an 
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affordance, that evidence from a single source was not enough to substantiate the 
perception. The post task interview, in particular, provided evidence of affordances 
that the other instruments did not. Questions relating to alternative choices available 
to the student pairs with respect to particular features of the graphing calculator, or 
for the solution pathway, and ways in which they could check or verify their solution 
proved most informative in this regard. Whilst the use of the post task interview 
appears to provide the greatest evidence of perceived affordances, each instrument 
brought valuable information to light. This was sufficient to warrant further use of 
each in future data collection for this study1. 
1 The author acknowledges the assistance of industry partners in the RITEMATHS project, funded 

by the Australian Research Council Linkage scheme. 
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THE “A4-PROJECT” - STATISTICAL WORLD VIEWS 
EXPRESSED THROUGH PICTURES 

Michael Bulmer                                                     Katrin Rolka  

University of Queensland, Australia            University of Duisburg-Essen, Germany  

 
This paper arises from an interest in how students at university level view statistics. 
We asked 394 students to express their views on statistics by designing an A4 sheet of 
paper. After providing the theoretical framework, we present the analysis of a 
random sample of 15 pictures. Based on these works we suggest three categories to 
describe the expressed statistical world views.  

INTRODUCTION 
In a world where the handling and interpretation of data is becoming increasingly 
important, basic statistical skills and statistical literacy build the foundation for many 
of our decisions (Niederman & Boyum, 2003; Wallmann, 1993; Watson & 
Callingham, 2003). Indeed, the NCTM standards state that “a knowledge of statistics 
is necessary if students are to become intelligent consumers who can make critical 
and informed decisions” (NCTM, 1989, p. 105). Recent dialogues on quantitative 
literacy or numeracy point in a similar direction (Steen, 1997; 2004).  

At the same time, more and more researchers are taking into consideration the role of 
world views or beliefs as a hidden variable in mathematics education (Leder, 
Pehkonen & Törner, 2002). The term statistical world views is chosen in accordance 
with the term mathematical world views by which we understand subjective beliefs 
and personal theories related to mathematics (Schoenfeld, 1985; 1998). As many 
researchers point out, the learning and success in mathematics is influenced by 
student beliefs about mathematics and about themselves as mathematics learners 
(Schoenfeld, 1992; Hannula, Maijala & Pehkonen, 2003). While there is substantial 
research on global beliefs about the nature of mathematics, teaching, and learning 
(Cooney & Shealy, 1997; Lloyd, 1999), in this study we direct our attention to views 
about statistics.  

This focus on statistical world views seems to us to be fruitful since views on 
statistics might remarkably differ, for example, from views on algebra. Following 
Törner (2002), Aguirre (to appear) employs the term domain-specific beliefs to 
describe this phenomenon. Domain-specific beliefs are characterized as beliefs that 
are associated with a special field or domain of mathematics such as calculus, 
geometry, or statistics. 
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MATHEMATICAL WORLD VIEWS 
Dionne (1984) suggests that world views or beliefs are composed of three basic 
components called the traditional perspective, the formalist perspective and the 
constructivist perspective. Similarly, Ernest (1991) describes three views on 
mathematics called instrumentalist, platonist and problem solving, while Törner and 
Grigutsch (1994) name the three components as toolbox aspect, system aspect and 
process aspect. All these different notions correspond more or less with each other. 
According to Dionne (1984), beliefs constitute a mixture of the three components. It 
is possible that more than one view is expressed by a person, so no clear 
classification can be made. 

In this work, we employ the notions of Törner and Grigutsch (1994) and use this 
section to briefly explain what is understood by them. In the “toolbox aspect”, 
mathematics is seen as a set of rules, formulae, skills and procedures. In the “system 
aspect”, mathematics is characterized by logic, rigorous proofs, exact definitions and 
a precise mathematical language. In the “process aspect”, mathematics is considered 
as a constructive process where relations between different notions and sentences, as 
well as the invention or re-invention of mathematics, play an important role. Besides 
these standard perspectives, another important component is the usefulness, or utility, 
of mathematics (Grigutsch, Raatz & Törner, 1997). This is particularly relevant for 
the students in this study who were undertaking an applied course in statistics. 

PICTURES AS A MEANS FOR INVESTIGATING WORLD VIEWS 
Traditionally, mathematical world views are investigated with the aid of 
questionnaires or interviews. In our work we have used pictures for investigating the 
world views, much less common in the literature. As one research example, restricted 
to beliefs on learning, Berry and Sahlberg (1996) used four pictures, each showing a 
real life situation. They asked 13-year old students to choose the picture that – in their 
opinion – best describes a good learning situation and to give reasons for their choice.  

In contrast, we have asked students to express their views on statistics by designing 
an A4 sheet of paper themselves (see Methodology below). With regard to producing 
pictures that reveal views on mathematics, there also exist some experiences in 
Germany. On the occasion of the World Mathematical Year 2000, launched by the 
International Mathematical Union and supported by UNESCO, students in a 
competition were invited to draw a picture representing their ideas of what 
mathematics is. Some of those pictures were awarded with prizes and about 30 
pictures were part of a special exhibition (Exhibition, 2000), but as far as we know 
they were unfortunately never the topic of research in mathematics education. 
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METHODOLOGY 
Sample 
The subjects in this study were students undertaking the course “Analysis of 
Biological Data and Experiments”, run at an Australian University in Semester 2, 
2004 (from the end of July to the end of October). This course was taken by 433 
students who were studying biological sciences, including genuine science students, 
but also students aiming to study medicine, dentistry, and other professions. A total 
of 394 students (91%) submitted pictures as part of their assessment for the course.  

Study 
In the first two weeks of the course, students were asked to use an A4 sheet of paper 
to describe their views on statistics. Little had been covered in the lectures by this 
stage, with the pictures aiming to capture the initial understanding that students 
brought to the course. The wording on the instructions directed students to “take a 
blank sheet of A4 paper and draw, write, paint, doodle, or whatever” suits them best 
to express their views on statistics. Since the paper was A4, we referred to this as the 
“A4-Project”. 

Analysis 
The methodological framework to analyse data about students’ statistical world views 
is informed by grounded theory (Strauss, 1987). The guiding principle of grounded 
theory is that theorizing grows from the data rather than from a pre-existing theory. 
We therefore randomly selected 15 out of the 394 pictures, here referred to as 
pictures (001) to (015). We independently analysed this random sample of 15 
pictures and identified some significant themes in the pictures. After discussion 
between the authors, these significant themes were refined to three key aspects that 
students appeared to be expressing in their work.  

RESULTS 
In this section, we first describe the categories by giving a rough definition and an 
overview of the typical features of each category that were presented in the pictures, 
providing as foundation some concrete examples that support the category in 
question. We then summarize these categories and suggest that the statistical world 
views might be seen as a hierarchy.  

Due to the format of the paper, it is unfortunately not possible to include all of the 15 
pictures here. Figures 1 and 2 show two examples: pictures (002) and (011), 
respectively, reproduced with the permission of the students. 

Course Aspect 
Several pictures do not describe statistics as a discipline. In these the focus is on 
“statistics” as the course that the students are undertaking. Picture (012) is set at one 
of the lecture rooms for the course, but goes beyond the course aspect by showing 
statistical symbols (see Toolbox Aspect) entering the brain of a student. Moreover, 
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the students often express their attitudes towards this course by drawing a person 
having a certain facial expression, such as concerned (002 - Figure 1), first anxious, 
later happy and optimistic (008) or smiling (004, 005). In addition to a smiling 
person, picture (004) consists of a house, a flower, the shining sun; no views on 
statistics are expressed, but there is a pleasant atmosphere. Only a sheet of paper in 
the hand of the person with the name of the course on it suggests that the picture has 
something to do with statistics.  

 

Figure 1. Example picture (002) 

Toolbox Aspect 
A very common theme is to show statistics as a collection of tools. Typical elements 
that indicate this view are diagrams, plots and histograms (001, 006, 007, 009, 010, 
011 – Figure 2, 013). Another indicator is the inclusion of statistical key words. 
These are just given, like vocabulary, without explaining the context, such as the 
mean, null hypothesis, and variation (006), or the mode, median, and mean (011 - 
Figure 2, 013). Symbols are also used (001, 012), again without explanation of what 
they mean, as are statistical formulae (009).  

Related to statistics as a collection of tools is the view of statistics as numbers and 
data. This is perhaps expressing lower knowledge of technical statistics, but in the 
pictures these usually accompany the general toolbox aspect. For example, in two 
cases (001, 006) numbers and symbols form the frame of the picture, while another 
picture (015) has a background of numbers. 
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Figure 2. Example picture (011) 

Utility Aspect 
The final aspect we consider is the expression of the utility of statistics. Picture (001) 
mentions the role of statistics in “forming the foundations for many reports”. Picture 
(003) includes a crystal ball with text stating “statistics – a crystal ball to model the 
future”, while in another corner it hints that statistics helps solving everyday 
problems. 

In addition to the utility of modelling the world, the utility of communication is also 
identified. Picture (014) asks, “Does there lurk a sunken treasure chest of ideas, 
investigation, experimentation… Nestled in the bedrock of scientific 
communication?” Picture (015) features two facing silhouette heads over a field of 
numbers, suggesting communication. 

Hierarchy of World Views 
Table 1 presents the three world views as a hierarchy. The description for each 
attempts to justify the hierarchical nature by specifying what is missing in one aspect 
that puts it below the next aspect.  
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Aspect Description 

1. Course  The picture shows “statistics” as a course that the student is 
studying. Such pictures often describe attitudes, including 
apprehension about failing the course or the expectation that the 
course will be boring. No mention of statistics as a discipline or 
the content of the course is given. 

2. Toolbox  The picture shows statistics as numbers and as a collection of 
tools, such as different ways of plotting data or calculating 
summary statistics. No indication of where these statistics come 
from or how they can be interpreted is given. 

3. Utility  The picture shows the utility of statistics in describing the world. 
Rather than just being a tool, the picture shows some relevance of 
statistics, such as in communication or in scientific 
experimentation. 

Table 1. Summary of world views identified in the sample pictures 

Of course the hierarchy in Table 1 is not perfect. Many pictures were seen to express 
more than one aspect, though it was usually possible to identify a dominant aspect for 
a picture. It is also likely that a student might draw a picture that expresses the utility 
of statistics without having a strong understanding of statistics as a toolbox. Since 
this was not in an interview setting it is difficult to clarify some of these points.  

It is also worth noting that this hierarchy of statistical world views is focussing on 
statistics as a discipline. In studying the pictures we were also aware that many 
expressed an affective or attitudinal aspect that is not captured in our hierarchy 
(although some of the affective component has been mentioned in the Course Aspect 
above). However, most of the pictures do not clearly present an affective aspect and 
so for this work we have focussed on the actual statistical content of the picture. 

CONCLUSION 
Almost half of the examined pictures use statistical plots, such as line graphs and 
histograms. It is not surprising to see such an emphasis on the visual tools of statistics 
since the nature of the task emphasised the visual. Based on these works, it is difficult 
to conclude, for example, whether students do normally think visually about 
statistics. This highlights that what we are measuring here is the expression of 
statistical world views, not the world views themselves. However, the picture task, 
with the opportunity to write or draw or paint, provides a greater range of 
possibilities for this expression than does a standard questionnaire, for instance. By 
starting with a blank sheet of paper we suggest that the students are also less 
constrained by what they might think are “good answers” to the task. To conclude we 
discuss two possible areas for leveraging this aspect of the task. 
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In a broad sense, the pictures drawn by students may give an insight into their level 
of statistical literacy. However, our results are quite different to those from other 
research. For example, Watson and Callingham (2003) give a “statistical literacy 
construct” that has six levels, from “idiosyncratic” to “critical mathematical”. While 
their research is based on studying how students complete statistical tasks, we have 
found it more difficult to get fine classifications from the static expression captured 
by a picture. It would be worthwhile to measure the same students with the tasks 
given by Watson and Callingham (2003) and see if there are any relationships to our 
categories. 

The timing of the pictures, drawn by students at the start of their tertiary statistics 
course, was aimed at providing data on the broad beliefs, attitudes, and knowledge of 
statistics that students brought with them from their prior experience. In itself this has 
provided academic staff with a richer understanding of the backgrounds of students 
undertaking this course. However, the wide variety of pictures drawn by students 
made it difficult to make any clear conclusions from the data. This present study into 
the categories of statistical world views will make it easier to work with this type of 
data and provide the needed clarity. For example, we are currently analysing all of 
the 394 pictures based on the categories given here. Once a larger number of pictures 
have been categorized it is then possible to look for associations between a student’s 
initial statistical world views and measures of subsequent performance in this 
particular course, such as marks on project work or exams. If such associations exist 
then this will suggest changes to the curriculum in order to address how particular 
world views need to be incorporated.  
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A WHOLE-SCHOOL APPROACH TO DEVELOPING MENTAL 
COMPUTATION STRATEGIES 

Rosemary Callingham 

University of New England 

 

Curriculum documents in Australia and elsewhere emphasize the importance of 
mental computation. There has been, however, little advice about developing and 
implementing mathematics programs that have mental computation strategies as a 
focus. One primary school’s response to this issue was to identify generic mental 
computation strategies that could be developed across the school in all grades from 
Kindergarten to Grade 6. The program was implemented within a framework for 
quality teaching. Initial results suggest that teachers have developed flexible 
approaches to teaching mental computation. Students are more aware and articulate 
about the nature of the strategies that they use, and students’ learning outcomes have 
improved. 

INTRODUCTION 
There is a growing emphasis on the place of mental computation in schools. In 
Victoria, Australia, for example, the curriculum framework places sufficient weight 
on mental computation that it is a separate sub-strand. This sub-strand describes 
expected outcomes in terms of a progression from whole numbers and recall of basic 
facts, through recognition of decimal and fraction equivalences to the use of a range 
of strategies to compute mentally with fractions, decimals and percents (Victorian 
Curriculum and Assessment Authority, 2002). In the UK, mental computation is 
highlighted in the National Numeracy Strategy as a deliberate process that involves 
students in developing efficient and effective approaches to calculation (Askew, 
2003).  

The development of number understanding in the early years is well documented 
(e.g., Wright & Gould, 2002) and there is continuing research into children’s 
understanding of written computation (e.g., Anghileri, 2004). It is well known that 
students draw on a range of formal and informal strategies when computing mentally, 
and strategy development is advocated as an effective approach (McIntosh, 2003).  

Jacaranda Public School1 in central New South Wales (NSW), Australia, took an 
unusual approach to changing the emphasis of its mathematics programs away from 
drill and practice of written algorithms to developing mental computation strategies, 
in the context of applying a Quality Teaching Model (NSW Department of Education 
and Training (DET), 2003). The program that the staff developed had two major 
aims: to change pedagogy as a consequence of implementing the Quality Teaching 

                                                      
1 Names have been changed to preserve confidentiality. 
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Model, and to transform the mathematics curriculum through an emphasis on mental 
computation. This paper reports the initial evaluation findings. 

The NSW Quality Teaching Model 
The model of quality teaching adopted in NSW has three dimensions: Intellectual 
Quality, Quality Learning Environment, and Significance (DET, 2003). Each 
dimension is composed of six elements that are used to identify quality teaching in 
classroom situations. The dimensions and elements are summarised in Table 1.  

Intellectual Quality Quality Learning 
Environment 

Significance 

Deep knowledge Explicit quality criteria Background knowledge 

Deep understanding Engagement Cultural knowledge 

Problematic knowledge High expectations Knowledge integration 

Higher-order thinking Social support Inclusivity 

Metalanguage Students’ self-regulation Connectedness 

Substantive communication Student direction Narrative 

Table 1: Dimensions and elements of the NSW model of quality teaching 

To make the model operational for teachers, each of the elements was first considered 
from the perspective of mental computation. The promotion of Deep Knowledge, for 
example, implied a focus on strategy development, linking to key concepts such as 
place value; Social Support in the classroom indicated that all students would be 
encouraged to share contributions and accept different approaches to computation; 
Cultural Knowledge recognized that different groups in the community had various 
ways of undertaking mental computations and that these would be explicitly 
discussed. Every element was interpreted in this manner.  

Having established how the model could be applied to mental computation, the 
school staff decided that the program would be based on a whole-school approach. 
For two weeks at a time, the whole school, from Kindergarten to Year 6, would focus 
on applying a particular mental computation strategy to content appropriate to the 
grade level and experience of the students, copying a process that the school had used 
successfully for writing development. This step proved quite challenging. Although 
teachers could identify strategies, understanding what this meant across the full range 
of grades was not simple, and there was considerable discussion at staff meetings 
about the mathematics program and aspects that were the keys to students’ 
developing skills and understanding. Ten target ideas were identified for the 
program’s focus, including processes for calculation, such as visualising and counting 
on, and basic concepts, such as place value and pattern recognition. ‘Games with a 
point’ was also included to encourage a move away from reliance on text books. 
Each of the target strategies was then described for every grade with specific links to 
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the NSW syllabus (NSW Board of Studies, 2002). The description of the ‘Using 
Patterns’ strategy for each grade is shown in Table 2.  

Grade Scope Examples Outcomes* 

K Copying, and continuing 
simple patterns 

Continues the pattern � � � PAES1.1 

1 Finding missing elements in 
a pattern 

Completes 4, 7, _, 13, _, 19 PAS1.1 

2 Systematically uses number 
combinations  

Writes all combinations of 6: 6 + 0, 5 + 
1, 4 + 2, 3 + 3, 2 + 4, 1 + 5,  
0 + 6 

PAS1.1 

3 Completes number patterns 
based on tables 

Completes 88, 80, _, 64, 56, _, 40 PAS2.1 

4 Systematically uses number 
combinations based on 
multiplication and division 

Writes all combinations of 24:  
6 x 4, 4 x 6, 24 ÷ 6 = 4, 24 ÷ 4 = 6 

PAS2.1 

5 Uses and describes number 
patterns based on one 
operation in different ways 

Completes a table of values e.g.,  

1 2 3 4 

3 6  12 

and describes the pattern in words, “It’s 
the three times tables”, or as a rule: “To 
get the bottom number, times the top 
number by 3”. 

PAS3.1a 

6 Uses patterns with fractions 
and decimals to make 
calculations easier. 

7 x 11 = 77 so 7 x 1.1 = 7.7 

1/3 is the same as 2/6, so  
1/3 + 1/6 = 3/6 which is ½. 

PAS3.1b 

Table 2: Description of the ‘Using Patterns’ strategy across grades 

* The outcomes refer to the NSW K-6 Mathematics Syllabus (NSW Board of 
Studies, 2002). 

The activities involved were not confined solely to mental computation. There was 
recognition that recording was an important part of mathematical activity, but the 
focus of that recording was shifted away from formal written algorithms to 
purposeful recording of students’ thinking.  

PROGRAM EVALUATION 
Methodology 
During the period from July to December 2004, the program was formally evaluated. 
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Evaluation was limited to the primary years, Grades 3 to 6, at the request of the 
school’s teachers who wanted to continue to use existing processes in the early years.  

A sample of approximately 90 students from four classes, covering Grades 3 to 6, 
undertook tests of mental computation in early August and late November, using the 
tests and methodology developed for an earlier study (Callingham & McIntosh, 
2001). Students in Grades 3 and 4 took a test of 50 items, and students in Grades 5 
and 6 took a longer version of 65 items. The researcher administered all tests. 
Questions were presented orally using a CD, and students wrote their answers on 
provided response sheets. Different test forms were used for the pre- and post-tests, 
but all tests had overlapping items so that they could be linked using Rasch 
measurement techniques. The responses were entered verbatim into a spreadsheet to 
provide for further error analysis, and then scored as correct/incorrect. The scored 
responses were scaled using Rasch measurement techniques using Quest computer 
software (Adams & Khoo, 1996), anchored to baseline values obtained from the 
earlier study so that they could be directly compared. Students’ performances were 
estimated in logits (the natural logarithm of the odds of success), the unit of measure 
used for Rasch measurement. Using a pre- and post-test model provided performance 
measures at two points in time, and a growth measure over the 15 week period 
between the tests.  

Additional information was collected from lesson observations in each class. Each 
lesson lasted approximately 40 minutes, and was part of the regular program, not 
specially prepared. The researcher observed the lesson informally, interacting and 
talking with the students, making brief notes. Immediately after the lesson ended the 
notes were written into a coherent account of the lesson, and this was discussed with 
the teacher concerned. The discussion confirmed the focus of the lesson and allowed 
teachers and the researcher to agree about the lesson description. Lesson observations 
were analyzed using the framework provided by the NSW Quality Teaching Model 
(DET, 2003). 

Interviews were conducted with 12 students, three from each grade, chosen by their 
teachers to cover the range of competence in their class, or because the students had 
unusual strategies. The students were interviewed twice, first in a group to establish a 
relationship with the researcher, and then individually. The interview protocol was 
adapted from one used elsewhere (Caney, 2002) and focused on mental computation 
strategies used by students.  

Initial Results 
The results reported include initial analysis of students’ performance and growth, 
lesson observations and interviews, and do not include error analysis. Pre- and post-
test results were available for 89 students (18 in Grade 3; 22 in Grade 4; 28 in Grade 
5; 21 in Grade 6), although the actual sample was slightly larger. Table 3 shows the 
mean scores in logits from the two test administrations. The school’s mean score 
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improved overall by 0.66 logits. A paired sample t-test indicated that the change was 
highly significant (t = -4.10, p = 0.000). 

Table 3: Mean performance overall. 

Improvement was more marked in the lower grades than in Grades 5 and 6, as shown 
by the boxplots in Figure 1, where the median and 25th percentile values in Grades 3 
and 4 shifted upwards markedly. In Grades 5 and 6 improved performance appeared 
to be mainly among the upper 25 percent, as shown by the extended ‘whisker’ at the 
top of the boxes. Grade 5 also showed an extended lower whisker in the post-test, 
suggesting that there was considerable variation in performance in this grade.  

 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Mean performance by grade. 

The four lesson observations were analyzed using the framework provided by the 
dimensions and elements of the NSW Quality Teaching Model (DET, 2003). All 
observed lessons were characterized by a very clear and explicit focus – the Deep 
Knowledge element of the model. Although there were several activities undertaken 
in each lesson, each addressed the target idea in a different way. For example, a 
Grade 5 lesson that focused on the doubling strategy included a game in which 
students had to either double or half the given number and get four correct answers in 
a row on a grid that they created for themselves. The lesson continued by using the 
arrangement of desks (4 x 4 grid) as a stimulus to discuss different ways in which 
number sentences could be made. Finally students were given a number and asked to 
create two number sentences to make that number. These were shared and discussed, 
with particular reference to the doubling strategy.  

There was considerable discussion and interaction between teacher and students 
throughout all lessons. Students clearly articulated their strategies, demonstrating the 
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Deep Understanding and Metalanguage elements of the model. All students were 
confident about taking risks and suggesting alternative approaches, suggesting that 
the Quality Learning Environment dimension was well established. In every lesson 
students were on task throughout the lesson and there was little wasted time, 
demonstrating the Engagement element. This was probably encouraged by the variety 
of activities and ‘pace’ of each lesson observed. Although each activity was 
completed, in a typical 40-minute lesson there were three or four short activities, each 
addressing the target idea in a different way.  

Teachers also made clear and explicit links to prior experiences of the class. A lesson 
in a Grade 3 and 4 composite class, for example, started with a discussion about 
patterns in the nine times table that the class had worked on in the previous week. 
The rest of the lesson took place in the computer room, where the students practised 
their previously learnt skills of making a table by creating a grid in which they had to 
provide number sentences to make given nine times table answers in ten different 
ways. This teacher skillfully linked the lesson focus of working backwards to prior 
knowledge, pattern recognition and other learning areas, showing several of the 
elements of the Significance dimension of the model. This lesson was particularly 
effective in allowing all students to participate at their own level. Some students took 
a random approach to finding number sentences, others realised that they could use 
inverse operations such as making 18 by multiplying it by various numbers and then 
dividing the answer by the multiplicand. In this way they were able to generate the 
ten required number sentences quickly.  

Teachers were addressing many aspects of the Quality Teaching Model, although 
most indicated that they did not consciously do this in their planning. It seems likely 
that the model captures many of the features that contribute to good teaching, and 
these very competent teachers were drawing on the elements unconsciously. All 
teachers, however, did indicate that they had changed their teaching to address mental 
computation more explicitly, with less emphasis on drill and practice of written 
algorithms. They suggested that their lessons involved students more in discussion, 
and that they developed a clear focus for every lesson, depending on the target 
strategy.  

Anecdotal evidence from discussions with the school’s principal indicated that this 
changed approach was being implemented across the school. Teachers who had been 
reluctant to change their mathematics approach, were reporting that their students 
were more able to talk about their mathematics, and used a wider range of strategies 
than had been recognized before the program had started. 

Students’ understanding of strategies and flexibility in strategy use was confirmed by 
the interviews. In most instances, students were aware of their strategies and could 
explain them in some detail, even students who were relatively less skilled. Some 
students were very good at making groups of 10, and could use these ideas flexibly to 
solve extension problems. Weaker students tended to use counting on strategies, 
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sometimes inappropriately, such as counting on by ones from 24 when asked “How 
would you work out 24 add 8?” Stronger students would say something like “Take 6 
from 8 and add it to 24 to make 30 and then add 2”.  

Some of the younger students, not unexpectedly, tended to use repeated addition for 
some of the multiplication problems, for example counting by 3 seven times to 
calculate 7 x 3, or, for more complex problems such as 24 x 3, counting on by three 
24 times. Although inefficient, these students did have a strategy that would lead to a 
correct solution and, more importantly, were prepared to try these out. There were 
very few instances of students not being willing and able to attempt a problem, even 
when the problem was difficult.  

Many students showed high levels of “number sense”, intuitively recognizing an 
incorrect answer and correcting this. Student Z (Grade 5), for example, in response to 
0.5 + 0.5 answered correctly, and then explained “I originally thought zero point ten 
but it’s lower than 0.5”. His explanation was confused, but he clearly had a feeling 
for the size of the numbers involved. Some very clearly described visualisation 
strategies, including “… seeing fingers in my head and counting them” (Student J, 
Grade 4). In general, younger students seemed more flexible in their thinking. Some 
of the older students made extensive, and accurate, use of a written strategy, with one 
girl physically writing the problems on the desk with a finger.  

The interviews supported the lesson observations in that students could clearly 
articulate their strategies, and were confident about using them. Some students had 
idiosyncratic but effective approaches that they drew on as appropriate.  

DISCUSSION 
The changed whole school approach to mathematics teaching appeared to have led to 
improved outcomes for students on standardized tests of Mental Computation 
Competence. Although some of this improvement may well have been due to 
increased familiarity with the test format, students also demonstrated clear 
understanding of many mental computation strategies that they could use effectively, 
both in a classroom and an interview setting. Teachers reported that their teaching 
had shifted its focus from written algorithms to strategy and concept development, 
and this was borne out by the lessons observed. The lessons also addressed many 
aspects of the NSW Quality Teaching Model adopted by the school. The combined 
effect of improving teaching quality and a focus on mental computation strategies 
appears to have been effective. 

The whole school focus, across Grades K to 6, on a particular mental computation 
strategy is unusual. Despite these promising initial results, before any 
recommendations could be made regarding this approach further work is needed 
about its efficacy. For example some strategies may be more effective with particular 
content, such as whole numbers, or strategies may be more appropriately developed 
in particular grades rather than used across the school. There is also a need to 
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consider further the differential effects shown across the grades, and to establish 
whether the lower growth observed in the upper primary grades is affected by the 
strategies used. It may also be possible to establish a hierarchy of strategies that is 
developmental in nature. These initial results, however, appear to have potential to 
inform program development in mental computation.  
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MATHEMATICS LEARNING AMONG STUDENTS IN CHINA 
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Zhongjun Cao, Helen Forgasz, and Alan Bishop 
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This paper explores levels of perceived parental influence on mathematics learning 
among over 700 students in China and Australia. Students in China had stronger 
perceived parental influences than students in Australia, and while students in China, 
Chinese speaking students in Australia, and other language speaking students in 
Australia demonstrated similar levels of perceived parental influence, these three 
groups of students had higher levels of perceived parental influence than English 
speaking students in Australia. Possible reasons for the similarities and differences 
found are discussed. 

 INTRODUCTION 
My parents come from another country, so my mum makes me do harder work than at 
school (A Year 5 student’s comment on mathematics learning) (Cao, 2004, p.236) 

Parents play an important role in influencing students’ mathematics learning. Parents 
from different cultural backgrounds may influence their students learning differently. 
This paper addressed the issue of parents’ role in their children’s mathematics 
learning by comparing parental influence on mathematics learning as perceived by 
different cultural groups of students in China and Australia. 

PARENTAL INFLUENCE IN INTERNATIONAL CONTEXTS 
Research on the differences in parental involvement of mathematics learning among 
different cultural groups has attracted the interest of many researchers. For example, 
Chen, Lee, and Stevenson (1996) compared students’ achievements and their parents’ 
involvement in China and the USA, and found that Chinese parents had higher 
expectations of their children’s performance and spent more time helping their 
children with school homework than parents in the USA. Mau (1997) investigated 
differences in parental influence on the academic achievement of Asian immigrants, 
Asian Americans, and White Americans by using a large representative sample of 
10th grade student data in the USA. The findings showed that both Asian immigrant 
and Asian American parents had higher educational expectations than did White 
American parents. White American students, however, reported more parental 
involvement in school activities, such as helping with homework and attending 
school events, than did Asian immigrant and Asian American students. A recent 
study conducted by Cai (2003) among over 500 sixth grade students in China and the 
USA suggested that a larger percentage of Chinese parents reported that they checked 
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their children’s homework more regularly than did US parents. In contrast, a larger 
percentage of US parents reported that they often provided their children with 
reference books and access to libraries. The parents in the two countries did not show 
significant differences in emotional support for their offspring (i.e., encouraging 
students to work hard on mathematics).             

Even though a rich literature has been produced on parental influences on students’ 
learning of mathematics, in most of the earlier work comparisons were limited to 
cultural groups within a country, or between people in only two countries. Our 
literature search did not reveal studies comparing parental influence for the same 
cultural group in different countries; this study bridges the two approaches and tries 
to fill the knowledge gap.  

RESEARCH QUESTIONS 
The purpose of this study was to compare perceived levels of parental influence 
among different cultural groups of students in China and Australia. The research 
questions were: 

What are the differences in the levels of perceived parental influence among students 
from China and students from Australia? 

What are the differences in the levels of perceived parental influence among students 
from different cultural groups?  

THE PARTICIPANTS 
The participants in this study included 346 primary and secondary school students in 
China, and 406 primary and secondary school students in Australia. They were 
distributed at three grade levels: 5, 7, and 9. The students in China were from three 
primary schools and three secondary schools in Kaifeng, a middle-sized city in 
Henan Province. The students in Australia were from six primary schools, and seven 
secondary schools in metropolitan Melbourne. All the participants in China were 
from Chinese-speaking home backgrounds. Of the students in Australia, 259 were 
from English-speaking families, 47 were from Chinese-speaking families, and 99 
from homes in which other languages were spoken; there were over 30 other 
languages, with the main ones being Vietnamese, Greek, Italian, Indonesian, Tamil, 
Arabic, Hindi, and Russian.  

THE INSTRUMENT 
A Perceived Parental Influence (PPI) scale was developed. Based on the previous 
work in the parental influence area (Cai, 2003; Poffenberger & Norton,1959), the 
perceived parental influence measured in this instrument encompassed two aspects: 
direct involvement, including mother’s and father’s assistance with homework and 
difficult problems; and indirect involvement, mother’s and father’s attitudes towards 
mathematics, encouragement, and expectations of student learning. 
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The instrument consisted of 16 items, eight measuring mother’s influence on 
mathematics learning as perceived by students, and eight measuring father’s 
influence. 

A four-point Likert scale response format was used. For each statement, the values of 
4, 3, 2, and 1 were assigned to the responses: “Strongly Agree”, “Agree”(A), 
“Disagree”(D), and “Strongly Disagree (SD)” respectively. 

The Reliability of the Instrument 
The reliability analysis of the 16 items of the Perceived Parental Influence (PPI) scale 
showed that the reliability coefficient (Cronbach Alpha) was 0.876. 

Factor analysis was performed to assess the dimensions of the scale. The results are 
shown in the Appendix. It can be seen from the Appendix that there were four 
components with Eigenvalues bigger than 1, explaining 66.6% of the total variance. 
Even though there were items that loaded significantly (>0.3) on Components 2, 3, 
and 4, all of the items loaded significantly on Component 1. The factor analysis thus 
indicated that a common construct underpinned the set of items (Hair et al., 1995). 
Also, since all loadings were in the same direction (all positive), total scores for the 
scale could be obtained without the need to reverse-score any items. 

RESULTS 
In this section findings are presented concerning the levels of perceived parental 
influences on students’ learning of mathematics between students from China and 
Australia, and for students from different cultural backgrounds. 

Comparisons between China and Australia 
Independent sample t-tests by country were conducted on the mean scores obtained 
on the PPI scale. The results are shown in Table 1. It can be seen from Table 1 that 
there were significant differences by country in the means on the PPI scale for 
students at each year level and for the whole sample, with students in China having a 
higher mean score in each case. Effect sizes were medium at grades 7 and 9, and 
large at grade 5 and overall. The results indicate that there are significant differences 
in the perceived levels of parental influence between students from the two countries. 
Overall, and at each grade level, students from China considered that their parents 
have a stronger influence on their mathematics learning than did the Australian 
students. 
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Table 1 

Perceived Parental Influence scale: Results of independent samples t-tests for each 
year level by country  

 CHINA   AUSTRALIA    
Grade N Mean SD  N Mean SD t df η2 ♣ 

5 114 3.50 0.36  120 3.18 0.45 6.00*** 226 0.13 
7 120 3.23 0.45  137 2.94 0.45 5.11*** 255 0.10 
9 110 3.00 0.44  114 2.68 0.57 4.88*** 222 0.09 
All 344 3.25 0.45  371 2.94 0.53 8.33*** 713 0.11 

*** p<0.001 

Comparisons by language group 
Table 2 shows means and standard deviations for the PPI scale among students from 
the four language groups in China and Australia.  

Table 2 

Means and Standard Deviations on the Parental Influence scale by language group  

Language group N Mean SD 
Chinese (CHN1) 344 3.25 0.45 

English (AUS) 235 2.83 0.52 

Chinese (AUS) 47 3.11 0.44 

Other (AUS) 88 3.13 0.52 
1  CHN = China, AUS = Australia 

It can be seen from Table 2 that the students who have the highest mean on the PPI 
scale are the students from China [Chinese (CHN)], with a mean value of 3.25; next 
are the other language-speaking students [Other (AUS)] and the Chinese-speaking 
students in Australia [Chinese (AUS)], with means of 3.13 and 3.11 respectively. The 
students with the lowest mean on the PPI scale are the English-speaking students in 
Australia [English (AUS)], with a mean value of only 2.83. 

The results suggest that a very strong level of perceived parental influence among the 
students from China, the Chinese-speaking and the other language-speaking students 
in Australia; and only slightly strong levels among the English-speaking students in 
Australia. 
                                                      
♣ Based on Cohen’s standard (Cohen, 1988), the effect size is small if η2  is 0.02, moderate if η2  is 0.06, 

large if η2  is 0.14.]. The effect size is an important index that should be examined to see if a significant test 

result is of practical significance when sample sizes are large. A small effect size in large samples, even 
though a significant test result appears, indicates that statistical significant difference is of little practical 
meaning. 
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One way ANOVA results (PPI x language group) indicated that there were 
significant differences in the mean scores on the PPI scale among the students from 
the four language groups [F (3, 710) = 34.95, p<0.001, η2  = 0.127]. The results 
suggest that the differences in the levels of perceived parental influence on 
mathematics learning by language group are quite large.  

Post-hoc Scheffe test results are shown in Table 3. The results suggest that the mean 
scores for students in China, Chinese-speaking students in Australia, and other 
language-speaking students in Australia are significantly higher than the mean score 
for English-speaking students in Australia. However, there were no significant 
differences in the mean scores among three groups of students: students in China, 
Chinese- speaking students in Australia, and other language-speaking students in 
Australia.  

Table 3 

Post hoc tests on mean differences in the Parental Influence scale among the four 
language groups 

Language (I) Language (J) Mean Difference (I-J) 

Chinese (CHN) English (AUS) 0.42*** 

 Chinese (AUS) 0.13 

 Other (AUS) 0.11 

Chinese (AUS) English (AUS) 0.28** 

 Other (AUS) -0.02 

Other (AUS) English (AUS) 0.30*** 

***p<0.001; **p<0.01 

The results reveal that students in China, Chinese-speaking students in Australia, and 
other language-speaking students in Australia have stronger levels of perceived 
parental influence than English-speaking students in Australia; however, there were 
no differences in the levels of perceived parental influence among the same three 
groups of students. 

CONCLUSIONS AND DISCUSSION 
Two main conclusions emerged from the comparisons among the groups of students 
in China and Australia, and among the four language background groups.  

First, levels of perceived parental influence were stronger among students in China 
than in Australia. Second, with respect to the levels of perceived parental influence 
among students from different language backgrounds, students in China had stronger 
levels of perceived parental influence than English-speaking students in Australia, 
but there were no significant differences between the students from China, Chinese-
speaking and other language-speaking students in Australia. Chinese-speaking 
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students in Australia, and other language-speaking students in Australia demonstrated 
stronger levels of perceived parental influence than did English-speaking students in 
Australia.  

The explanation for the between-country differences may be due to cultural factors. It 
has been suggested that education has always been considered the most important 
path to success in Chinese culture, and parents pay particular attention to their 
children’s education (Hess et al., 1987; Chao, 1996). The consistent findings of this 
study with other studies indicate that this cultural practice is still strongly held in 
Chinese society.  

As for the similarities and differences reflected among the different cultural groups, it 
seems to suggest that not only cultural factors, but also societal factors play an 
important role in shaping perceptions of parental influence. The similarities in the 
levels of perceived parental influence reflected among students in China and 
Chinese-speaking students in Australia may be attributed to the Chinese cultural 
emphasis on education. The similarities in the levels of perceived parental influence 
among Chinese and other language-speaking students in Australia, and the 
differences between non-English-speaking and English-speaking students in 
Australia may reflect an immigrant phenomenon. That is, among immigrant families 
in Australia for whom English is not their first language, parents recognise that 
education is vital for success in the new society, therefore they strongly encourage 
their children and have high expectations of them to fulfil their own dreams. 

In conclusion, even though this study revealed that there were differences in the 
levels of perceived parental influences among different groups of students in China 
and Australia, and postulated explanations for the differences, more work is needed 
to identify the underlying causes. Other research techniques, such as interviews with 
parents and students may assist in this task. On the other hand, as parental influence 
has been identified as influencing mathematics learning outcomes such as attitudes 
and achievements, it is necessary for educators to disseminate this knowledge more 
widely so that more parents realise the important role they can play in their children’s 
schooling, and provide greater support and inspiration for their children.          
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Appendix 
The component matrix and the Eigenvalues of the items for the Perceived Parental 
Influence scale 
Item Component 

  1 2 3 4 
1.  My mother is good at maths 0.40 0.43 0.51  
2.  My mother checks my maths homework  
 frequently 

0.56 0.36 0.38  

3.  My mother asks me about my assessment 
 results in maths 

0.64    

4.  My mother helps me with some difficult maths 
 problems 

0.54 0.46 0.43  

5.  My mother makes me feel that I can do well in 
 maths 

0.65   -0.36 

6.  My mother tells me that a person must do 
 something carefully in order to do it well 

0.65 -0.30  -0.33 

7.  My mother tells me a person must work hard in 
 order to do something well 

0.63 -0.34  -0.35 

8.  My mother expects me to be the best student in 
 maths and other subjects in my class 

0.48 -0.60  0.43 

9.  My father is good at maths 0.47 0.41 -0.38  

10.  My father checks my maths homework 
 frequently 

0.64  -0.31 0.35 

11.  My father asks me the assessment results in 
 maths 

0.69    

12.  My father helps me with some difficult maths  
 problems 

0.61 0.35 -0.46  

13.  My father makes me feel that I can do well in 
 maths 

0.72  -0.30  

14.  My father tells me that a person must work hard 
 in order to do something well 

0.72    

15.  My father tells me that a person must do 
 something carefully in order to do it well 

0.73    

16.  My father expects me to be the best student in 
 maths and other subjects in my class 

0.45 -0.63  0.48 

Eigenvalue 5.90 2.01 1.55 1.19 
% Variance explained 36.86 12.65 9.68 7.45 

*Extraction Method: Principal Component Analysis; Loadings less than 0.3 omitted. 
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This paper reports on aspects of a project that investigated the influence of Chinese 
Malaysian students’ schooling in a tradition of abstract, technical mathematics and 
rote learning on ways that they responded to mathematical word problems. Data 
from an action research project are reported. Supposedly “shallow” and “ deep” 
learning are shown to be interlinked, and assumptions frequently made by Western 
educators about modelling and practice are questioned.  

INTRODUCTION 
While most Western pre-university mathematics curricula now incorporate real-life 
problems and applications, many South-East Asian mathematics curricula remain 
technical and traditional. Chi’s (1999) comparison of Taiwanese and New Zealand 
curricula revealed that Taiwanese syllabi were comparatively archaic and did not 
reflect Western developments in mathematics education such as real-life problem 
solving. Chacko (1999), comparing American and Malaysian students, claimed that 
the latter learn facts through memorization, so graduates do not think deeply. Chi 
(1999) described the typical Confucian style of learning in the Taiwan mathematics 
classroom, where drills, attention to content and not the learning process, emphasis 
on examinations, technical questions and proofs rather than applications, and learning 
by memorization are all common features. Lim and Chan (1993) noted similar 
features in Malaysia. Reports from Japan (Kinoshita, 2000) and Hong Kong (Lucas, 
2000) have indicated that students depend on rote learning in mathematics, and 
concerns have been expressed about the need to implement changes in teaching 
methods in both of these countries. In Western countries, it is generally believed that 
such rote learning and memorization do not enhance mathematical understanding. 

Biggs and Watkins (1996) also noted that Chinese students use memorization, but 
concluded that there is a difference between memorizing without proper reflection 
and “memorization with understanding” (p. 271). Similarly, Marton, Dall’Alba, and 
Tse (1996) suggested that Chinese students learn repetitively in the belief that 
memorization could lead to understanding. Confucian tradition emphasizes 
understanding, reflection, and enquiry as important co-components of learning, and 
this is achieved by becoming “intimately familiar with the text” (Lee, 1996, p. 35).  

Learning is reciting. If we recite it then think it over, think it over then recite it, naturally 
it’ll become meaningful to us. If we recite it but don’t think over, we still won’t 
appreciate its meaning. If we think it over but don’t recite it, even though we might 
understand it, our understanding will be precarious. (Chu, 1990, p. 138) 
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Marton, Dall’Alba, and Tse (1996) pointed out that there is a paradox surrounding 
the Chinese learner because Chinese students have been known to perform admirably 
in international examinations and competitions, including at higher levels. Suh and 
Oorjitham (1996) reported that the countries ranked highest in mathematical 
achievement in a global survey were Singapore, South Korea, Japan, and Hong Kong. 
However, they claimed that Asian students grind good results out of memorization 
while their overseas peers are encouraged to be creative. They concluded that 
curiosity, questioning, and fun were often curtailed at the expense of producing high 
achievement scores, to the detriment of problem solving ability. In fact, despite the 
apparent successful performance of Asian students in international competitions and 
institutions of higher learning in Western countries, academics generally believe that 
Asian students are more prone to rote learning than their Western peers (Biggs, 1989, 
1990). Samuelowicz (1987) surveyed 145 lecturers at one Australian university and 
over one-third felt that Asian students utilized only a surface approach to learning, 
characterized by memorization of isolated facts and fragments of arguments.  

However, such conclusions need to be balanced with what is valued within countries. 
As much as it is admirable to produce thinking students or to provide meaningful and 
deep learning experiences for the students, both of which are considered desirable 
learning attributes by Western standards, Alatas (1972) rightly warned of uncritical 
imitation and unrealistic assumptions when adopting these ideas into an Eastern 
setting. Similarly, Bishop, Seah, and Chin (2003) cautioned that aiming for 
“uniformity of practices” (pp. 718–719) results from failing to appreciate the 
educational differences brought about by different cultural values and practices. After 
all, it is argued, mathematics and its practices are not culture-free (Bishop, 1988).  

Deep and surface learning in the West and East 
Marton, Dall’Alba and Tse (1996) identified two approaches that students adopt to 
learning, namely “deep” and “surface” approaches (p. 69). However, it has been 
found in several studies that what seem to be surface approaches can be used to 
develop deep understanding (e.g., Marton & Wenestam, 1987; Marton, Carlsson & 
Halasz, 1992). Kember and Gow (1990) postulated an “understand-memorize-
understand-memorize” sequence (Biggs & Watkins, 1996, p. 271; Hess & Azuma, 
1991) where memorizing leads to improved understanding.) It appears that different 
aspects and perspectives are focused on with each repetition, deepening and widening 
understanding. Marton, Dall’Alba and Tse (1996) summarized this paradox: 

In the process of repeating and memorizing in this way, the meaning of a text is grasped 
more fully: “In the process of repetition, it is not a simple repetition. Because each time I 
repeat, I would have some new idea of understanding, that is to say I can understand 
better.” It is upon this use of memorization to deepen understanding that the solution of 
the paradox of Chinese learner rests. (p. 81)  

Hence, Western educators may equate Chinese learners’ memorization to rote 
learning in error, suggesting that it is necessary to exercise caution when making 
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assumptions about methods from other cultures (Marton, Dall’Alba & Tse, 1996). 
Biggs and Watkins (1996) explained this phenomenon further: 

… the difference between those who use a lot of repetition in learning for understanding, 
and those who learn for understanding without much repetition, derives from perceived 
task demand, which differs between cultures … what differs are the perceived demands 
of common tasks learners from each culture typically face in the home environment. 
Chinese learners come to use repetition strategically more often than Westerners do in 
their attempts to understand their world. (p. 272) 

In Malaysia, Chinese schools produce impressive results in mathematics. Their 
school mathematics is thought to be “superior” to National school mathematics 
because society perceives mathematics to be only computation and operations. 
Chinese school students pride themselves on being able to recite their multiplication 
tables by Year One, and parents spend thousands of ringgit to send children to mental 
arithmetic classes. Fast arithmetic computations by using either the abacus or a finger 
technique are learnt by rote, and young Chinese children who help their families run 
small businesses excel in computation. However, it is fair to question whether 
achieving speedy mastery or arithmetic ensures good mathematical understanding at 
higher levels—but the college students referred to in this research report attended 
both primary and secondary schools where such questions were never asked. 

In this paper, we report on one aspect of a two-and-a-half year action research project 
where the main aim was to investigate whether Chinese Malaysian post-secondary 
students who study mathematics as an enabling science are able to learn mathematics 
more meaningfully when it is taught not by memorization of procedures but by using 
word problems. Instead of the usual fare of drills and abstract technical questions, 
word problems were featured extensively in the curriculum. The specific research 
question that we focus on in this report is whether the students who apparently prefer 
“surface learning” in mathematics were able to appreciate deeper concepts and 
contexts in mathematical word problems. Across a number of action research cycles, 
the students were encouraged to engage in discussion, peer-group activities and 
reflection—all of which are Western approaches designed to bring about “deep” 
learning and not usually adopted in traditional Malaysian education environments.  

The introduction of Western teaching methods is increasing in South-East Asian 
countries, so it is important to learn more about (a) the effects of use of problems and 
Western classroom methods, and (b) how these new approaches might be adapted to 
improve teaching processes and hence learning outcomes.  

METHOD 
This research was undertaken in a Malaysian private college, with a total of 290 
students enrolled in the first semester of a computing and information technology 
diploma course. The majority of the students were 17-18 year-old secondary school 
leavers from a Chinese school background. Seven 14-week cycles of action research 
were carried out over two and a half years, using seven cohorts of students.  
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Action research was appropriate because the overall aim was to explore the 
possibilities and challenges of instituting change in teaching, over time. Data on 
students’ achievements, interest levels, beliefs and attitudes, and mathematical 
performance were collected. Instruments used included questionnaires, interview 
schedules, journal notes of conversations and observations, as well as each cohort’s 
mathematics work and exams. Daily entries were made in a reflective journal. Data 
from these sources were sorted under headings including the use of word problems, 
collaborative and reflective learning, learning mathematics in a second language, and 
the incorporation of values into mathematical concepts and practices (see Chan Kah 
Yein, 2004). Analysis of data included triangulation by colleagues and a student.  

One of the authors, Chan Kah Yein, was the teacher-researcher. Each action research 
cycle involved making a change in relation to the use of word problems, including 
using students’ interests, consideration of professional needs of the students, small-
group discussions, encouraging peer-group reflection, exploration of inculcating 
values in mathematical concepts and practices, and tackling issues about learning 
mathematics in a second language. Each new initiative grew from on-going data-
analysis and reflection (Kemmis & McTaggart, 1988). Deep and surface learning 
were investigates in Cycles 4 through 7 as this issue emerged and was problematised 
towards the later part of the project. In this paper, we report some aspects of what 
happened in relation to this particular issue. 

RESULTS AND DISCUSSION 
Since the students had been raised in an environment that privileged mastering 
procedural skills and ready-made models for solving problems, it was initially 
assumed by the teacher that the students were using a surface approach to learning, 
with rote-based and low-level cognitive strategies, as opposed to a deep approach that 
is characterized by deriving meanings from the learning material. This proved true as 
they tried tackling unfamiliar word problems for the first time. The following is an 
example of a word problem used in Cycle 4:  

 Compound Interest Formula 
kt

o k
r

1AA �
�

�
�
�

� +=  

where A = amount after t years, Ao= initial deposit, r = interest rate per annum (in 
decimals),  k = number of times interest is paid in a year, t = number of years invested 

Find the amount of money that should be deposited in an account paying 8% interest per 
year, compounded quarterly to produce a final balance of RM100,000 in 10 years.  

First, most students thought they had to find the value of A instead of Ao because that 
was more predictable and straightforward. They did not bother about the phrase 
“final balance” in the question, but assumed that the RM100,000 would be the value 
of Ao. .Second, the phrase “compounded quarterly” also did not mean much to them:  

CKY:  The value of k is how many times the bank pays you interest in a year. For 
example, if it is annual compounding, the bank pays you interest only 
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once a year, so the value of k would be 1. If it is semi-annual? (Silence) 
Semi … what does “semi” mean? As in semi-finals in a football match…? 

Kah Sui:  Half! So k is half! 

CKY:  You’re right that semi means half, but the phrase is semi-annual, so it 
means interest is paid every half year, every six months. So how many 
times do you get interest in one year? 

Daniel:  Half. 

CKY:  Not quite. They give you interest every six months, every half year, so …  

Kah Sui:  Oh … two! k is two.  

CKY:  Yes, very good. Now, what about “quarterly”? 

Kah Sui:  Three! 

CKY:  Not quite … quarterly means you divide the year into quarters, so, it IS 
three months. You get interest every three months, but how many times 
would you get interest in a year if they give it to you every three months? 

Kah Sui:  So, k is four? (wrote it down in his notebook)      Cycle 4, Interview notes 

The students were most interested in copying and memorizing the values of k:  

 Annually : k = 1 ; Semi-annually : k = 2 ; Quarterly : k = 4 ; Monthly : k = 12 ; etc.  

It appeared that memorizing the corresponding values of k was more important than 
understanding what periodic compounding meant or how the values of k could be 
derived from understanding periods of time. It was thus conjectured that the students 
were typical surface learners and that exposing them to word problems would prove a 
good way to engage them in deep learning. Over time, they did learn the common 
principles underlying such facts, and hence to focus more on general meanings. 

In Cycle 5, a different picture emerged: 
CKY:  I notice you prefer technical questions to word problems … 

Eng Li:  I like the technical questions, Teacher. They are challenging. I wish you’d 
us give more difficult ones to do.  

Zhi Wei:  … we prefer the technical question. It makes us think more, especially the 
difficult ones.                                                    Cycle 5, Interview notes 

Such remarks changed the teacher’s earlier judgmental stance, and raised questions 
about whether it was fair to assume that the students were surface learners just 
because they preferred abstract technical questions. Was it right to assume that word 
problems require a deep approach to learning whereas technical questions do not? 
While word problems may provide more opportunities for discussion and reflection, 
and for relating mathematics to other aspects of life, perhaps technical questions 
could provide an equivalent level of challenge, meaningful learning, and satisfaction.  

Eng Li:  Maths is logical. … I just need to practise and use my brain. And it is 
challenging … It helps me build my mental foundation … makes me think 
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logically … I think this is very useful for me when I write my computer 
programs … This training would be useful for me.  

Cycle 5, Interview notes 

Eng Li’s comment showed that he viewed mathematics as a tool whose knowledge 
can be transferred to other subjects. He valued this application aspect of mathematics 
and how mathematics helped build his mental abilities to think logically. To him, this 
aspect of abstract mathematics was meaningful in its own sense. Other students also 
expressed appreciation of working with just numbers and symbols:  

Eugene:  I like the problems with lots of numbers … numbers don’t lie … Maths is 
straightforward and accurate. No twisting and turning around … it’s like 
there’s just one thing, and no matter how you look at it, from whichever 
angle … it comes back to that one thing. But with other subjects, it’s like 
you can see it from so many different angles and they’re all different!  

Cycle 6, Interview notes  

Eugene’s comments demonstrated that he had internalized the universality value 
inherent in mathematics. To be able to view mathematics in this way was also a form 
of problematizing and sense making, and hence constitutes one form of reflective 
learning. Hiebert et al. (1996) suggested that reflective inquiry and problematizing 
depend more on the students and the culture of the classroom than on the task itself. 
They explained:  

… tasks such as 63 minus 37 can trigger reflective inquiry because of the shared 
expectations of the teacher and the students although they may look routine … Whether 
they become problematic depends on how teachers and students treat them. (p. 16)  

Given that the students who practised the drills diligently were the ones who 
eventually performed well in the range of questions examined, repetition may have 
helped to develop their mathematical understanding. It would also seem that Kember 
and Gow’s (1990) understand-memorize-understand-memorize sequence—a routine 
that was clearly observable in the classroom—could have lead to improved 
understanding and performance. The students’ beliefs were not identical: 

Suet Yen: The models you gave us (for the word problems) were very useful. It’s 
like you just remember those few models, and then, you identify the 
question and apply the model, and there’s your solution. Actually, there 
are only a few models. You just have to understand which model fits 
which type of question. 

Yew Loon: Hey, but I don’t like to memorize the models, I prefer to approach each 
question independently and find a method for it. It’s better that way. After 
all, it’s mathematical thinking that is required, isn’t it? We don’t need 
models, though they are useful. If you have to depend on models, then 
what happens if you encounter a brand new type of problem which does 
not fit into any model?   

Cycle 7, Interview notes 
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Here, Yew Loon was ready to move on to the level of divergent thinking and explore 
new ways of solving problems on his own whereas Suet Yen had just gained enough 
confidence after practising and applying the models given.  

CONCLUSION 
In this paper we have focused only on those aspects of the research project entitled 
“Fostering meaningful learning by using word problems in post-secondary 
mathematics” that pertain to deep and surface learning in the use of word problems 
with non-English speaking students in a college programme.  

We conclude at this point that most of the students in this project felt a need to 
practise sufficient examples before they developed adequate confidence and curiosity 
for more independent and diverse ways of solving problems. Hence, it seemed that 
what could be termed surface approaches can be used to build a foundation for the 
use of deeper learning approaches. Also, it seemed that technical problems were not 
inferior to word problems in terms of their ability to lead to deeper learning. What 
appeared to matter was how the students approached the problems, and how their 
mathematical thinking developed as a result of having tackled numbers of problems.  

Last but not least, the research seemed to provide some justification for Alatas’ 
(1972) caution about uncritical imitation, or more accurately in this case, making 
uncritical assumptions about students’ ways of learning and perceiving mathematics. 
Instead, we need to look beneath the surface and recognize the fact that mathematics 
is not culture-free, and a deeper understanding of how repetitive practice and deeper 
learning intertwine is important.  
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CONSTRUCTING PEDAGOGICAL KNOWLEDGE OF PROBLEM 
SOLVING: PRESERVICE MATHEMATICS TEACHERS 

Olive Chapman 

University of Calgary 

 
The paper reports a study of the knowledge preservice secondary school mathematics 
teachers [PSSMT] hold of problem solving and the role of a reflective-inquiry 
approach in creating self-awareness of, and in enhancing, this knowledge. The 
approach included solving problems, narratives, flow charts and observations. The 
finding shows that the participants were able to construct a deeper understanding of 
problem solving. It suggests the need for PSSMT to reflect on the learning 
experiences, not only from the perspective as learner, but also as teacher, in order to 
be able to construct a meaningful instructional approach for problem solving. 

IMPORTANCE OF PROBLEM SOLVING 
Problem solving is considered central to school mathematics. NCTM (2000) states,  

Instructional programs should enable all students to build new mathematical knowledge 
through problem solving; solve problems that arise in mathematics and in other contexts; 
apply and adapt a variety of appropriate strategies to solve problems; and monitor and 
reflect on the process of mathematical problem solving. [p. 52]  

Similarly, Kilpatrick et al. (2001, p. 420) explained,  
Studies in almost every domain of mathematics have demonstrated that problem solving 
provides an important context in which students can learn about number and other 
mathematical topics. Problem-solving ability is enhanced when students have opportuni-
ties to solve problems themselves and to see problems being solved. Further, problem 
solving can provide the site for learning new concepts and for practicing learned skills.  

Thus, problem solving is important as a way of doing, learning and teaching 
mathematics. If problem solving should be taught to students, then it should be taught 
to preservice teachers who are likely to not have been taught it in an explicit way. If it 
is to form a basis of teaching mathematics, then preservice teachers should 
understand it from a pedagogical perspective. This paper is intended to contribute to 
our understanding of these issues for PSSMT. It reports on an investigation of the 
knowledge PSSMT hold of problem solving and the role of a reflective-inquiry 
approach in creating self-awareness of, and in enhancing, this knowledge. 

RELATED LITERATURE AND THEORETICAL PERSPECTIVE 
Recent studies on PSSMT include investigating their proportional reasoning (Person  
et al., 2004); pedagogical reasoning on functions (Sánchez & Llinares, 2003); 
preferred strategies for solving arithmetic and algebra word problems (Van Dooren et 
al., 2003); reflection on their learning process through collaborative problem solving 
in geometry (Bjuland, 2004); and deficiencies in specific mathematics concepts, for 
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example, division, operations with integers, functions, and exponents (Ball, 1990; 
Even, 1993; Kinach, 2002; Wilson, 1994). While these studies do not address 
problem solving in an explicit way, they imply concerns about how PSSMT may 
conceptualize it. One study that supports this is Leikin (2003). She found that factors 
that influenced secondary school mathematics teachers’ problem-solving preferences 
were their tendency to apply a stereotypical solution to a problem and act according 
to their problem-solving beliefs; the way in which they characterized, and their 
familiarity with a particular, problem-solving strategy; and a mathematical topic to 
which the problem belongs. A study, then, of PSSMT’s thinking of problem solving 
could provide insights of their sense-making and how to enhance it. 

Jaworski & Gellert (2003) explained that when students enter initial mathematics 
teacher education they already have extensive knowledge about mathematics 
teaching and have views on the nature of mathematics. But this knowledge is limited 
because it is based mainly on their experience as students. Jaworski & Gellert added 
that since this knowledge serves as a basis of their sense-making, an essential part of 
preservice teacher education is focusing on their initial personal theories and 
preconceptions. Reflection has been advocated as a necessary process in facilitating 
this. The study in this paper addresses the use of reflection as a basis of facilitating 
PSSMT’s awareness of their thinking of problem solving. Theoretically, then, the 
study is framed in reflection and a social perspective of learning.  

The reflective process has a long history as a basis of learning (Dewey, 1916). It is 
widely accepted as a key factor in facilitating teacher education (Sikula, 1996). It can 
enable teachers to construct the meanings and knowledge that guide their actions in 
the classroom and gain understanding of themselves as teachers (Schon, 1987). 
However, achieving effective reflection can be problematic. For example, as Lerman 
(1997, p.201) noted, “Reflection on one’s own actions presumes a dialogical 
interaction in which a second voice observes and criticizes. In order to lead to 
learning it would seem that this must be more than the ongoing observation of one’s 
own actions.” This suggests that the reflective process could be enhanced through an 
interactive process with others. 

A social/interactive perspective of learning has been discussed by several people 
including Dewey, 1916; Lave & Wenger, 1991; and Vygotsky, 1978. Lave and 
Wenger conceive of learning in terms of participation. Dewey emphasized learning 
through active personal experience and learning as a social process. In his view, 
purposeful activity in social settings is the key to genuine learning. Similarly, 
Vygotsky claimed that individual development and learning are influenced by 
communication with others in social settings. In his view, interacting with peers in 
cooperative social settings gives the learner ample opportunity to observe, imitate, 
and subsequently develop higher mental functions. This theoretical perspective, then, 
emphasizes human interactions as a key factor to facilitate learning. This formed a 
basis of the reflective-inquiry approach used in this study. 
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RESEARCH PROCESS 
The study was framed in a qualitative, naturalistic research perspective (Creswell, 
1998) that focused on capturing and interpreting the participants’ thinking about a 
phenomenon, problem solving in this case. 

Participants: The participants were 26 PSSMT in the second semester of their 2-year 
post-degree education program. This was their first course in mathematics education, 
so they had no instruction or theory on problem solving prior to this experience. They 
also were not taking any other mathematics education course in this semester. They 
had completed all of their mathematics required for the program in their first degrees.  

Reflective-Inquiry Approach: Since a goal of the study was to see what the PSSMT 
knew and what they would learn from this approach, they were not provided with any 
theory about problem solving before or during it. They worked on problems and in 
groups without the instructor’s intervention. The activities were organized as follows: 

Individual reflection: They were required to respond to a list of questions/prompts in 
sequence that included: What is a problem? Choose a grade and make a mathematics 
problem that would be a problem for those students. What did you think of to make 
the problem? Why is it a problem? Is it a ‘good’ math problem? Why? What process 
do you go through when you solve a problem? Represent the process with a flowchart 

Inquiry activities: This included: (1) They were provided with a list consisting of a 
non-verbal, algebraic exercise; a simple translation algebraic word problem; a 
complex translation algebraic word problem; a process [non-routine] word problem; 
an applied [open] problem, and a puzzle problem. These categories were influenced 
by Charles &Lester (1982). The categories were not given to the PSSMT. They were 
asked: Without solving them, how are these problems similar and different? What 
conclusions can you make about problems? (2) They were required to write 
narratives of their experiences solving a problem that was assigned to them. The 
narrative had to be a temporal account not only of the mental and physical activities 
they engaged in to resolve the problem, but the emotional aspects of the experience. 
They later analyzed it in terms of ‘stuck’ and ‘aha!’ (3) They were required to solve 
an assigned problem (half got one problem and half a different one) and make notes 
of their thought processes. They then worked in pairs, with unmatched problems, and 
took turns to observe each other solve the problem while thinking aloud. They then 
compared their thought processes. (4) They selected a process problem appropriate 
for a secondary school student and used it to observe the student solving it while 
thinking aloud. An example of an assigned problem for item (3)/(4) is:  

Emma was always looking for ways to save money. While in the remnant shop she came 
across just the material she wanted to make a tablecloth. Unfortunately the piece of 
material was in the form of a 2m x 5m rectangle and her table was 3m square. She bought 
it however having decided that the area was more than enough to cover the table. When 
she got home she decided she had made a mistake because she couldn’t see how to cut 
the material to make a square. But just as she despaired she had a brainwave, and with 3 
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straight cuts, in no time, she had 5 pieces, which fitted neatly together in a symmetric 
pattern to form a square using all the material. How did she do it? [Bolt] 

Group reflection: This included: (1) Sharing and comparing their individual reflect-
ions and their findings from the inquiry activities, preparing summaries of key words 
of the group thinking to correspond with the questions under individual reflection and 
a flowchart of the problem solving process. (2) Discussing and summarizing how 
they would teach problem solving. (3) Whole-class sharing of small-groups’ findings. 

Data: The reflection and inquiry activities served both research and learning 
purposes. Thus data consisted of copies of all of the PSSMT’s written work for all of 
the activities. There were also field notes of their groups and whole-class discussions. 
Analysis: The analysis began with open-ended coding (Strauss & Corbin, 1998) of 
the data. The researcher and a research assistant, working independently, coded the 
data from the pre-intervention (i.e., the self reflection) activities. The researcher and a 
different research assistant, who did not have access to the pre-intervention data, 
working independently, coded data from the post-intervention (i.e., inquiry and group 
reflection) activities. This allowed for cross checks by research team, elimination of 
initial assumptions/themes based on disconfirming evidence and validation of the 
findings. Coding involved, for example, identifying significant statements about their 
thinking of problems and problem solving and problem solving instruction. The 
coded information was categorized based on common themes and frequency of 
occurrence. Changes in the PSSMT’s thinking resulting from the activities were 
determined by comparing the pre- and post-intervention coded information.   

PEDAGOGICAL KNOWLEDGE OF PROBLEM SOLVING 
The findings are presented in terms of the PSSMT’s initial knowledge of problems 
and problem solving, the growth in knowledge resulting from the reflective-inquiry 
approach and the nature of their instructional knowledge of problem solving. 

Initial knowledge: There was consistency in the nature of the PSSMT’s initial 
knowledge about problems and problem solving. However, there were two categories 
that emerged as their dominant ways of thinking. Category 1 consisted of 83% of the 
PSSMT and category 2, 17%. 17% of the PSSMT displayed characteristics of both 
categories, but leaned much more towards category 1 and were thus included there.  

Category 1: These PSSMT initially described a problem as something/situation that 
requires an answer or needs to be solved, or some variation of this, e.g., “Something, 
which requires an answer which requires a number of steps to find.” Their examples 
of problems were routine or traditional word problems, e.g., for grade 9, “James is 
twice as old as Laura. The sum of their ages is 24. How old are they today?” and “A 
building is 9 meters tall and you are standing 12 meters from the base. At what angle 
do you have to look to see the top of the building?” In order to make the problem, 
they thought of the topic, mainly, “I thought of grade 8’s doing percentages…” “I 
thought of frequencies/probabilities …” They viewed these as problems because they 
provided specific/key/some information to arrive at or help guide to answer, or 
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because answer unknown/some unknown to discover/require answer. All but three of 
them were definite that theirs were good problems. One explained, “I think so 
because it is pretty straightforward. The numbers aren’t too difficult to work with so 
they are able to focus on the concept rather than the calculation.” Others mentioned: 
appropriate for the students, plenty information available, contributes to learning, 
deals with answer and process, allows for many solutions. For the exceptions, one 
said probably not because straightforward, another said not very interesting problem 
but still useful to practice application, another said okay problem but wording could 
be enhanced. The process they described to solve problems focused on identifying 
the known and unknown or identifying relevant and irrelevant information then 
trying to solve. For example: “I first read the problem carefully then I mark the 
known clearly. I then look at what is the unknown part of the problem. I then attempt 
to find the relationship between the known and the unknown.” “First, I figure out 
what is being asked, then I go back through the question to see what is given, then I 
remember the process I need to take with the given information, and I follow the 
procedure.” Flowcharts of the process included: (1) Read problem carefully � note 
known � note outcome � relate the known to the outcome if possible � solve; (2) what is 
the question � what is given � how do I solve � solve.  

Category 2: These PSSMT initially described a problem as, e.g., “A question, a 
challenge, an opportunity for discovery, a search for an unknown.” “To be 
interesting, should be a question of a type that one has not already learned how to 
answer.” “A challenge, something unknown to some parties and possibly knowable, 
something which can contribute to knowledge about math.” Their examples of 
problems were more process-oriented and included, for grade 8, a diagram of a map 
with 6 cities in the province, to find the route(s) that allow(s) a salesman to visit each 
city exactly once, and how might you find the minimum distance. For grade 12, “A 
box is to be constructed from a piece of cardboard that is square with squares cut 
from each corner of length x. When the cardboard is folded into the box, x becomes 
the height of the box. What length of x will give the area of the box a maximum 
area?” In order to make the problem, they thought of “curriculum for the grade; 
specific class ability; relate ‘local’ experience; open to multiple different methods/ 
techniques to solve.” “Something that would be challenging, intriguing, something 
that would cause the students to think.” They viewed these as problems because the 
answers were not immediately apparent/obvious and they required thought and a 
process of struggle to find a solution. They viewed them as good problems. One 
explained: “Because it requires: creativity to develop a solution; multiple methods to 
arrive at a solution; provides openings to other related problems; disciplined thought 
process required.” The process they described to solve problems focused on, e.g., 
“First understand the goal(s); examine constraints; ‘play’ a bit with ideas that might 
lead to a solution; develop one or more of ideas into a solution.” “Read the problem, 
understand what is being asked; recall what knowledge I have regarding the topic, 
decide on a strategy, draw picture, equation, etc. try to solve, check to see if answer is 
reasonable.” Flowcharts for the process included: read problem � pick out important  
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information � decide what is being asked � decide on a strategy � try to solve � check. 

Growth in Knowledge: The inquiry activities and group reflection served as 
intervention for the PSSMT to become aware of aspects of problems and problem 
solving they had either taken for granted, not considered or not been exposed to. 
Comparison of problems: This resulted in shift in awareness of problems for most of 
Category 1. For example: “Problems come in many different forms. They require 
some thinking on the part of the solver. They can have more than one possible 
outcome or solution.” “The problems are of different types. They require different 
types of thinking to solve (i.e., logic, spatial, etc.)” “Problems require delving into 
your thought process and using your skills to sort through information and use that 
information to find solutions.” “They … get students to ponder math in different 
formats.” “Problems can be fun and challenging, but also stressful.” From Category 
2, “Problems are challenges that require an understanding and application of 
knowledge. Problems are solved using a variety of strategies and steps. They require 
thought and often more than one attempt to find a solution.”   

Group Summaries: The group summaries consisted of their collective thinking 
resulting from the group-reflection activities. The summaries reflected more depth/ 
scope in their understanding of problems and the problem solving process. For 
example, one group’s description of a ‘good’ problem included: “different methods 
and techniques, focus on problem solving technique - not tedious calculation, 
students can relate to problem.” Another group’s: “Should make students think, be 
challenging.” Their description of the problem-solving process was also enhanced, 
particularly in terms of the flowcharts, which showed the need to move back and 
forth as opposed to taking a linear path to a solution. The following example of these 
flowcharts is simplified to fit available space. They actually were drawn with 
appropriate boxes and arrows. Read the problem � Do you understand the question? [1] 
� no [arrow to read problem] [1]� yes � draw a diagram � devise a strategy � does the 
strategy seem helpful [2]� no [arrow to devise] [2]� yes � carry on get an answer � 
check the answer � is your answer right [3]� no [arrow to devise] [3] yes � Yay! The 
whole-class sharing allowed the PSSMT to further extend what their individual 
groups constructed.  

Instructional Knowledge: The groups’ responses to what their instructional approach 
for problem solving would involve focused on what the learner should do. For 
example, “students should read problem, write down information, determine what is 
relevant and irrelevant, think of ways to approach problem, write in sentence form.” 
“Kids should learn to: understand the problem, pick out what is important, do not 
assume there is only one correct solution, relate the problem to what you know, but 
don’t be afraid to try something new, do not worry if you can’t see the whole solution 
at once.” However, some groups also noted what the teacher should do. For example, 
“ask children different ways to do problem and identify wrong ways, demonstrate a 
couple of ways the children suggested, reflect on which was ‘best’ way, was there a 
‘best’ way, does it make sense?” 
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DISCUSSION AND CONCLUSIONS 
The initial knowledge of the PSSMT indicated that most of them made sense of 
problems in terms of the traditional, routine problems they had experienced, directly 
or indirectly, prior to entering the teacher education program. They also understood 
these as genuine problems that require thought and logic to arrive at a solution. They 
understood the problem-solving process in a way consistent with the traditional 
classroom way of dealing with these problems. This suggests the need for helping 
them to become aware of, and to expand, their initial views. The series of questions/ 
prompts were effective in allowing for more depth in their reflection. Their responses 
to each question revealed another dimension of their thinking of problems. This 
suggests the importance of providing more than one prompt to facilitate reflection. 

The group activities also enhanced their learning. Collectively, they identified a set of 
characteristics about problems and problem solving with more depth/scope than 
individually. This was facilitated by each group, although created randomly, having 
at least one member from Category 2 and/or one who had some characteristics of 
Category 2. Each group was able to construct knowledge compatible with formal 
theory of problem solving. This allowed them to relate to theory in a more 
meaningful way. They were given theory to read following the reflective-inquiry 
approach, which they seemed to relate to and assimilate more meaningfully than 
students I worked with in the past who did not engage in the approach. However, 
they were unable to conceptualize problem-solving instruction from the approach on 
their own. Their instructional approach implied teaching by telling or being teacher 
directed. They did not seem to notice/consider the instructional approach they partici-
pated in through the reflective-inquiry approach as a basis of constructing/thinking 
about their own. It required shifting their perspective of the approach from that of a 
learner to teacher. This was done by allowing them to engage in reflection on the 
approach and role-play. Details are not provided here given limitation on space. 

The paper provides information about PSSMT’s initial knowledge and the type of 
knowledge they could construct on their own from particular self-inquiry activities. It 
highlights the need to explicitly address pedagogical problem-solving knowledge in 
teacher education. It suggests that it is essential to provide constructive and reflective 
opportunities followed by theory to deepen PSSMT’s understanding of problem 
solving. It suggests the need for them to reflect on learning experiences not only from 
the perspective as learner, but also as teacher to construct meaningful pedagogical 
knowledge. It provides a structure/model to make sense of PSSMT’s knowledge of 
problem solving and a practical and effective approach to facilitate their self-
reflection and construction of meaningful knowledge about problem solving.  
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Fractions are among the most complex mathematical concepts that children 
encounter in their years in primary education. One of the main factors contributing 
to this complexity is that fractions comprise a multifaceted notion encompassing five 
interrelated subconstructs (part-whole, ratio, operator, quotient and measure). 
During the early 1980s a theoretical model linking the five interpretations of 
fractions to the operations of fractions and problem solving was proposed. Since then 
no systematic attempt has been undertaken to provide empirical validity to this 
model. The present paper aimed to address this need, by analysing data of 646 fifth 
and sixth graders’ performance on fractions using structural equation modelling. To 
a great extent, the analysis provided support to the assumptions of the model. Based 
on the findings, implications for teaching fractions and further research are drawn.  

INTRODUCTION 
Teaching and learning fractions has traditionally been problematic. In fact, it is well 
documented that fractions are among the most complex mathematical concepts that 
children encounter in their years in primary education (Newstead & Murray, 1998). It 
has also been asserted that learning fractions is probably one of the most serious 
obstacles to the mathematical maturation of children (Behr, Harel, Post & Lesh, 
1993). During the last three decades researchers and scholars have identified several 
factors contributing to students’ difficulties in learning fractions. In particular, it has 
been proposed that the obstacles that students encounter in developing deep 
understanding of fractions are either inherent to the nature of fractions or are due to 
the instructional approaches employed to teach fractions (Behr et al., 1993; Lamon, 
1999). To date there is consensus among researchers that one of the predominant 
factors contributing to the complexities of teaching and learning fractions lies in the 
fact that fractions comprise a multifaceted construct (Brousseau, Brousseau & 
Warfield, 2004; Kieren, 1995; Lamon, 2001).  

Kieren (1976) was the first to propose that the concept of fractions consists of several 
subconstructs and that understanding the general concept depends on gaining an 
understanding of each of these different meanings of fractions as well as of their 
confluence. Kieren initially identified four subconstructs of fractions: measure, ratio, 
quotient, and operator. In his original conceptualization, the notion of the part-whole 
relationship was considered the seedbed for the development of the other 
subconstructs; thereby he avoided identifying this concept as a separate, fifth, 
subconstruct claiming that this notion is embedded within all other subconstructs. In 
the following years, Behr, Lesh, Post and Silver (1983) further developed Kieren’s 
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ideas recommending that the part-whole relationship comprise a distinct subconstruct 
of fractions. They also connected this subconstruct with the process of partitioning. 
Moving a step forward, they proposed a theoretical model linking the different 
interpretations of fractions to the basic operations of fractions and to problem solving 
(Figure 1). The solid arrows presented in this proposed model suggest established 
relationships among fractional constructs and operations, whereas the dashed arrows 
depict hypothesized relationships.  

 
 
 
 
 
 
 
  

Figure 1: Behr’s and associates’ theoretical model linking the five subconstructs of 
fractions to the different operations of fractions and to problem solving  

Closer examination of the diagram presented in Figure 1 reveals the following. First, 
the part-whole subconstruct of rational numbers, along with the process of 
partitioning, is considered fundamental for developing understanding of the four 
subordinate constructs of fractions. This assumption justifies why the part-whole 
notion has occupied the lion’s share of curricula across different countries and has 
been the traditional inroad to introduce fractional concepts in primary grades (Baturo, 
2004; Lamon, 2001). Second, the diagram suggests that the ratio subconstruct is 
considered as the most “natural” to promote the concept of equivalence and, 
subsequently, the process of finding equivalent fractions. Moreover, the operator and 
measure subconstructs are regarded as helpful for developing understanding of the 
multiplication and addition of fractions, respectively. Finally, understanding of all 
five subconstructs of fractions is considered a prerequisite for solving problems in the 
domain of fractions.   

Though the model has been excessively cited in the following years (Carpenter, 
Fennema & Romberg, 1993), to the best of our knowledge, no systematic attempt has 
been undertaken since mid 1980s to provide empirical validity to the model. The 
present study aimed to address this theoretical and research deficiency. Specifically, 
the purpose of the study was to empirically test the five theoretical assumptions of the 
model alluded to above and investigate the extent to which any additional 
associations between the concepts and operations embedded in the model are 
empirically supported.  

 
Part-whole /partitioning 

Ratio  Operator  Quotient   Measure    

Equivalence   Multiplication  Problem Solving Addition   
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THE DEVELOPMENT OF THE TEST  
A test on fractions was constructed guided by existing theory and research on rational 
numbers. An additional requirement in designing the test was its alignment with the 
curriculum that was operative in Cyprus, where the study was conducted. Table 1 
presents the specification table that guided the construction of the test and the items 
used for examining students’ performance on each of the concepts and operations 
included in the theoretical model. Items in bold letters represent problem-solving 
tasks related to each of the subconstructs of fractions, since it was decided to use 
problems related to these subconstructs, rather than general problems on fractions.  

CONCEPTS ITEMS OPERATIONS ITEMS 
Part-whole /partitioning 1-8, 9 Equivalence  34-43 
Ratio 10-14, 15 Additive operations 44-46 
Operator 16-18, 19  Multiplicative operations 47-50   
Quotient 20-22, 23-24    
Measure 25-31, 32-33   

Table 1: Specification table of the test used in the study 
The first five items of the part-whole subconstruct asked students to identify the 
fractions depicted in discrete or continuous representations. The remaining three 
items were associated with unitizing and reunitizing, which are directly related to the 
partitioning notion of the part-whole relationship (Baturo, 2004). The part-whole 
problem-solving task (item 9) asked students to reconstruct the whole given a part of 
it. The subsequent five items requested students to compare ratios, based either on 
quantitative (10-12) or qualitative information (13-14). Item 15 referred to boys and 
girls sharing different numbers of pizzas; an item frequently used in studies on ratios 
and proportions (Marshall, 1993). The following two items asked students to specify 
the output quantity of an operator machine given the input quantity and the fraction 
operator. Item 18 was related to the notion of operator as a composite function (Behr 
et al., 1993), whereas item 19 asked student to indicate the factor by which number 9 
should be increased to become equal to 15. In line with previous studies (Lamon, 
1999), the three subsequent items, which were related to the concept of quotient, 
examined students’ ability to link a fraction to the division of two numbers; the two 
problems of this category were related to the partitive and quotitive interpretation of 
division (items 23-24, correspondingly). In accord with previous studies (Hannula, 
2003; Lamon, 1999; Marshall, 1993), the items of the measure subconstruct 
examined students’ performance on identifying fractions as numbers and locate them 
on number lines. The two problems of this category asked students to find a fraction 
that was within two given fractions, and identify among a number of fractions the one 
that was closer to number one. Finally, the remaining 17 items were associated with 
operations on fractions. Seven of these items (41-45 and 48-49) examined students’ 
procedural fluency in these operations, whereas the remaining ten were related to the 
conceptual understanding of these operations (e.g., estimating the result of different 
operations on fractions).    
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METHODS 
The items of the test were content validated by three experienced primary teachers 
and two university tutors of Mathematics Education. Based on their comments, minor 
amendments were made particularly where some terms used were considered as 
unfamiliar to primary pupils. The final version of the test (available on request) was 
administered to 340 5th graders and 306 6th graders (301 boys and 345 girls). The test 
items were split into two subtests which were administered to students during two 
consecutive schooldays; students had eighty minutes to work on each subtest.  
Structural equation modeling and, specifically, maximum likelihood method, was 
used to test the hypotheses of the theoretical model (Kline, 1998). Goodness of fit of 
the data to the model was decided by using three fit indices: scaled x2, Comparative 
Fit Index (CFI), and Root Mean Square Error of Approximation (RMSEA).  

FINDINGS 
The theoretical assumptions of the model were tested by using EQS. As reflected by 
the iterative summary, the goodness of fit statistics showed that the data did not fit 
the model very well (x2=9110, df=2129, x2/df=4.30, CFI=.57, and RMSEA=.07). 
Subsequent model tests revealed that the model fit indices could be improved by 
modifying the model in ways that on the whole were consonant with both theory on 
fractions and the development of the test. Specifically, items 18 and 23 were also 
linked to multiplicative operations, since both were solved by applying a 
multiplicative operation. Items 29-31 were also explained by the process of finding 
equivalent fractions, a relationship that could be attributed to the fact that the 
foregoing process provided scaffold in solving these tasks. The initial analysis also 
revealed that the associations of the four subordinate subconstructs of fractions with 
the problem solving were not significant; nor the association between the measure 
subconstruct and the additive operation of fractions. All these relationships were 
eliminated from subsequent analyses. On the contrary, the multiplicative operations 
of fractions were found to be associated with the quotient subconstruct, which can be 
explained taking into account that the preceding subconstruct is closely related to the 
division of fractions. The nine factor model that emerged after these modifications 
had a very good fit to the data (x2=1892.55, df=1184, x2/df=1.598, CFI=.95 and 
RMSEA=.030). Its goodness of fit was even better compared to a series of other 
models comprising of one to eight factors, thereby indicating that the emerging 
model was in alliance with parsimony principle (Kline, 1998). Figure 2 presents the 
model that emerged from the analysis; the loadings of each variable on the nine 
factors are presented below the model.  
The following observations arise from Figure 2 and Table 1. First, all fifty items were 
correlated to the factors they were initially supposed to be loaded to, providing 
support to the construct validity of the test. However, beyond being associated with 
the measure notion, the three items that concerned locating fractions on number lines 
(items 29-31) were also related to finding equivalent fractions; their loadings in the 
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latter case were much higher than in the former one. This finding can be partly 
attributed to the fact that in two of the three items the denominator of the fractions 
that students were requested to locate on number lines was a sub multiple of the 
spaces into which the given number lines were divided. Yet, one could also suggest 
that this finding points to the requirement that students master the equivalence of 
fractions in order to be able to manipulate number lines efficiently.  

 

Figure 2: Path model linking the five subconstructs of fractions to the operations of 
fractions and to problem solving  

Second, the data provided support to the assumption that the part-whole interpretation 
of fractions and the partitioning process constitute a foundation for developing an 
understanding of the four subordinate interpretations of fractions. Specifically, Factor 
1 explained about 98% of the variation of the factors related to the ratio and the 
operator personalities of fractions (given that the percentage of the variation 
explained is equal to the square of the regression coefficients presented in Figure 2). 
Yet, one cannot ignore the fact that Factor 1 explained a much smaller percentage of 
the variation of the quotient and the measure notion of fractions (about 5% and 8%, 
respectively). Third, the data provided empirical support to the hypothesis that 
mastering the notion of fractions as ratios contributes predominantly to finding 

EQUATIONS*: Part-whole: V1=.25F1, V2=.46F1, V3=.28F1, V4=.26F1, V5=.24F1, 
V6=.42F1, V7=.52F1, V8=.38F1 Ratio: V10=.38F2, V11=.44F2, V12=.25F2, 
V13=.34F2, V14=.29F2, Operator: V16=.49F3, V17=.58F3, V18=.21F3+.37F8, 
Quotient: V20=.51F4, V21=.42F4, V22=.72F4, Measure: V25=.46F5, V26=.98F5,
V27=.98F5, V28=.93F5, V29=.11F5+.32F6, V30=.11F5+.40F6, V31=.08F5+.42F6, 
Equivalence: V34=.40F6, V35=.76F6, V36=.72F6, V37=.76F6, V38=.81F6, 
V39=.74F6, V40=.72F6, V41=.52F6, V42=.43F6, V43=.50F6, Additive operations: 
V44=.62F7, V45=.34F7, V46=.61F7, Multiplicative operations: V47=.69F8, 
V48=.43F8, V49=.55F8, V50=.55F8, Problem solving: V9=.58F9, V15=.45F9, 
V19=.41F9, V23=.32F9+.22F8, V24=.59F9, V32=.43F9, V33=.50F9 (*errors were 
omitted). 
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equivalent fractions, since Factor 2 explained a great proportion of the variation of 
the sixth factor (about 73%). Developing an understanding of the operator 
subconstruct was also found to explain about a quarter of the variation of students’ 
performance on the items associated with the multiplicative operations on fractions.  
Fourth, the model that emerged deviated from the theoretical model in three aspects: 
(a) the effect of the measure subconstruct on the additive operations of fractions was 
not statistically significant; however, a statistically significant association between 
the part-whole subconstruct and the additive operations emerged; (b) the associations 
of the four subordinate notions of fractions with problem solving were not 
statistically significant; on the contrary, the part-whole relationship was found to 
explain a great percentage of the variation of problem solving; and (c) the quotient 
subconstruct of fractions was found to explain about 20% of the variation of students’ 
performance on the items related to the multiplicative operations of fractions.  
In general, the model of Figure 2 verified three of the five examined hypotheses: (a) 
the part-whole interpretation explained a proportion of the variation of the four 
subordinate subconstructs of fractions; (b) the ratio notion was associated with 
equivalence, and (c) the operator concept was linked to the multiplicative operations 
of fractions. Yet, two hypotheses failed to be empirically validated. In particular, the 
four subordinate notions of fractions were not statistically related to problem solving, 
nor was the measure subconstruct related to the additive operations of fractions. 
Nevertheless, the study supports two additional paths not included in the theoretical 
model: one linking the quotient subconstruct to the multiplicative operations and the 
other linking the part-whole relationship to the additive operations of fractions.   

DISCUSSION   
The findings of the study provide empirical support to the fundamental role of the 
part-whole subconstruct in building understanding of the remaining constructs of 
fractions; thereby, they justify the traditional instructional approach in using this 
notion as the inroad to teaching fractions (Baturo, 2004; Kieren, 1995; Marshall, 
1993). However, one cannot overlook the fact that the part-whole interpretation of 
fractions explains different percentages of the variation of the four subordinate 
concepts of fractions: almost all the variance of the ratio and the operation 
subconstructs and only a very small proportion of the variance of the measure and the 
quotient concepts. Three reasons seem to explain this finding. First, core ideas, such 
as comparing quantities, are embedded in all three former subconstructs of fractions, 
whereas they are not required for developing understanding of the latter couple of 
subconstructs (Lamon, 1999). Second, the measure and the quotient interpretations of 
fractions could be explained by other concepts not included in the model, such as the 
notion of the unit fraction, which is considered as contributing predominantly to 
building meaning for these subconstructs (Behr et al., 1983; Marshall, 1993). And 
third, students might encounter significant difficulties in gaining an insight into the 
concepts of measure and quotient, which cannot be surpassed even by developing an 
understanding of the part-whole “personality” of fractions. Whatever the reason is, 
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this finding validates the claim that, the part-whole interpretation of fractions should 
be considered as a necessary but not sufficient condition for developing an 
understanding of the remaining notions of fractions (Baturo & Cooper, 1999; 
Brousseau et al., 2004). Thereby, though the findings of the study justify the 
preponderance of the part-whole interpretation of fractions in teaching rational 
numbers, they also underline the need for emphasizing the other subconstructs of 
fractions, and especially those that are not so highly related to the foregoing notion.  
The study also provides support to the assumption that mastering the five 
interpretations of fractions contributes towards acquiring proficiency in the 
operations of fractions. This finding can be partly attributed to the fact that the items 
used for measuring students’ performance on the operations of fractions required 
both procedural fluency and conceptual understanding of these operations; yet it also 
spotlights that when teaching fractions, teachers need to scaffold students to develop 
a profound understanding of the different interpretations of fractions, since such an 
understanding could also offer to uplift students’ performance in tasks related to the 
operations of fractions. Thereby, instead of rushing to provide students with different 
algorithms to execute operations on fractions, the findings of the present study, in 
accordance with previous studies (Lamon, 1999; Brousseau et al., 2004) lend 
themselves to support that teachers should place more emphasis on the conceptual 
understanding of fractions. The study also suggests that, the teaching of the different 
operations of fractions should be directly linked to specific interpretations of 
fractions. In particular, the findings of study indicate that the teaching of equivalent 
fractions could be reinforced by learning ratios, whereas the operator and the quotient 
subconstructs could support developing a conceptual understanding of the 
multiplicative operations on fractions. Likewise, the associations between the part-
whole interpretation and the additive operations of fractions should be highlighted 
during instruction, in order to promote learning of the latter processes.   
Finally, one cannot ignore the fact that only a very small percentage of the variation 
of items related to number lines was explained by the measure subconstruct of 
fractions; this finding supports Lamon’s (1999) recommendation that researchers 
employ items beyond locating fractions on number lines to measure students’ 
understanding of fractions. In alignment with previous studies, it also suggests that 
the number line comprises a difficult model for students to manipulate (Baturo & 
Cooper, 1999), and that teachers should help students master other notions (such as 
the equivalence of fractions), before rushing to introduce this model in their teaching.  
It goes without saying that further research is needed to cross-validate the model 
emerged in this study. Specifically, studies could follow at least three different 
directions. First, the relationships included in the theoretical model and were verified 
in the present study need to be further examined. Second, further studies need to 
verify the modifications introduced in the theoretical model, and especially the fact 
that only the part-whole relationship was found to be associated with problem 
solving. Finally, provided that the associations among the five subconstructs of 
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fractions were verified, future research could also be directed towards identifying 
core ideas that permeate the whole domain of fractions and offer significantly to 
building understanding of all the five subconstructs included in the theoretical model.  
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STUDENTS’ REFLECTION ON THEIR SOCIOMATHEMATICAL 
SMALL-GROUP INTERACTION: A CASE STUDY  

Petros Chaviaris and Sonia Kafoussi,  

University of the Aegean, Greece 

In this paper we present a case study of a small group of two 11 years old students 
who participated in a research program whose the purpose was to investigate the 
way that students can be actively involved in a reform of their own behavior as they 
cooperate in small-groups to solve mathematical problems. We study the 
opportunities that were offered for the development of the small-group students’ 
interaction in mathematics in two alternative environments: a) the students’ 
observation and discussion on their videotaped cooperation and b) their 
participation in dramatic role-play. The results of the research showed that both  
environments gave the group members the opportunity to reflect on their actions and 
the consequences of their actions during their cooperation and to achieve the 
development of new effective social rules.  

THEORETICAL BACKGROUND  
The investigation on social interaction that takes place in classrooms’ microculture 
continues to be an issue of great interest among the mathematics educators 
researchers. This is a consequence of the acceptance that in order to make sense of 
students’ learning of mathematics, classroom life has to be interpreted not only from 
a psychological perspective but from a sociological perspective as well (Cobb & 
Bauersfeld, 1995; Lerman, 2001). Towards this effort many researchers have 
developed theoretical constructs for the study of the relation between student’s 
cognitive development and social interactions in the classroom. For example, 
interpretative constructs for this purpose are the social and sociomathematical norms 
(Yackel & Cobb, 1996), the thematic patterns of interaction (Voigt, 1995), the meta-
discursive rules (Sfard, 2001). It is widely accepted that the way that the members of 
the classroom develop rules that guide their social behavior determine the evolution 
of their mathematical discourse. Moreover, there is a reflexive relationship between 
the sociomathematical interaction and students’ beliefs and values about their own 
role, others’ role, the general nature and the goals of mathematical activity (Yackel et 
al., 2000).  

In this tradition the research has mainly focused on teacher’s role of initiating and 
guiding the formation of the rules of sociomathematical interaction (McClain & 
Cobb, 2001). However, little research has been done on students’ role in the 
development of their social behavior in mathematics classroom (Hershkowitz & 
Schwarz, 1999). The investigation of the role of different environments that give 
opportunities for students’ reflection on their mathematical discourse is a critical 
question. 
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In this paper we present a case study of a small group of two 11-year-old students 
who participated in a broader research program whose purpose was to investigate the 
way that students can be actively involved in a reform of their own behavior as they 
cooperate in small-groups to solve mathematical problems. More specifically, we 
study the opportunities that were offered for the development of small-group 
students’ interaction in mathematics in two alternative environments: a) the students’ 
observation and discussion on their videotaped cooperation and b) their participation 
in dramatic role-play.           

METHOD 
The two students were participated in a research program realized in a fifth grade of a 
typical public school of Athens in autumn of 2003, which lasted four months. 
Initially, in order to construct the students’ profile, they were interviewed about their 
beliefs for their own role, others’ role, the general nature and the goals of 
mathematical activity. Furthermore, we recorded their parents’ beliefs about the 
mathematical activity of their children in school as well as in home. During their 
mathematical activity in the classroom, the two students worked in group and their 
cooperation was videotaped once a week. The mathematical topic they discussed 
during the research program concerned the concept and the operations of  fractions. 
After a session of cooperation the members of the group participated in a meeting 
with the researcher. During this meeting, the students observed and discussed on 
issues concerning their videotaped cooperation. These discussions were tape-
recorded. Moreover, the students of the group were obliged to organize and to present 
drama role-plays in the classroom based on the experiences of their cooperation. 
These role-plays were videotaped. At the end of the program, the members of the 
group were interviewed about their own role and the others’ role in mathematics. So, 
the data consisted of the videotaped recordings of the small-group’s work in 
mathematical lessons, the tape recorded students’ discussions about their own 
videotaped cooperation, the videotaped recordings of the students’ role-play and the 
protocols of tape recorded clinical interviews conducted with each student at the 
beginning and at the end of the program.  
The discourse analysis of the group’s engagement in classroom mathematical 
activities was based on interactivity flowcharts that Kieran and Sfard have developed 
(Sfard & Kieran, 2001). The mathematical discussion of the group was analyzed 
according to the way that the members negotiated their mathematical activity (who 
offered the solution, what kind of solution offered, how explained their thinking, how 
every member of the group was influenced by the other, etc.). The tape recorded 
students’ discussions about their own videotaped mathematical cooperation were 
analyzed according to: a) the way that the students assessed their cooperation, b) the 
critical moments of their interaction and c) the targets they put for their next 
cooperation. The role-plays were analyzed according to: a) the roles that the students 
chose to play, b) the relationship between drama text and their cooperation in 
mathematics and c) their comments for this experience.   
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RESULTS 
We chose to present the work of this group (Stavroula and Alexia) because these two 
students had different beliefs about the role of cooperation in mathematics and they 
had different capacities on this lesson. Firstly, we present the students’ profile before 
their cooperation and then the development of their reflection on their cooperation in 
mathematics through the two alternative environments.  
The children’s profile 
Both students had developed their beliefs in a traditional context of mathematics 
teaching. The goals posed by both students for their mathematical activity concerned 
the result of their effort (right or wrong) and not the process. Nevertheless, they had 
different conceptions about the role of cooperation in mathematics. Stavroula 
considered the cooperation to be an obstacle in the understanding of mathematics, 
because she believed that “if someone doesn’t work on his own, he cannot 
understand mathematics”. On contrary, Alexia believed that cooperation could help 
her to control her thoughts before she announced them in the classroom and so she 
could “avoid mistakes”. Moreover, we should mention that the students’ parents 
attributed to the cooperation in school mathematics a social role and not a cognitive 
one, that is they conceived the cooperation as a means for students’ socialization. As 
for the two students abilities in mathematics, Stavroula was a student that managed to 
find solutions on mathematical problems on her own and Alexia was a student that, 
most of the times, need some help to complete a mathematical activity.  
At the beginning of their cooperation Stavroula and Alexia worked individually and 
they didn’t negotiate their ideas. Most of Stavroula’s utterances were addressed to 
herself, revealing, this way, a private discourse and very few utterances indicated a 
challenge for reaction from her interlocutor’s part. The few utterances of Alexia had 
mostly the form of a challenge for reaction from Stavroula’s part and were related to  
her effort to understand her classmate’s solution. 
Stavroula was guiding the dialogues that were 
developed by presenting her solution to Alexia 
without arguments or explanations about it, while 
Alexia didn’t challenge her classmate to explain 
her solutions. The interactivity flowcharts of their 
initial cooperation had a form like the next one. 
Students’ reflection as they observed their 
videotaped cooperation   
Concerning the way that the two students assessed 
their cooperation, we can notice that the two 
students experienced it in different ways. Initially, 
Stavroula assessed the evolution of their 
cooperation mostly based on the solution (wrong 
or right) of their mathematical activity. On the 
contrary, Alexia was based on the type of their 
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interaction, that is if her interlocutor gave her some help. However, both of them had 
an awareness of the quality of their cooperation (productive or not). For example, 
after an unproductive cooperation the students commented: 

Stavroula:  I wanted to write on my own as I was used to, but afterwards I thought 
that we must cooperate and so sometimes we discussed. 

Alexia:  We tried to cooperate, I asked Stavroula to discuss the problem, but we 
sometimes managed it. 

The critical moments of the cooperation that they gave the group members the 
opportunity to reflect on their actions were related to the existence of conflicts. These 
conflicts were connected to: a) the existence of different ideas and the failure of 
investigating them and b) the type of explanations that each member offered and the 
lack of understanding from the partner. 

For example, at the beginning of the program, the children discussed about their 
cooperation in which they had to solve the following problem: In Alexandra’s 
Avenue, public works are being made by 3 different firm of constructors. The works 
are being made at three different points. The first firm of constructors makes works at 
a point corresponding to the 1/3 of the avenue, if we count from its beginning. In the 
¾ of the avenue there are works of the second firm of constructors and in the 5/6 of 
the avenue there are works of the third firm of constructors. Note in the following 
schema where the works are being made. Use red color for the first point, green for 
the second one and blue for the third one .   

 
 
When they observed their videotaped cooperation, they had the opportunity to reflect 
on their failure to negotiate Alexia’s idea:  

Researcher:  Did you have different ideas about the solution of the problem? 

Stavroula:  I said to count with a rule and to put centimeters, but Alexia said to 
divide it in small pieces.  

Researcher:  What did you do after your conflict? 

Stavroula:  I tried to do what I said. 


lexia:  Me too, I tried to do what Stavroula said, but I did not manage it.  

Researcher:  Did you discuss your different ideas, let’s say who had right and why?  


lexia:  No. 

Researcher:  Let’s observe at the video the solution given in the class… The solution 
at the blackboard with whose idea does it matche? Stavroula’s or 
Alexia’s? 

Stavroula:  With Alexia’s idea… 

beginning end 
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Observing another video of their cooperation, the students had the opportunity to 
reflect on the value of explanation for the development of a productive mathematical 
discussion. For example, the following dialogue took place: 

Researcher:  How could you understand Alexia’s thinking? 

Stavroula:  She had to explain to me her solution better. 

Researcher:  Alexia, did you try to solve the problem as Stavroula proposed and you 
said that you didn’t manage it? 


lexia:  I had not understand what she said. 

Researcher.  What could you do then? 


lexia:  I could ask her to explain to me her solution again. 

About the way by which the two students put goals for the evolution of their next 
cooperation, we observed the following: At the beginning, the goals posed by the 
students were common and general  (e.g. “to cooperate more”, “to solve the problem 
together”). Afterwards, their goals concerned concrete actions that they were 
addressed to their interlocutor (e.g. “Stavroula must explain to me her solution”). 
Finally, the goals became personal and concerned their own actions about their 
interaction (e.g. “I have to think more about what Alexia wants”, “I have to listen 
what Stavroula says”). At this phase, the goals reveal the mutual responsibility that 
the students managed to develop concerning their cooperation in mathematics. 

Students’ reflection as they participated  in dramatic role-play  
Alexia and Stavroula chose to represent a discussion between two students in the 
classroom, as they tried to solve a problem that was difficult for the one student. The 
scenario that they designed and played was the following:  

[1]Alexia:  A fruit-bowl contained 21 apples. George ate 2/3 of the apples. How 
many apples did they remain?  

[2]Stavroula:   Ah! It seems difficult!  
[3]Alexia:   Think again about it. It is easy.  
[4]Stavroula:   Help me a little. 
[5]Alexia:   What do you mean “a little”? 
[6]Stavroula:    Such a little! (She shows with her hands.)  
[7]Alexia:  If I help you such a little, the problem will be solved by myself and not 

by yourself ! 
[8]Stavroula:   It doesn’t matter at all! 
[9]Alexia:   It doesn’t matter at all? It matters a lot, because you will not learn it. 
[10]Stavroula:   Oh! You talk like my mother! She told me the same things.  
[11]Alexia:   She has right! You should solve it alone.  
[12]Stavroula:   Come here now!  
[13] Alexia:   What do you want? 
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[14]Stavroula:   Do you want to solve it together, to discuss about it? 
[15] Alexia:   OK. 
[16]Stavroula:   How did you solve it? 
[17] Alexia:   Look here, we can divide the apples in three parts.   
[18]Stavroula:   Ah! Three times seven …21, every part has 7 apples. 
[19] Alexia:   Yes, what about the 2/3? 
[20] Stavroula:  7 plus 7…  
h! It ill be remained 7. 
[21] Alexia:   OK. 

The above scenario developed in two scenes: at the first scene [1-13] the students 
chose to represent difficult moments of their cooperation and at the second scene [14-
21] represented a productive cooperation. Concerning  the choice of the roles, we 
should mention that Alexia and Stavroula decided to play the opposite roles in 
relation to those that they experienced at their cooperation in mathematics. Alexia 
played the student who managed to solve the problem alone and Stavroula chose to 
play the student who need help.  Their experiences during their cooperation were 
impressed on their play. More specifically, Stavroula’s belief that mathematical 
learning is only an individual process was mentioned by Alexia at the phrases [7, 9, 
11]. The continual efforts of Alexia to challenge Stavroula’s cooperation printed on  
Stavroula’s phrases [4,8]. The change of Alexia’s behavior during the dramatic play 
prints the evolution of their cooperation in mathematics. Moreover, an interesting fact 
is the comments made by the students for their parents’ beliefs about their 
mathematical activity [10, 11]. 

The following discussion took place in the classroom after the dramatic play: 
[1] Researcher:  Do you want to talk about the roles? How do you feel about your role?  
[2] Alexia:  I don’t think that I am egoist because I finally helped Stavroula. I felt 

nice because I helped her, I did not solve her the problem, I just helped 
her.  

[3] Stavroula:  I felt a little upset at the beginning, when I asked her to help me. When 
I persuade her to discuss, I felt nice. 

[4]Researcher:  Very good. Who want to talk about the cooperation that your 
classmates showed to us? 

[5]Student 1:  At the point where she told her “solve it alone”, she felt upset. Then 
they began to discuss and they solved the problem together, it was 
good. I said Kostas  the same thing. (Kostas was his partner)  

[6] Stavroula:   Do you want to explain why I chose this role? 
[7] Researcher: Yes. 
[8] Stavroula: I chose this role because I usually solve the problems quickly and then 

I help Alexia, but I did not know  how it is if someone does not 
understand the problem. 
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This environment gave the students the opportunity to think and to express their 
feelings about the social actions that take place by themselves as well as by their 
partners [2,3]. The presentation of the dramatic play in the classroom gave the 
opportunity to the other members of the classroom to reflect on their own behavior 
during their cooperation in mathematics.  

During the last month of their cooperation, the two students developed productive 
cooperation as, most of the time, each interlocutor 
challenged the other’s participation. Most of Stavroula’s 
utterances were addressed to her interlocutor. These 
proactions had mostly the form of questions (request for 
approval of a suggested  mathematical action, request for 
explanation). Furthermore, she seems to take account of 
Alexia’s reactions in several moments of their discussion. 
Alexia participated more actively, she did not only tried to 
understand Stavroula’s solutions, but many of her 
utterances related to the production of a solution and not to 
the request of an explanation. The interactivity flowcharts 
of their cooperation had a form like the next one. 

Based on the previous analysis, we noticed that the 
members of this group formed social rules that allowed the 
development of productive cooperation in mathematics. 
More specifically, the students explain their thoughts 
without prompting, they try to make sense to their 
interlocutor’s explanations and justifications, to express 
their disagreements and to share the responsibility of their 
actions. 

At the final interview about their beliefs for mathematical 
cooperation, the students said: “It is beautiful to cooperate in mathematics, I can listen 
other opinions, sometimes better from mine, I don’t feel alone when we have to solve a 
difficult problem…” (Stavroula), “ I like to work together because everyone talks about its 
opinion and we can find a better solution …” (Alexia). 

CONCLUSIONS 
These environments gave the group members the opportunity to reflect on their 
cooperation, to evaluate it and to pose goals about the improvement of their 
mathematical discussion. Although the two students had considerable differences in 
their beliefs about the role of cooperation in mathematics, they managed to achieve 
the development of new effective social rules. Both environments (observation of 
their videotaped cooperation and dramatic role-play) allowed them to reflect on their 
actions and on the consequences of their actions and to feel the necessity of new rules 
in their cooperation.  
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The first environment gave them the opportunity to focus their attention on these 
moments that were obstacles for the development of a productive cooperation (the 
consequences of the non exploitation of an effective idea and the lack of 
understanding of partners’ explanation of the mathematical solutions). The second 
environment offered them the opportunity to experience the role of the other member 
of the group, to experience the whole history of their cooperation and to express their 
thinking about it without prompting in front of the other members of the class.  

An open question that arises from this research concerns the way that these 
environments which promote students’ reflection on their sociomathematical 
interaction can be incorporated in teaching practice of mathematics.  
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INVESTIGATING TEACHERS’ RESPONSES TO 
 STUDENT MISCONCEPTIONS 

Helen L. Chick and Monica K. Baker 

University of Melbourne 

 
As part of a study investigating primary/elementary teachers’ pedagogical content 
knowledge teachers were asked to describe how they would respond to some 
hypothetical situations involving student misconceptions and errors. The nature of 
the task in which the error arose influenced teachers’ emphasis on procedural or 
conceptual aspects, and teachers’ responses revealed aspects of their pedagogical 
content knowledge. The usefulness of a questionnaire and interview approach for 
investigating these issues is also discussed. 

BACKGROUND TO THE STUDY 
Teachers’ mathematical pedagogical content knowledge (PCK)—or knowledge for 
teaching mathematics—has received considerable attention since the mid-1980s (e.g., 
Shulman, 1986). One of the key components of PCK is knowledge about student 
misconceptions. As part of a larger study investigating PCK and its influence on 
instructional practice and student learning, this paper examines the self-reported 
practices of year 5 and 6 teachers in addressing certain typical misconceptions. It 
focuses on their strategies and the pedagogical and mathematical knowledge revealed 
in their responses. It also considers the effectiveness of using a questionnaire and 
interview to investigate PCK. 

Dealing with student misconceptions 
An understanding of common student misconceptions, and effective strategies to help 
students avoid them, is an important aspect of mathematical PCK (Graeber, 1999). In 
addition to trying to teach in such a way that students avoid misconceptions, teachers 
must also have approaches for dealing with those that inevitably arise. Once the 
misconception is recognised teachers must decide what strategies they can use. If 
reteaching occurs then decisions must be made about what to emphasise and how. 
Cognitive conflict is another strategy, in which students encounter a situation that 
contradicts their initial understanding in the hope they will then re-evaluate those 
beliefs (see Watson, 2002 for a good overview of the literature).  

In addressing student misconceptions teachers’ approaches may focus on procedural 
or conceptual aspects. Hiebert and Lefevre (1986) distinguish conceptual knowledge 
as being rich in relationships, with procedural knowledge having an emphasis on 
symbolic representation and algorithms. Most curriculum documents place an 
emphasis on both. One of the challenges in teaching is to address both aspects, a 
problem exacerbated if teachers lack conceptual fluency in key topics (Chick, 2003).   
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Investigating teachers’ pedagogical content knowledge  
Investigating teachers’ PCK and the ways in which it is used by them has proved 
challenging, because PCK comes into its own in the classroom. Since classrooms 
vary from moment to moment and are thus different from one another in a myriad 
ways (as shown by Lampert, 2001) observing two teachers in their own classrooms 
can show their PCK only for the situations that arise for them, and so comparisons 
are not easily made. For large scale studies the resources required for an extensive 
examination of PCK are significant (see, e.g., McDonough & Clarke, 2002, who look 
at 6 teachers on a single topic). Some researchers have tried to set up a single 
consistent scenario (e.g., van der Valk & Broekman, 1999), by asking teachers to 
prepare a lesson plan on a particular topic. This at least makes it possible to 
investigate many teachers’ PCK for that topic, but requires a considerable investment 
for multiple topics. So, in addition to examining the way teachers address student 
misconceptions and PCK per se, this study also asks if there is a way to investigate 
teachers’ PCK for multiple teachers over multiple topics. 

METHODOLOGY 
Participants and Procedure 
Nine Australian teachers took part in the study. At the time of the study these 
teachers were teaching Grade 5 or 6 (students 10-12 years old). They had 2 to 22 
years of teaching experience, but not all of it in Grade 5 or 6 classrooms.  

As part of the larger study on pedagogical content knowledge participants completed 
a questionnaire and were then interviewed about their written responses. The 
questionnaire comprised 17 items examining mathematics teaching situations and 
beliefs, and participants completed it without restrictions on time or resources. The 
completed questionnaire was returned to the researchers who prepared questions for 
the interview, partly to clarify ambiguities or omissions in the written responses. 
Interviews thus varied among teachers, although there were also some common 
questions. Teachers’ responses to four of the items from the questionnaire, together 
with their follow-up comments from the interview, are the focus of this paper.  

The four items were designed to explore how teachers respond to student errors or 
misconceptions, with a focus on the subtraction algorithm, the division algorithm, 
fraction addition, and the relationship between area and perimeter. Each item showed 
work from a hypothetical student, and invited teachers to indicate what they would do 
in response. The subtraction and the area/perimeter items are shown in Figures 1 and 
2. In the division item the hypothetical student disregarded the place value associated 
with any zeros in the dividend. For the fraction item (7/10 + 2/5) the student correctly 
obtained an equivalent fraction for 2/5, but the resulting addition of 7/10 + 4/10 was 
carried out by adding numerators and adding denominators. For this item there were 
direct questions about what teachers thought the student did and did not understand. 
The researchers regarded the misconceptions as being archetypal, and expected that 
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most of the teachers would have encountered at least some of them either in teacher 
training or in actual classroom practice. 

You notice a student working on these subtraction 
problems: 
 
  
 
 
What would you do to help this student? 

A student cuts the following shape in half to make a 
new shape, saying that the two shapes have the same 
area and perimeter: 
 
 
 
What would you say to this student? 

Figure 1. The subtraction item. Figure 2. The area/perimeter item. 

Analysis 
The data were analysed to identify what teachers said they would do in response to 
the students’ work, to identify whether their responses to students were 
predominantly procedurally or conceptually based, and finally to identify differences 
in displayed pedagogical content knowledge. The written responses were analysed 
first, with additional data provided from the interviews.  

Strategies used by teachers in their responses to students are shown in Table 1; these 
categories were refined as the researchers identified common themes from the data.  

Category Definition 

Re-explain Explaining or re-explaining any part of either the concept or procedure. 

Cognitive 
Conflict 

Setting up a situation in which the student might identify a fundamental 
mathematical contradiction between the original response and the new 
situation, thus encouraging the student to re-evaluate the erroneous approach.  

Probes 
student 
thinking 

Asking the student to explain working or thinking, either to discover what the 
student is thinking to help the teacher decide what to do next, or to get the 
student to see the error. [It was not always possible from the data to establish 
which of these the teacher intended, so no distinction was made.] 

Other Any strategy not clearly in the above categories, e.g., “use simpler examples”. 

Table 1. Categories of teacher strategies in response to student misconceptions. 

Where teachers gave an explanation of how to do the student’s problem correctly, 
this explanation was further categorised as conceptual or procedural or both. To be 
judged as conceptual the response had to have clear reference to underlying 
mathematical principles, as opposed to merely giving a recipe for a procedure 
without justification. Finally, the participants’ responses were examined more closely 
to identify aspects of pedagogical content knowledge evident in their explanations. 
Teachers’ names have been changed for reporting results. 

438 
-172 
346 

5819 
-2673 

3266 
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RESULTS 
Teachers’ approaches to dealing with misconceptions 
Table 2 shows the strategies used by teachers in response to the student 
misconceptions. Re-explain was the most common strategy, although less common 
for the area/perimeter item. Teachers only suggested probing student thinking in 
response to the subtraction and division items, usually asking students to say their 
procedure aloud. Cognitive conflict was a strategy for all items, but the methods 
teachers used to evoke cognitive conflict varied between the items. For example, 
using diagrams or materials to compare the sizes of the fractions and demonstrate the 
unreasonableness of the student’s result was common in the fraction addition item, 
while using inverse operations or a calculator to check answers was common for the 
subtraction and division items. In the area and perimeter item five teachers said they 
would ask students to “measure and check” the perimeters of the two shapes to 
establish the cognitive conflict. A general strategy proposed across items to address 
misconceptions was to consider simpler examples. 

Item Re-explain* Cognitive 
conflict* 

Probes student 
thinking* 

Other* 

Subtraction 9 2 (2) 1 (3) 1 (1) 

Division 8 5 (2) 1 (2) 2 (1) 

Fraction addition 7 4 (1) 0 1 

Area/perimeter† 4 5 (2) 0 1 

*Numbers in brackets refer to responses added in the interview that were different from the 
original questionnaire response. 
† One teacher believed the misconception, so did not offer any strategy for this item. 

Table 2. Numbers of teachers using particular strategies in response to 
misconceptions. Teachers may have used more than one approach. 

Nature of teachers’ explanations 
Table 3 shows the number of teachers whose explanations were categorised as 
procedural or conceptual in response to student misconceptions. The type of response 
seemed to depend on the item. Teachers were more likely to respond to the 
subtraction and division items with a purely procedural explanation, as evident in this 
response to the subtraction item: “Break this problem down. Treat it as 3 separate or 
4 separate subtractions to begin with” [Brian]. In contrast, purely conceptual 
explanations were only given in response to the fraction addition and, as shown here, 
the area/perimeter items: “For the first shape the 2 rectangles share a long side, but in 
the second only a small side and therefore the distance around the outside would be 
different” [Clare]. Most explanations combined procedural and conceptual aspects, 
such as the following response to the subtraction item, which emphasised the 
importance of conceptual understanding in supporting the procedure: 
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[After demonstrating “borrow[ing] a ten”, and saying that “1 ten and 2 ones … is the 
same as 12 ones”] We will also look at our MAB equation and note that now we only 
have three tens. I will ask if we still have the number 42, albeit represented differently … 
During this initial equation I would not ask the students to write the equation down; the 
focus would be on making, discussing and solving the equation. [Amy] 

Item Procedural 
explanation 

Conceptual 
explanation 

Procedural and 
conceptual 
explanation 

Not clear/ no 
explanation 

Subtraction 4 0 4 1 

Division 6 0 3 0 

Fraction addition 0 2 7 0 

Area/perimeter 1 2 4 2 

Table 3. Numbers of teachers giving procedural or conceptual explanations in 
response to misconceptions. 

Differences in PCK evident in responses 
Teachers’ PCK can be examined within the framework described above. Although 
differences in the approach that teachers took for the different items may have been 
affected by the nature of the item (as discussed later), a comparison of responses to 
the same item, by teachers who adopted a similar strategy, is revealing about the PCK 
held by those teachers. 

A closer look at three responses to the fraction item demonstrates this. Brian, Erin 
and Amy all responded to this item by re-explaining subtraction to the student. Brian 
and Erin decided to break the first subtraction into three parts (for ones, tens, and 
hundreds), and all three mentioned using MAB (base 10 arithmetic/Dienes’ blocks). 
However, there are some important differences. Brian suggested breaking the 
problem into parts, but did not discuss how to bring the parts together again to 
complete the problem. While he described using MAB to demonstrate that “you can’t 
take 7 from 3”, he did not explain what he would do next. Erin’s response was 
similar, but she went on to describe using MAB to help “take from” the hundreds 
column when there are not enough tens. Amy’s response to this problem was 
noticeably more detailed, and she made an additional decision to begin with a simpler 
(two digit) problem. She described going through each step in the subtraction 
algorithm with the MAB, frequently highlighting important aspects for the student, 
such as the equivalence of the original number, 42, to its new form, 30 + 12. She 
emphasised the importance of students understanding this process first, and only then 
“we would look at how we represent our trades on paper”. 

The differences in the choices made and in the detail and coherence of the three 
responses reveal differences in knowledge about teaching the subtraction algorithm, 
and about this misconception. Brian has identified the problem, and actions he might 
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take, but in a limited way, and he has not connected his ideas into a logically 
sequenced response to the misconception. Erin’s response is more detailed and 
connected, but still contains many gaps, while Amy’s response is detailed and 
coherent, and reveals more explicit awareness of the reasons for her decisions. 

Teachers’ responses to the division item can be examined similarly. While most 
responses characterised as “re-explain” mentioned ideas like the importance of place 
value, zero as a “place holder”, and the use of multiplication in checking answers, a 
deeper examination of responses reveals more aspects of the PCK of the teacher. The 
focus of Hilary’s response was to remind students to “put a zero down” in certain 
cases, without justifying why this is the case. Irene did the same thing, but added that 
“just because a zero is there doesn’t mean that it’s nothing, it just happens to be no 
tens.” She also discussed the meaning of the different columns in terms of place 
value, and was very specific about why she feels students need to understand this. 

DISCUSSION AND CONCLUSION 
A number of factors are evident in the teachers’ responses. It appears that the nature 
of the items themselves and the topics covered in each may influence how teachers 
said they would respond, particularly with reference to the emphasis on procedural 
and/or conceptual explanations. Although not apparent in the data presented here, 
there was also evidence that some teachers may be inclined towards one more than 
the other. Other teacher-based differences are shown in the closer analysis of the 
teachers’ PCK revealed in their responses. These issues, and the question of the 
effectiveness of the questionnaire/interview approach, are discussed in detail below. 

Differences among teachers’ responses 
The data in Tables 2 and 3, and the detailed responses, indicate differences in 
approach among teachers and items. The subtraction and division items attracted 
many responses that were purely procedural. This may be because they involved 
student tasks with an algorithmic calculation, and that while the procedure in the 
algorithms and the overall concept involved (subtraction or division) are linked, it 
can be a difficult link to maintain while focussing on the mechanics of the procedure. 
Indeed, what was noticeable in the teachers’ responses was the lack of conceptual 
support for teaching the procedure, such as modelling the algorithm using MAB.  

In contrast, responses to the area/perimeter item were more often conceptual or both 
conceptual and procedural, with only one purely procedural response. There is no 
complex algorithm associated with this item, and the procedure involved in 
measuring perimeter mimics the concept more clearly than in the algorithm items. 
Teachers’ responses often indicated that the meaning of area and perimeter would be 
revisited; and where the procedure was stated it was supported by some conceptual 
explanation. Moreover, five teachers indicated that they would pursue the concepts 
further through an exploration of shapes with the same area but different perimeter. 
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The fraction addition item lies somewhere between these two: the link between the 
procedure and the concept may not be evident to the student, but is readily 
demonstrated by the teacher. The number of responses that combined procedure and 
concept offers support to this idea. Three teachers drew a diagram in their 
questionnaire, and all the teachers at least made mention of drawing a diagram or 
using physical materials to model the problem. Such a diagram, of two wholes with 
seven tenths shaded in the first and four tenths in the other, mimics the written 
problem quite closely.  

For the more algorithmically-based items, the prevalence of “re-explain” as a strategy 
in teachers’ responses is unsurprising. The way in which cognitive conflict was used 
varied across items. The idea of considering the inverse operations to evoke cognitive 
conflict for the subtraction and division items was rare. Many teachers sensibly 
suggested that students estimate their answer for the division item; the cognitive 
conflict should be dramatic in this case, whereas for the subtraction item the 
estimated result may not sufficiently differ from the student’s erroneous answer. 
Finally, for the perimeter item, teachers seemed to believe that the student’s 
misconception was because the student had generalised some idea of “conservation”, 
rather than a lack of understanding of the procedure of measuring the perimeter; 
hence their suggestion that the student should “measure and check”.  

Investigating teachers’ pedagogical content knowledge 
Some quite significant aspects of PCK were revealed using the questionnaire and 
interview approach. When two teachers asserted that they would adopt a particular 
approach in response to the same student misconception, the differences in the details 
offered by those teachers often revealed evidence of differences in PCK, or at least in 
the application of their PCK. For some teachers, the careful articulation of a well-
developed sequence of ideas seemed to reflect deep understanding of concepts and 
strategies for making those ideas meaningful for students. In other cases, the concepts 
were not well-linked, nor were concepts well-supported pedagogically.   

It should be noted that the responses in the questionnaire alone were informative, but 
the follow up interview gave additional insights and allowed teachers to reveal more 
of their understanding and repertoire of strategies. It certainly seems, perhaps not 
surprisingly, that investigating PCK is intrinsically labour-intensive. Nevertheless, 
this approach allows investigation of a wide range of topics, recalling that there were 
more items on the questionnaire than the four reported here. 

Limitations 
There are a number of limitations to this study. With such a small number of teachers 
we cannot quantitatively generalise about the likely responses of other upper primary 
teachers, although the study has given some qualitative insights. It should also be 
noted that the questionnaire and interview approach still does not provide legitimate 
evidence for what teachers may do in a real-life teaching situation, in response to 
situations they have more control over and with students they know (further insights 
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into this are evident in the work of Lampert, 2001). Furthermore, the absence of a 
strategy or explanation in a teacher’s response does not necessarily imply that it is not 
part of his or her teacher knowledge. 

Conclusion 
The study suggests that teachers respond to student misconceptions in a variety of 
ways. Their responses to the items appeared to be influenced by the nature of the 
student task, and revealed aspects of their PCK and the emphasis they place on 
procedural and conceptual aspects of mathematical understanding. Although a 
framework for investigating teachers’ PCK with this method has not yet been 
developed, it appears from initial explorations that the questionnaire and interview 
have the capacity to reveal subtle differences between teachers’ responses, which 
may be attributed to differences in knowledge. This will form a background for the 
larger study, where PCK will be examined in the context of the classroom. It may 
also highlight aspects of PCK, and conceptual and procedural knowledge, that are 
important to emphasise for pre-service teachers. 
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In this project, the clichéd ‘student-centred’ versus ‘teacher-centred’ dichotomy has 
been reconceptualized in terms of the distribution of responsibility for knowledge 
generation in the classroom and applied in the analysis of ‘well-taught’ mathematics 
classrooms in Melbourne, Hong Kong, San Diego and Shanghai. This analytical 
approach enabled the practices of competent teachers in two ‘Asian’ and two 
‘Western’ settings to be compared in a more meaningful and insightful fashion than 
previously possible. This analysis was able to distinguish one classroom from 
another on the basis of the process whereby mathematical ideas are introduced into 
classroom discussion and subsequently revoiced and accorded authority. In 
particular, the methodology and analytical technique employed provided the 
opportunity to track the movement of mathematical ideas in either direction across 
the public/personal interface. Critical similarities and differences were identified 
between and within the classroom practices documented in each country with respect 
to the distribution of responsibility for knowledge generation. 

INTRODUCTION: A THEORY OF CLASSROOM PRACTICE 
The theory of learning on which this paper is grounded is one that starts from the 
social situation of the individual in interaction with others, but which accords a 
significant role to the individual’s interpretive activity. Particular significance is 
attached to social interaction, and learning proceeds by the iterative refinement of 
intersubjective understandings that include social and content-specific (in this 
instance, mathematical) meanings, as well as values and modes of collaborative 
practice. These understandings are enacted as progressively increased participation in 
valued practice, including the appropriate utilisation of technical language. Essential 
to an understanding of the nature of social activity in classrooms is the co-constructed 
nature of the practices of these classrooms, and the role of negotiation not as a 
subordinate activity through which classroom practice is constructed but as an 
essential activity of which classroom practice is constituted (Clarke, 2001). 

Teaching and Learning are not simply distinct but interdependent activities that share 
a common setting, rather they should be conceived as aspects of a common body of 
situated practice and studied as such. It is ironic that recognition of this fundamental 
unity is enshrined in several languages other than English and that the 
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dichotomisation of Teaching and Learning may be, in part, an artefact of our use of 
English as the lingua franca of the international Education community (this argument 
is outlined in greater detail elsewhere (Clarke, 2001)). Classroom Practice as a form 
of communal collaborative and negotiative activity is constituted as it is constructed 
through the participation of both teachers and learners and only understood (and 
consequently optimised) through research that accords value and voice to all 
participants. It is for this reason that the Learner’s Perspective Study, of which this 
paper is a product, supplements the multi-camera documentation of classroom 
activity with post-lesson reconstructive interviews of the participants. 

THE DISTRIBUTION OF RESPONSIBILITY FOR THE GENERATION OF 
KNOWLEDGE 
Popular in recent educational literature as descriptors of classroom practice are the 
terms ‘teacher-centred’ and ‘student-centred.’ These terms vary in definition and in 
use, but they represent a key dichotomy driving much of contemporary Western 
educational (particularly pedagogical) reform. From one perspective they appear to 
offer mutually exclusive alternatives with regard to the location of agency in the 
classroom. Western educational reform advocates student-centred classrooms, and 
research in Western settings confirms the value of practices associated with these 
classrooms (Chazan & Ball, 1997; Clarke, 2001). Asian classrooms have been 
typified as teacher-centred by both Western and Asian researchers, yet the students in 
these classrooms are highly successful in international studies of student achievement 
(‘The Asian Learner Paradox’) (Leung, 2001). Recent research in Chinese classrooms 
suggests that classroom practice is misrepresented by such a dichotomy (Huang, 
2002) and that a theoretical framework is needed by which the ‘teacher-centred’ and 
‘student-centred’ characteristics of classrooms can be more usefully characterised 
and investigated, without the assumption of an absolute dichotomy. 

Clarke and Lobato (2002) (and subsequently Lobato, Clarke & Ellis (in press)) have 
proposed a theoretical reformulation of teachers’ communicative acts in terms of 
function rather than form. This reformulation is founded on the distinction between 
“eliciting” and “initiating.” By focusing on function (intention, action, and 
interpretation) rather than form, some of the difficulties experienced in analysing the 
efficacy of teacher practices from a constructivist perspective are overcome. Such a 
framework offers a more incisive tool for the analysis of the teacher’s contribution to 
classroom discourse. In particular, it offers a language in which to frame either the 
devolution of the responsibility for knowledge generation from the teacher to the 
student, or, alternatively, the concentration of that responsibility in the teacher. For 
example, teacher acts that take the form of a question but have the function of telling 
can be identified and the responsibility for the initiation of a new mathematical idea 
can be correctly located with the teacher rather than the responding student. Equally, 
the capacity of the student to contribute to the generation of knowledge can be 
recognized, and classrooms can be compared according to the extent to which the 
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student is accorded the opportunity to make this contribution. The fundamental 
consideration is the distribution of responsibility for knowledge generation.  

There is general assumption in most literature that classroom discourse encompasses 
any form of interactions that take place in a classroom. Nevertheless, research has 
seldom studied all the different forms of classroom interactions. Research involving 
classroom interactions has tended to focus on either the teacher’s talk (eg., Wilson, 
1999; Young and Nguyen, 2002) or teacher-students’ interactions in either whole 
class (e.g., Klaassen and Lijinse, 1996, and Seah, 2004) or group discussion (e.g., 
Knuth and Peressini, 2001). There have been however very few studies, if any, that 
took into account the role of student-student interpersonal interactions in generating 
knowledge in the classroom. In our study, a more integrated and comprehensive 
approach was attempted by analysing both public interactions in the form of whole 
class discussion and interpersonal interactions that took place between teacher and 
student and between student and student. Interpersonal student-student interactions 
available for analysis were restricted to a focus group of up to four students. While 
this approach did not allow all interactions that took place in the classroom to be 
studied, it provided us with an avenue to track the generation of knowledge that could 
occur in both the public and interpersonal domains. In this paper, we report the use of 
an analytical technique applied to data from mathematics classrooms in four distinct 
cultural settings to explore the nature of the distribution of the responsibility for 
knowledge generation. 

RESEARCH DESIGN 
Data collection was undertaken consistent with the ‘complementary accounts’ 
approach discussed in detail elsewhere (Clarke, 2001). In the Learner’s Perspective 
Study (LPS), three video cameras documented teacher and learner actions for 
sequences of at least ten consecutive lessons and this video record was supplemented 
by post-lesson reconstructive video-stimulated interviews with teacher and students, 
together with test and questionnaire data and copies of written material produced in 
class and interview. This data collection procedure was carried out in three 
mathematics classrooms in each of the participating countries. In each case, the 
teacher was identified as competent according to local criteria. In each country, the 
three mathematics classrooms were selected to provide diversity of socioeconomic 
context within a single major urban setting – Hong Kong, Melbourne, San Diego and 
Shanghai for the data analysed in this paper. 

All teacher classroom utterances and all statements by focus students, together with 
post-lesson interviews with teacher and students were transcribed and translated into 
English. The classroom transcript of each lesson was scanned for terms or phrases 
that expressed, represented, illustrated or explained mathematical concepts or 
understandings. In this paper, these terms or phrases are referred to as “math-related 
terms”. These might take the form of conventional mathematical terms such as 
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‘gradient’ or everyday expressions such as ‘slope’ or ‘steepness’. These math-related 
terms were classified into three categories:  

1. Those ‘primary terms’ that corresponded to the teacher’s stated instructional 
goal (in lesson plan or interview), 

2. Those ‘secondary terms’ that were subordinate to or supportive of the teacher’s 
main instructional goal (frequently terms that had been introduced in previous 
lessons or which referred to familiar everyday contexts and which served to 
explicate the meaning of those terms central to the lesson’s intended focus), 

3. Those that appeared infrequently and fleetingly in the course of classroom 
discussion (in either public or interpersonal statements). These were referred to 
as ‘transient terms.’ 

Once all math-related terms had been identified in the classroom transcript of a 
particular lesson, the next step involved identifying the speakers from whom each 
term originated and those by whom the term was then subsequently revoiced (or not). 
The time at which each math-related term appeared in the transcript was also noted. 
Each math-related term was annotated on the basis of whether it was mentioned in 
the personal or public domain. For the purpose of coding, interactions meant for the 
public domain were defined as those for which the intended audience was the whole 
class regardless of the number of individuals actually attending to the statement. 
Similarly, terms were coded as ‘personal’ if their intended audience were a single 
individual or a small group, even where the statement may have been audible to the 
whole class. The purpose of this distinction was to identify the social context in 
which each math-related term was first introduced and subsequently revoiced. In this 
way, it was possible to examine the assimilation of terms introduced in the public 
domain into student interpersonal discourse and, equally, the introduction of terms 
originating in student interpersonal conversations into the public arena. 

The occurrence of each term was then displayed in a tabular form analogous to 
Barnes’ “flow of ideas” display (Barnes, 2004) or to the resource utilization planning 
charts of engineers (from which both tabular representations derived). If these math-
related terms are thought of as resources drawn upon during the collaborative process 
of classroom knowledge construction, then the analogy is not inappropriate. Table 1 
has been significantly abridged for reasons of space: Only the first 6 minutes of the 
lesson are displayed and only a subset of the lesson’s math-related terms are 
included. The terms are separated within the table by bold lines into the three 
categories and a brief description is provided of the classroom activity coincident 
with the occurrence of the various terms. Each vertical column corresponds to one 
minute and the occurrence of each term is designated by speaker (T = teacher; 
Andrea, etc = student), by time-code (eg 06:13, seconds and frames within the 
designated minute) and by “P” if the utterance was an ‘interpersonal’ rather than a 
‘public’ utterance. 
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Mathematical 
Idea/Term 

0 – 1 mins 1 - 2 mins 2 - 3 mins 3 - 4 mins 4 - 5 mins 5 - 6 mins 

Current Activity (0:00 to 2:57) 
T reviewed the things learnt in the 
previous lesson with the class; drawing 
x- & y-axes (coordinate axes), locating 
the coords. of a pt & features of 2 points 
having the same abscissa. 

(2:57 to 8:19) 
T discussed the method to find the 
coords. of a point and marked the 5 
points on the blackboard: (1)find the 
quadrant where the point belongs; 
(2)draw a line perpendicular to x-axis & 
a line perpendicular to y-axis; (3)locate 
& note coords. of point. 

Coordinate(s) T (17:15) T (06:26) 
Eve (07:15) 
T (09:15) 
T (50:01) 

T (07:13) 
T (03:19) 

  T (27:19) 

Area       
Abscissa  Anthea 

(30:14) 
T (32:05) 

 T (03:19) 
T (34:11) 

 T (27:19) 

x-axis Sam (43:17) 
Eve (52:26) 
T (56:03) 

T (32:05)  T (34:11) T (08:15) Anthea 
(29:15)P 

Ordinate  Simon 
(48:17) 
T (50:01) 

 T (24:13) T (08:15) T (27:19) 

y-axis Sam (43:17) 
T (52:09) 
Eve (52:26) 

T (09:15)   T (49:29) Eve 
(30:12)P 

Transient Terms Eve (51:04): 
Coordinate 
axis. 
 

T (50:01): 
… 
rectangular 
coordinate 
plane. 

Anthea 
(18:22)P: 
rectangular 
plane  

  Eve 
(30:12)P 
location 

Table 1. The Distribution of Responsibility for Knowledge Generation 

The findings that follow are the result of the application of this analytical approach in 
a preliminary analysis of such tabular representations of the transcribed classroom 
discourse from between nine and fifteen lessons in each of the four cities. 
Interpretation of the status and origin of the math-related terms was supported by the 
teacher and student interview data. 

RESULTS: AN OVERVIEW 
Our intention in this paper is to illustrate both the viability of the distribution of 
responsibility for knowledge generation as a conceptual frame through which to 
compare classroom practice and the utility of an analytical procedure by which it 
might be applied. Given the constraints of space, we can only summarise some 
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general trends revealed by our analysis in terms of distinguishing characteristics of 
the classrooms studied. 

Shanghai (Lessons SH2 L04-05 and SH3 L01-05) 
The style of teaching in both Shanghai schools analysed was such that the teachers 
generally provided the scaffolding needed for students to reach the solution to the 
mathematical problems without “telling” them everything. Hence, one could find 
quite a few math-related terms that were introduced by the students during public 
discussion which the teacher had not taught. A particularly powerful example of this 
devolution of responsibility occurred when the teacher in SH2-L04 (Shanghai School 
2, Lesson 4) drew the class’s attention to an alternative method of solving 
simultaneous equations being used by a student which the teacher described as more 
‘elegant’ than the standard (textbook) method. 

Hong Kong (Lessons HK1 L09-11, HK2 L05-07 and HK3 L05-07) 
Students in the Hong Kong classes studied were generally not given the same 
opportunities to contribute during lessons in comparison with classes in the other 
three cities studied. The teachers generally stated very explicitly every step for 
solving the mathematical problems discussed. In other words, students were guided 
through the steps for each problem type with very little opportunity for original 
thought or input into class discussion. Where a new math-related term was introduced 
into whole class public discussion, this was either done by the teacher or by a student 
in response to very explicit prompting from the teacher. There were, however, math-
related terms that occurred for the first time in interpersonal conversation between 
students, but were not subsequently voiced in the public arena. 

Melbourne (Lessons A1 L04-06, A3 L06-08 and A4 L05-08) 
In two of the Melbourne classrooms (A1 and A3), math-related terms were frequently 
first introduced into whole class discussion by the students but this was most 
commonly in response to specific teacher questions and consisted mainly of terms 
taught in previous lessons. The teacher’s practice of regularly checking student 
knowledge of previous content provided frequent instances of student introduction of 
relevant math-related terms. Classroom activities offered frequent structured 
opportunities for students to contribute math-related terms whose emergence was 
anticipated and guided by the teacher. 

Melbourne classroom A4 provided several examples of math-related terms 
introduced for the first time in interpersonal conversation between students. 
Examples of such terms are: obtuse, millimeters, degree, co-interior, and 
complementary angles. The richness of the student-initiated math-related terms in 
interpersonal interactions between students reflects the comparatively lower level of 
overt guidance provided by that teacher. 
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San Diego (Lessons US1 L03-05, US2 L01-03, US3 L01, L02, & L05) 
In classes US1 and US2, student introduction of math-related terms was most 
frequently elicited by direct teacher questioning. Such terms occurred either as the 
names of concepts previously taught, in descriptions of patterns identified or in 
explanations of mathematical procedures employed, typically expressed in terms of 
specific mathematical rules. In contrast, in US3, the majority of math-related terms 
introduced by students arose as part of student descriptions of their problem solving 
attempts. These were typically elementary mathematical terms such as ‘equation,’ 
‘squared,’ and ‘triangle.’ 

DISCUSSION 
As examples of ‘Asian’ classroom practice, the Hong Kong and Shanghai lessons 
analysed displayed greater differences in the distribution of responsibility for 
knowledge generation than those evident from comparison of ‘Asian’ and ‘Western’ 
lessons. Within the sets of lessons analysed for each city, significant variation was 
evident. The practices of SH2 provided some powerful supporting evidence for the 
contention by Huang (2002) and Mok and Ko (2000) that the characterization of 
Confucian-heritage mathematics classrooms as ‘teacher-centred’ conceals important 
pedagogical characteristics related to the agency accorded to students; albeit an 
agency orchestrated and mediated by the teacher. Our preliminary analyses have 
demonstrated the utility of ‘the distribution of responsibility of knowledge 
generation’ as an explanatory framework capable of distinguishing usefully between 
classroom practices in both ‘Asian’ and ‘Western’ settings. 

Acknowledgements  
The authors would like to express their appreciation of the assistance of Vivien Wan during 
the process of coding the data. The research reported in this paper was supported by grants 
from the Australian Research Council, The Spencer Foundation (USA), the Collier 
Charitable Trust, and the University of Melbourne – this support is gratefully 
acknowledged. 

References 
Barnes, M. (2004). Collaborative learning in senior mathematics classrooms: Issues of 

gender and power in student-student interaction, Unpublished doctoral dissertation, 
University of Melbourne. 

Chazan, D. & Ball, D. (1999). Beyond being told not to tell. For the Learning of 
Mathematics, 19(2), 2-10. 

Clarke, D.J. (Ed.) (2001). Perspectives on meaning in mathematics and science classrooms. 
Dordrecht, Netherlands: Kluwer Academic Press. 

Clarke, D.J. & Lobato, J. (2002). To Tell or Not To Tell: A Reformulation of Telling and 
the Development of an Intiating/Eliciting Model of Teaching. In Section II of C. 
Malcolm & C. Lubisi (Ed.) Proceedings of the tenth annual meeting of the Southern 



Clarke & Seah 

 

2- 264 PME29 — 2005 

African Association for Research in Mathematics, Science and Technology in Education, 
Durban: University of Natal, pp. 15-22. 

Huang R. (2002). Mathematics teaching in Hong Kong and Shanghai – A classroom 
analysis from the perspective of variation. Unpublished Ph.D. thesis. The University of 
Hong Kong. 

Klaassen, C. W. J. M., & Lijnse, P. L. (1996). Interpreting Students' and Teachers' 
Discourse in Science Classes: An Underestimated Problem? Journal of Research in 
Science Teaching, 33(2), 115-134. 

Knuth, E., & Peressini, D. (2001). Unpacking the Nature of Discourse in Mathematics. 
Mathematic Teaching in the Middle School, 6(5), 320-325. 

Leung, F.K.S. (2001). In search of an East-Asian identity in mathematics education. 
Educational Studies in Mathematics 47, 35-51. 

Lobato, J., Clarke, D.J. & Ellis, A.B. (in press). Initiating and Eliciting in Teaching: A 
Reformulation of Telling. Accepted for publication March, 2005, in the refereed Journal 
for Research in Mathematics Education. 

Mok, I.A.C. & Ko, P.Y. (2000). Beyond labels – Teacher-centred and pupil-centred 
activities. In B. Adamson, T. Kwan, & K. K. Chan (Eds.), Changing the curriculum: The 
impact of reform on primary schooling in Hong Kong. Hong Kong: Hong Kong 
University Press, pp. 175-194. 

Seah, L. H. (2004). A Cross-disciplinary Approach to Analysing a Secondary School 
Science Lesson in Singapore. Unpublished MEd Thesis, University of Melbourne, 
Australia. 

Wilson, J. M. (1999). Using Words about Thinking: Content Analyses of Chemistry 
Teachers' Classroom Talk. International Journal of Science Education, 21(10), 1067-
1084. 

Young, R. F., & Nguyen, H. T. (2002). Modes of Meaning in High School Science. Applied 
Linguistics, 23(3), 348-372. 

 



 

 

 

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 2, pp. 265-272. Melbourne: PME.  2- 265 

INDIGENOUS AND NON-INDIGENOUS TEACHING 
RELATIONSHIPS IN THREE MATHEMATICS CLASSROOMS  

IN REMOTE QUEENSLAND1 
Tom J Cooper 

Queensland University 
of Technology 

Annette R Baturo 
Queensland University 

of Technology 

Elizabeth Warren 
Australian Catholic 

University 

In Queensland, Indigenous mathematics performance lags at least two years behind 
that of non-Indigenous students (Queensland Studies Authority, 2004). This low 
performance is exacerbated in remote communities where teachers are generally 
inexperienced, non-Indigenous, usually stay in the school for two years only, and do 
not know how to work effectively with their Indigenous aides. This paper reports on 
part of a 3-year study to enhance students’ outcomes through improving 
relationships between teachers, Indigenous teacher-aides, students and community 
members. It describes three case studies and identifies training, equality in 
partnerships, communication, and the “westernised” nature of classrooms as issues 
for effective teacher/aide relationships.   

Indigenous students continue to be the most educationally disadvantaged group in 
Australia with respect to mathematics. With their consistently lower levels of 
academic performance and higher rates of absenteeism (Bourke, Rigby & Burden 
2000; Queensland Studies Authority, 2004), they are poorly prepared to share the 
benefits of modern society. Adult employment levels are very low necessitating a 
reliance on welfare.  

There is now an expectation that schools must make a difference to Indigenous 
students’ mathematics achievement and should seek strategies to enhance their 
mathematics learning (Cataldi & Partington, 1998). However, rural and remote 
schools with Indigenous populations find it difficult to attract experienced teachers. 
As a consequence, their teachers are nearly always non-Indigenous, young and 
inexperienced and commonly leave after two years. While ultimately Australia needs 
more trained Indigenous teachers, an intermediate goal must be the more effective 
classroom use of Indigenous teacher-aides (who are mostly older, more experienced 
in dealing with Indigenous students, and have strong commitment and connections to 
the local community). These aides should be seen as the key to teaching success in a 
school with indigenous students (Baturo & Cooper, 2004; Clark, 2000).  

Indigenous aides in remote community schools are under-utilised in the mathematics 
teaching/learning process, being more administrative assistants and “crowd 
controllers” than partners in classroom teaching (Baturo & Cooper, 2004; Baturo, 
Cooper & Warren, 2004). In many instances, they are not trained in their role, 
 
1The research reported in this paper was funded by ARC Linkage grant, LP0348009. 



Cooper, Baturo & Warren 

 

2- 266 PME29 — 2005 

 

provided with sufficient information to assist the teachers, and included in curriculum 
decisions. However, Baturo and Cooper (2004) found that a small amount of training 
impacted positively on Indigenous teacher aides’ motivation, their ability to assist 
teachers in mathematics classrooms and students’ mathematics learning outcomes. 

Furthermore, Indigenous aides have the potential to bridge the gap between culture 
and western schooling, particularly in contextualising (Matthews, 2003) mathematics 
learning so that mathematics concepts can have relevance and meaning for 
Indigenous students. Utilising cultural knowledge in mathematics classrooms is 
essential with Indigenous learners to offset the current view that Western schooling 
generally devalues Indigenous culture which it marginalises as primitive, simplistic 
and insignificant with respect to mathematics (Matthews, Howard & Perry, 2003; 
Sarra, 2003).  

This paper reports on teacher/teacher-aide relationships in three classrooms within a 
3-year project in remote North-West Queensland schools to enhance Indigenous 
mathematics learning through improving relationships between teachers, aides, 
students and community members.  

METHOD 
The project’s methodology was mixed method. Quantitative data were collected on 
(a) students’ mathematics performance (school- and system-based tests), attendance 
and attitudes to mathematics and mathematics learning, and (b) teachers’ and aides’ 
attitudes and beliefs towards mathematics and mathematics teaching and learning. 
These data were collected annually across three years. Qualitative data were collected 
through observations of classrooms, regular interviews with teachers and aides, and 
artefacts (e.g., examples of teaching units). Each year, the researchers provided 
professional development in two major mathematics strands from which two units of 
work were to be developed, taught and shared with other schools. These professional 
development sessions were undertaken on site with the aides.  

The three cases. The three classroom teacher/teacher-aide interactions described in 
this paper are the result of observations and interviews in three schools representing a 
range of communities (labeled as Rural 1, Rural 2 and Regional respectively). They 
were undertaken in the second year of the project while the teachers and teacher aides 
in the three classrooms were completing a unit of work that had to be developed: (1) 
to cater for Indigenous students; and (2) to form a partnership between the teachers 
and the teacher aides. All teachers were inexperienced; all teacher aides were long-
term members of their communities. However, it should be noted that the schools 
paid the aides for student contact time only; preparation and reflection time with 
teachers were not considered part of their aide duties. 

Rural 1, a small school of 39 students enrolled in P-7, was situated in a very small 
Indigenous community (approximately 300 people) where all students and most 
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residents were Indigenous. The community was isolated, being 150 km from the 
larger regional community. The focus classroom was the Year 4-7 class (14 students) 
taught by Anne (young, non-Indigenous, newly-graduated) with two Indigenous 
teacher aides, Betty and Barbara.  

Rural 2 was also a small school (47 students enrolled in P-7) in a small country town 
(approximately 400 people) with a population comprising 50% Indigenous people. It 
was more isolated than Rural 1 being 300 km from the regional centre. However, the 
town had more commercial, business, and tourist facilities than Rural 1. The focus 
classroom was the Year 4-7 class of 16 students taught by Carl (mature, non-
Indigenous, 3 years teaching experience) with two aides – Doris (Indigenous) and 
Deidre (non-Indigenous).  

Regional was a larger school (300 students enrolled in P-7) with more than one draft 
of some Year levels; 60% of its students were Indigenous. The town of 
approximately 21000 people was the centre for all local, state, and national 
government agencies and had several large primary and secondary schools run by 
state, catholic, and independent education sectors. The focus classroom was the Year 
1 class of 20 students taught by Eva (young, non-Indigenous, in her second year of 
teaching) with an Indigenous teacher aide, Fiona.  

Procedure and analysis. Each of the classrooms was visited seven times in the year 
and the interactions between the teacher, aides and students observed (videotape and 
field notes). Two units of work were collected during the year. The teachers and aides 
were interviewed at each visit on their perceptions of their teaching and the 
effectiveness of their units (audiotape). As well, there were three professional 
development days at the central regional school to which all teachers traveled (the 
last of which is a conference in which teachers presented their units. There was a pre- 
and post interview each year at which teachers’ and aides’ beliefs re learning and 
teacher-aide partnerships were probed (audiotape).  

The students’ responses to the tests and surveys were analysed statistically for 
significant changes. The videotapes and audiotapes were transcribed and combined 
with attitude and belief survey responses, field notes, artefacts and units to form a 
profile of the classroom and the actions of the teachers and the teacher aides. This 
paper comes from analysis of the interviews and the observations. 

THREE CASE STUDIES 
Rural 1 (Year 4-7 class – 100% Indigenous community). The Indigenous community 
in which this school was situated held education in high regard. Student attendance at 
the school was very high (almost 100%), significantly higher than other communities. 
The reasons for this are uncertain but this excerpt from an interview with Anne 
(teacher) gives some insight: 

Anne It is cool to go to school … and the kids all know why someone is not 
here, they know if it is a good reason, or is it not so good reason. … I 
think the parents push the kids to go to school. … They [parents] get a bit 
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upset when their kids go away and don’t do so well, and end up back here, 
and I know a few parents are very upset that there are kids back here, 
particularly elders.  

Researcher: Why don’t parents want their children to stay in (regional city) with 
relatives?  

Anne  Because of gambling and drinking, a lot of kids in … they get into paint 
sniffing and so there … 

Researcher And these kids don’t have it here? [No] No drugs? 
Anne Nope, not with the young kids ….  

In this classroom, mathematics was the teacher’s least favourite subject and the 
students’ favourite subject and, because of this, Anne taught it in the last teaching 
period of the day (traditionally a notoriously difficult time for teachers to foster and 
maintain student interest and learning). The students were well behaved, on task, and 
appeared to cope with what was predominantly a “westernised” style of classroom. 
Anne did not include her aides in her mathematics planning. Her lessons were 
normally structured in whole-class teaching followed by performance-homogenous 
group investigations and individual work on activities (e.g., computer activities). Her 
double-spaced classroom had ample room to accommodate individual desk work, 
group work, quiet reading, and computer work. The teacher aides moved amongst the 
desks assisting students in the whole-class lessons, worked with a group as they 
rotated through tasks or undertook an investigation, or helped with an activity as 
students moved through their work sequence. There was an excellent relationship 
between students, aides and teacher in the room. They were all very positive about 
the mathematics lessons and engaged in the classroom activities. The students readily 
helped each other; the aides encouraged students to stay on task and provided help 
when they could.  

Betty and Barbara often seemed unaware of the particular activities to be taught each 
day and lacked the training to undertake some of the mathematics being covered. 
Because of this, they spent the start of each mathematics lesson sitting at their table 
beside the students and writing detailed notes on what the teacher was saying as she 
introduced the day’s work. This was their way of trying to come to understand what 
the teacher wanted from the lesson. It was also their way of learning some 
mathematics. Anne’s lack of attention to the aides’ knowledge of mathematics and 
the mathematics that was to be covered in the lesson appeared to have three 
consequences. First, the aides’ notes were often insufficient to enable them to provide 
appropriate mathematics assistance to the students. Thus, assistance was 
predominantly affective and behavioural – encouraging the students to keep trying, to 
stay on task and to not distract others – rather than cognitive (e.g., the mathematics 
focus of the activity) or even procedural (e.g., the sequence of steps to be followed). 
Second, the aides were sometimes slow to move to new activities. In one lesson, the 
students had to take measurements outside after completing some preliminary work 
in the classroom. These students outside worked unsupervised because the aides 
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appeared not to know that this was to happen. By the time they arrived, the data 
gathering had degenerated into one person measuring while all the rest watched. 
Third, the aides sometimes did not know the mathematics being taught. In the same 
lesson that had the outside measuring, one of the aides was unable to help students 
having difficulties with multiplying to calculate area. Interestingly, this problem was 
solved by one of the Year 7 students who came over and with a lovely manner 
showed both the students and the aide how to do the exercise.  

Rural 2 (Year 4-7 class – 50% Indigenous community). The small country town in 
which the school was situated was 50% Indigenous and appeared to be divided into 
two communities – Indigenous and non-Indigenous. Like Rural 1, problems with 
alcohol, substance abuse and violence appeared to be less obvious than in other 
Indigenous communities (Fitzgerald, 2002).  

The classroom in which Carl taught with Doris (Indigenous) and Deidre (non-
Indigenous) was a single room. The students sat in three rows in front of a black 
board with the teacher’s desk at the front. In the library next door and in an enclosed 
verandah beside the classroom, there was extra space in which there were computers 
and into which students moved for project work. Like Anne, Carl did all the planning 
and structured his mathematics lessons with a mixture of whole class work (where 
possible), ability groups and individual activity. The role of the aides appeared to be 
one of supporting the students with difficulties or giving one-on-one attention to low 
achievers. Attendance by the approximately 16 students appeared to be good and the 
students seemed engaged by the lessons. The Indigenous and non-Indigenous 
students’ behaviour, demeanour and presentation was very similar; however, the 
performance of the Indigenous students was generally lower (they made up the 
majority of the students receiving special literacy and numeracy support). 

To accommodate lack of out-of-school contact with his aides, Carl communicated his 
daily program to the aides through a notebook that had a section at the start for 
lessons and sections at the back for each student. Each night, Carl wrote in the front 
of the book what he intended to cover next day in the mathematics lesson. The aides 
read this part of the book when they arrived to see what would be covered. As the 
mathematics lessons occurred between the first and second recess period, the aides 
had time to ask questions of Carl in the first recess break. During the lessons, Doris 
and Deidre wrote into the back of the book (in each student’s section) anything they 
noticed about any of the students they worked with, particularly any lack of 
understanding of topics, and any special efforts and achievements. Each night, Carl 
read through these notes and used the feedback to modify his teaching, preparing 
special group lessons for topics for which many students appeared to be having 
difficulties and finding individual work for students with unique problems.  

Regional (Year 1 class – 60% Indigenous community). The Year 1 Indigenous 
students appeared to be of two types – (1) students whose families had been in the 
town for a long time and whose attendance, presentation and performance was 
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indistinguishable from non-Indigenous students, and (2) students of families who 
were new to the city, or who spent only part of the year in the city, and whose 
attendance was irregular and whose performance was low.  

The room in which Eva taught with Fiona (her Indigenous teacher aide) was a double 
size classroom. Desks were placed in one area with other areas set aside for reading, 
working with materials, and group discussion. Although she undertook whole-class 
teaching at times, Eva’s predominant modus operandi was to teach via rotating 
groups. She divided her class into high, middle and low ability groups. For each 
teaching episode, she developed three types of activities: (1) an initial activity that 
focused on introducing the idea through manipulating materials, teacher questioning 
and group discussion; (2) a follow-up activity that related material, language and 
symbol (if necessary) in a game situation; and (3) an activity that practised the ideas 
developed (a worksheet). The low achievers started at (1), the middle at (2), and the 
high at (3). Eva took the initial activities, Fiona supervised the game (after explicit 
instructions with regard to the mathematical focus of the task, the questions to elicit 
learning, and the specific mathematics language) whilst the worksheet activities were 
unsupervised. Eva planned these activities without her aide. Fiona had limited 
training in mathematics teaching and tutored most effectively in a structured 
environment such as the game activity where discussion and questions would be 
restricted by that environment. Therefore, unlike the aides observed in Rural 1 and 2, 
Fiona was treated as a teaching partner albeit in a limited way.  

DISCUSSION AND CONCLUSIONS 
The three cases highlighted the need to address the following issues: (1) training for 
both teachers and aides in mathematics knowledge, pedagogic knowledge, and 
forming effective partnerships; (2) more equitable partnerships that draw on both 
teacher knowledge and aide context/community knowledge for planning, delivery 
and reflection; (3) everyday communication; and (4) the continuing westernised 
nature of the classrooms.  

Training. It was obvious from observations and unit plans that the teachers 
themselves needed training in mathematics structure and appropriate pedagogy and in 
how to work with effectively with Indigenous aides. Therefore, with the exception of 
Eva, the teachers found it difficult to provide an effective teaching framework for 
their aides. It was also obvious that the aides needed training in basic mathematical 
concepts, processes and pedagogy. The teachers were aware of their aides’ 
mathematics deficiencies but none of them spent time, or even considered spending 
time, on training their aides. As strongly argued by Baturo, Warren and Cooper 
(2004) and RAND Mathematics Study Panel (2003), mathematics learning outcomes 
are very dependent on teachers’ and aides’ knowledge of mathematics.  

The success of Eva’s and Fiona’s teaching (Regional) was based on using materials 
and pictures to build relationships between real world problems, language and 
symbols and providing Fiona with a role in games with which she could cope. Anne’s 
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teacher aides, Betty and Barbara (Rural 1), did not have the mathematics to tutor their 
students effectively so they had little influence other than to encourage the students. 
Carl’s aides, Doris and Deidre (Rural 2), could share ideas and keep records on 
misunderstandings but there was no instructional theory for them to follow in 
supporting the students. Thus, in cognitive terms, Fiona was the most effective in that 
her games fitted in the activity rotation that developed ideas from materials to 
symbols.  

Equality in partnerships. All teachers were effective to some extent in integrating 
their aides in the teaching process with differing degrees of effectiveness in terms of 
student learning. Betty and Barbara (Rural 1) worked with groups or with students 
with difficulties but did not have the mathematics to do other than encourage and 
control behaviour; Doris and Deidre (Rural 2) followed the teacher’s plan in the 
notebook but were very instrumental in their assistance; and Fiona (Regional) had a 
successful role in supervising the game activity but she could do little outside of this. 
So, although the teachers had found roles in the teaching-learning process for their 
aides, they had not formed partnerships with some equality between themselves and 
the aides. In particular, the aides were not involved in planning the programs and 
their ideas were not sought for other than local knowledge about the children. There 
was no realisation that the aides could make contributions in other ways (e.g., 
providing authentic and cultural contexts for learning) to mathematics teaching (see 
Matthews, Howard & Perry, 2003; Sarra, 2003). Only one classroom (Rural 2) had 
structured input (reporting on student errors) from the teacher aides – all others were 
one way, teacher to aide. It was evident that relationships would be more effective if 
the teachers and aides respect and value each others’ culture.  

Communication. Everyday communication was crucial for effective teaching and 
varied across the cases. For example, Anne, who disliked teaching mathematics, 
provided no prior communication to the aides about the particular mathematics that 
was to be covered and as such they were often left to “fend” for themselves in the 
classroom. Carl, on the other hand, communicated with his aides (albeit non face-to-
face generally) about what mathematics concepts and processes were to be taught in a 
lesson and encouraged the aides to provide feedback (albeit written) to him about 
how the students were achieving. As such, he provided them with an integral function 
within the teaching and learning process. In Eva’s case, restricting Fiona’s role to one 
type of activity (games) enabled Eva to provide information quickly on the purpose, 
language and questioning required for successful learning from the game. However, 
there was little communication of how the game fitted into the overall context of the 
mathematical skills being taught. None of the teachers asked for any contribution 
from the aides into deciding what should be taught and how it should be taught.  

Westernised nature of the classrooms. Finally, all classroom programs were 
strongly westernised – they could have been used with non-Indigenous students. 
There was no evidence of contextualising mathematics instruction (i.e., placing it 
within Indigenous culture) (Matthews, 2003; Matthews, Howard & Perry, 2003; 
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Sarra, 2003). Neither the Indigenous aides nor other community members were 
utilised in developing authentic learning contexts to help Indigenous students make 
sense of mathematics learning. Developing Indigenous contexts for mathematics 
became the focus of the teacher/aide relationships in the project’s third year.  
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This study investigated how grade 1 to 3 children in South Africa learn early number 
concepts. A framework was developed and used to assess the children’s level of 
understanding and used to analyse their strategies in solving number problems. 
Three schools were included and involved 222, 257 and 240 students in grade 1- 3 
respectively. The children’s level of understanding was assessed through the use of 
four tests. An analysis of performance, misconceptions and errors made by the 
learners in each grade was achieved through an in-depth analysis of 48 learners. The 
results suggested that the majority of learners were unable to solve straight 
calculations, employed the strategy counting all and counting on, while none 
engaged in formal or innovative methods. There is no progression in terms of 
conceptual mathematical development across the Foundation Phase.  

INTRODUCTION 
This study is located in a three year research and development project where the 
development of a learning pathway for number is the primary objective, but testing 
learners and classroom observations are strategies used to provide baseline 
information to measure the success of the project over three years and to feed into the 
development of the learning pathway. A detailed quantitative and qualitative analysis 
of the first round of baseline testing will be presented, a comparative qualitative 
analysis with the second round of testing, as well as suggestions on how these results 
motivate for the development of this learning pathway for number. 
The development of a learning pathway for number in the early grades of the South 
African primary school (Foundation Phase) is intended as a mathematical guide for 
planning instructional sequences. The learning pathway for number is research-based 
and highlights the main features of children’s early number development and 
describes how number knowledge, number sense, mental and written calculation, 
estimation and algorithms are developed and relate to each other within and across 
the Foundation Phase. Concepts and the number range for each grade in this 
framework are sequenced progressively as the ‘stepping stones’ that learners will 
pass on their way to reaching the Mathematics Assessment Standards related to 
number in the early primary grades. The learning pathway for number highlights the 
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cognitive and didactic continuum of number development across four stages, which 
give an overview of number development and details the progress that most learners 
will make on the route to being competent with numbers in different contexts and 
with different kinds of calculations. 

THEORETICAL FRAMEWORK 
A survey of international literature on children’s numeracy (Kühne, 2004) shows a 
number of interventions and the research associated with this (in the Netherlands, 
Australia, the USA and the UK in particular – see Van den Heuvel-Panhuizen (1999), 
Bobis & Gould (2000), Clarkson (2000), Gould & Wright (2000), Carpenter, 
Fennema & Franke (1996) and Carpenter et al. (1999). All of these approaches add to 
our understanding of the development of number in the early years, and all, in some 
way, point to the need for a learning trajectory for number. This project needs to 
provide evidence of the efficacy of this pathway on teacher development and learner 
performance. To do this a baseline study, which measures the performance of 
foundation phase learners was mooted, hence the basis and the focus for this 
investigation. The aim of the project is to show a productive, efficient and sustainable 
way to lift learner’s performance in mathematics.  
The project design is located within what might broadly be described as “design 
research” (Brown, 1992). As Cobb et al. (2003) suggests, an important category of 
design research “seeks to develop an innovative intervention and an underlying 
theory that constitutes its rationale” (pg 2). The present project builds on a tradition 
that has already developed in relation to one-on-one teaching sessions, classroom 
design experiments, teacher development experiments and school restructuring 
experiments, to elaborate design research in relation to broad instructional tools such 
as the learning pathway for number described above. The framework draws on 
Steffe’s (1992, 2000) scheme model and on the idea of emergent counting (Wright, 
1998). The following framework is used to describe a trajectory for learning and how 
learners learn, understand and solve number problems. 

STAGE 1 STAGE 2 STAGE 3 STAGE 4 

Pre-school – Grade R Grade R – Grade 1 Grade 1 – Grade 2 Grade 3 – Grade 4 

Emergent Numeracy Learning to count-and-
calculate 
Integrated Mental and 
Written (operations up 
to 10) 

Calculation by 
structuring 
Integrated Mental and 
Written (operations up 
to 20 and beyond) 

Formal Calculation  
Mental 
Written 
(Operations up to 100 
and beyond)  

Levels within the stages: describe solution strategies 
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Counting-and-Calculating 
Strategy 
Integrated  
mental and written 
Level 1 
Count all in ones 
Count up to 
Take away 
Count down 
Level 2 
Stringing 
Numbers objects in a counting row – 
operations along a counting row: 
beads, lines and tapes 
Count on forward/ backwards from 
first then biggest number 
Groups to count 
Splitting 
Breaking down and building up 
numbers 
Models 
Models ‘of ‘problems 
Line  
Group 
Combination  

Calculation by Structuring 
Strategy 
Integrated  
mental and written 
Level 3 
Contextualise numbers and 
number relationships in 
different situations  
Stringing 
Leaving first number intact 
and splitting second number 
Splitting 
Breaking down and building 
up numbers  
Doubling 
Halving 
Varying  
Range of ‘smart’ strategies 
Models 
Line  
Group  
Combination 

Formal Operations 
Strategy 
Mental 
Written 
Level 4 
Transfer knowledge of single digit 
no’s to 2 and 3-digit numbers 
Use decades as pivot points 
Stringing 
Uses decades as pivot points 
Splitting 
Decimal structure – both numbers 
to be added can be split into tens 
and ones. 
Jumps of 10 
Jumps via 10 
Varying  
Use of memorised facts, relations 
between numbers and properties 
of operations 
Rounding Off 
Compensating 
‘Easy’ numbers 
Models 
Abstract Representations 

TEST DEVELOPMENT 
We consulted the relevant exit Assessment Standards (Benchmarked statements) of 
the Revised National Curriculum Statement (RNCS) for each grade and extracted the 
skills and knowledge components. A framework (table to be shown at the 
conference) was developed, which listed the generic skills relating to learning 
number. These skills remained constant across the grades, the range shows 
progression. A range of test items from various sources was selected and developed 
and the skills-framework was used to adapt these items into grade-specific test 
questions, ensuring that the ranges in the test items corresponded with that of the 
RNCS, thus ensuring item validity.   
Some of the items lent themselves to presentation in three different ways. These 
were: contextual problems with graphic prompts (referred to as visual in the 
analysis), number sentences and sequences (referred to as symbols in the analysis), 
and the contextual question stated in words without graphic prompts (referred to as 
worded problems in analysis). Only the first six items of these three tests (called test 
A, B and C) are the same questions posed in different ways and using the same 
number range. It was intended that these items would give further indication as to 
possible barriers that might exist for learners when answering test questions. A fourth 
test (test D) was developed which contained items intended to test number 
recognition on number grids and in number sequences. 
A test administrator’s guide (for the Grade One tests only) was developed as an 
example to demonstrate the methods of asking the questions. Experienced test 
administrators received additional training a week before the commencement of 
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testing. Test administration allocation of work was as follows: Grades 1 and 2, three 
test administrators per class and Grade 3, two test administrators per class.  

DATA COLLECTION 
The tests were piloted at a Primary School in the city. Three experienced test 
administrators were trained to present the tests to 20 grade 1 learners, 20 grade 2 
learners and 20 grade 3 learners in three different classrooms. In grade 1 the test 
administrator read each item (question) in each test to the learners. The item 
(question) was only repeated once. In grade 2 and 3 the test administrator explained 
briefly the instructions for each test and not per item (question). At the end of the 
testing process, the Principal, the research supervisor, the test administrators, the 
grade 1, 2 and 3 teachers, as well as the Foundation Phase remedial teacher at the 
school discussed the rationale for testing at this level, the test instruments and the 
testing process. All the learners from two classes in each grade level in the three 
project schools were tested. The same procedure was used as described in the pilot 
implementation. The only change in terms of implementation was in grade 2 and 
grade 3 where each item was read twice to the learners in isiXhosa. 
DATA ANALYSIS 
A quantitative analysis involved an item analysis in the four tests per grade and a 
comparative analysis of the first six questions in test A, B and C highlighting scores 
for visual prompts (pictures), symbol (using +, - and = signs) and worded problems. 
A qualitative analysis involved the responses (strategies used) of 48 learners. Their 
methods and strategies, errors and misconceptions and their solutions were captured. 
However, for this study only the grade 3 results will be presented. 
Quantitative Analysis 
Grade 3 
In test A, 91.6% and 68.3% were able to answer the questions on “how many”, which 
involved counting the number of turtles and counting with the use of plus and = 
signs. The performance on these items was also amongst the best in the four tests. 
The fact that 9.4% were unable to count the number of turtles is a cause of concern, 
especially for grade 3 learners. Counting backwards in twenty-five’s also proved to 
be beyond the capabilities of this group since they scored 0.8%. Counting in fives 
resulted in a score of 53.3% compared with the grade 2’s 32.3%. In the division 
question 62% of the learners were able to solve the problem based on ‘sharing’. The 
learners performed similarly to the grade 2’s with scores of 61.2% and 60% in the 
subtraction problems. The learners were unable to give a mid-number while counting 
in 50’s and scored 10.8% on this item only slightly better than the grade 2 learners. 
In Test B only 92% of the learners could add single plus double digit numbers. The 
subtraction items yielded scores of 64.5% and 55.8% similar to the scores in test A. 
Adding in fives with plus signs between the numbers proved to be better than 
counting in fives without the signs. For the place holder type items the performance 
was only slightly better than the grade 2 learners with scores of 32%, 15% and 11.2% 
compared to less than 6% attained by the grade 2 learners on similar items.  
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In test C, the worded problems were also poorly done with the best performance, 
strangely enough, in a subtraction of double-digit numbers, where 79.1% achieved 
the correct answer. This was followed by a second best performance of 57.9% also in 
a subtraction item. In a ‘how many’ problem the grade 3 learners achieved only 
slightly better than the grade 2 learners with scores of 40.8% and in a ‘spending 
money’ problem they achieved a lower score of 13.7%. A low score of 2% was 
attained for a repeated addition problem. 
In test D only 20% were able to fill in the missing numbers in a full grid of numbers. 
Again they performed slightly better than the grade 2 learners. The best performance 
of only 37% and 35.8% was achieved in ‘finding a number written in words in a part-
grid’. This achievement was similar to grade 2 learners. The learners struggled with 
this number recognition test with the lowest performance of 4.1% in the item ‘find a 
3-digit ‘between’ number written in words in a part grid’. The performance on 
‘before’ and ‘after’ numbers was only slightly better with scores of 5% and 15% 
respectively. The graph below shows how grade 3 learners performed on the first six 
questions in test A, B and C. The graph compares the performance in visual, symbol 
and context type problems where the numbers were the same for each type. 

Scores on first six questions in test A,B and C 

Qualitative Analysis 
The analysis of the learner responses showed that the strategies used for solving 
problems from grade 1 to grade 3 did not change, showing very little progression 
across the grades. Grade 3 learners in particular used counting strategies (count all 
and count on). There was no evidence of a calculation by structuring, for example 
grouping or breaking up numbers. The vast majority of learners simply wrote down 
the answers. Field-staff reported that fingers and in some cases even toes (some 
learners removed their shoes and some did not have shoes) were used to aid counting. 
The following represents a few grade 3 learner-responses, from one of the classes at a 
school, to some of the test items (A, B – indicates the group at the school, while 1,2,3 
– indicates the learner number). 
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Test A 
• A2 represented the problem in the answer block with tally marks:   
• lllllllllll + llllllll = 19 for question 1. (correct response). The learners appeared to need visual 

prompts in order to count-calculate the answer. 
• A28 drew 19 tally marks and cancelled 10 = 9 for question 2 (correct response) to represent 

subtraction  
• A39 and other learners consistently wrote the numbers either upside down or inversely. 
• A2 wrote 25 + 25+25+25+25+25 correctly, but did not give an answer. Also used groups of 

25 tally marks to assist, but could not get to the answer for question 4. 
• A2 counted in 5’s by adding the top, middle and bottom rows: 30+20+20 =70 for question 6. 

A strategy that worked well. Quite a few learners wrote 6 + 20+20, they forgot to multiply 
the 6 by 5. Others simply added the number of fives and got 14, but forgot to multiply by 5. 

• A7 simply counted the bags and not the kg’s in the bag in question 7. A18 wrote 30050 
instead of 350. This kind of response was quite common, even at this grade level. 

• A2 wrote the subtraction number sentence, but gave the wrong answer: 50-12 = 50 for 
question 8. The majority only counted the visible objects and did not take into account the 
hidden ones.  

Test B 
• A2, A14 and others drew tally marks. Others used little circles to represent their counting. It 

appeared as if they counted all the marks or counted on from one of the given number in 
question 1. 

• A20 drew 19 tally marks – 10 tally marks, then cancelled 10 tally marks to get an answer of 
19 in question 2. A number of the learners ignored the minus sign and simply added the two 
numbers. The majority of learners used tally marks and circles to get the correct answer. 

• A2, A8, A14, A20 and others, all used the groups of 25 tally marks or circles, but were 
unable to give an answer. The majority showed a strategy but failed to give a correct 
response in question 4. 

Learners used tally marks or circles to represent the problem and to assist in their 
counting-and-calculating. As the numbers range increased, however, errors in 
counting became common.  
Comparative Qualitative Analysis 
The strategies used by the 48 randomly selected learners were used to compare their 
performance in March and November. Table 1 represents a sample of each learner’s 
analysis for test A. 

SOME OBSERVATIONS 
In general the scores improve in each grade. There is one exception: Grade 3 
Question (where the oranges are hidden in a repeated addition problem), where the 
grade 1’s scored 15%, grade 2’s scored 24% and the grade 3’s only achieved 12%. 
For most of the questions it is true that the word problems are the most difficult type 
of questions and problems with visual prompts appeared to be the easiest. Some 
problems behave “strange”. This could be a result of how the problems are designed. 
Another example shows that the addition word problem in grade 1 (Q1C) is more 
difficult than the subtraction problem in grade 1 (Q2C), because “crawl in” is more 
difficult to understand and to see the underlying operation than it is in the case of 
“eat”. None of the learners displayed higher order thinking skills. There was no 
evidence of formal/flexible operations. 
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Table 1 - LEARNER CODE: Im2 
ITEM MARCH 

STRATEGY 
SCORE NOVEMBER 

STRATEGY 
SCORE COMMENTS 

1 Used 8 + 11 tally 
marks 

Correct No strategy Correct 

2 Wrote 10 + 19, but 9 
in the answer block 

Correct No strategy Correct 

3 No answer Wrong No strategy Correct 

Learner able to solve correctly without any 
strategy 

4 No answer Wrong Used 6 groups of 25 
tally marks each, 
counted wrongly 

Wrong Too many tally marks to count 

5 No attempt Wrong No strategy Correct 
6 Wrote sum in answer 

block 30+20+20=70 
Correct No strategy Correct 

Learner able to solve correctly without any 
strategy 

7 Incomplete answer Wrong No strategy Wrong 
8 Wrote 50-12=50 Wrong Counted chocs that were 

visible 
Wrong 

9 Wrote 78-6 but no 
answer 

Wrong Counted beads that were 
visible 

Wrong 

10 Counted in one’s Wrong Wrote 735,785,799. did 
not count backwards in 
25’s 

Wrong 

11 Wrote �50 the 7 
faced the wrong way 

Wrong No strategy Wrong 

Learner unable to solve problems. Only 
counted the visible parts to the question. 
Learner probably made a slip with the 7. 

12 4 groups of 4 circles 
and wrote 16 

Wrong 
 

No strategy Correct Learner able to solve correctly without any 
strategy 

13 Wrote 4+8=11 Wrong No strategy Wrong Did not understand the question 
14 Shaded 2 x R5 coins 

and 5 x R1 coins 
Correct Shaded 3 x R5 coins Correct Different, but correct responses 

  4 
correct 

 7 
correct 

Improved slightly 

CONCLUDING REMARKS 
The fact that the tests were conducted very early in the year (only three months into 
the year) some concepts may not have been taught, revised or consolidated by the 
teachers at the schools, hence the series of poor responses on a number of concepts or 
test items. This only improved slightly in November despite a year’s teaching. Based 
on the 4 stages of development, the grade 3 learners are operating at grade 1 and 
early grade 2 stages. The insights gained from the testing will be used for the 
development phase in 2005.  
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PRIMARY STUDENTS’ KNOWLEDGE OF THE PROPERTIES OF 
SPATIALLY-ORIENTED DIAGRAMS  

Carmel M Diezmann 

Queensland University of Technology, AUSTRALIA 

The ability to select an appropriate diagram to represent the structure of problem 
information is a critical step in reasoning. This paper reports on an investigation of 
Grade 3 and Grade 5 students’ knowledge of the properties of spatially-oriented 
diagrams. The task required the students to select the diagram that corresponded to 
the structure of a particular problem and to justify their selection. The results 
revealed that primary students have difficulty in selecting an appropriate diagram 
and adequately justifying their selections. Although Grade 5 students outperformed 
Grade 3 students in some aspects, the similarities between Grade 3 and Grade 5 
performances on other aspects suggests that it is fallacious to assume that students’ 
knowledge of the properties of diagrams will increase substantially with age.   

Diagrams are an important visual-spatial representation in mathematics because they 
facilitate the representation of problem information (e.g., Diezmann, 2000; Novick, 
2001). Diagrams have three key cognitive advantages in problem solving. First, 
diagrams facilitate the conceptualisation of the problem structure, which is a critical 
step towards a successful solution (van Essen & Hamaker, 1990). Second, diagrams 
are an inference-making knowledge representation system (Lindsay, 1995) that has 
the capacity for knowledge generation (Karmiloff-Smith, 1990). Third, diagrams 
support visual reasoning, which is complementary to, but differs from, linguistic 
reasoning (Barwise & Etchemendy, 1991). However, students of all ages are reluctant 
to employ diagrams, experience difficulty using diagrams or lack the expertise to use 
diagrams effectively (e.g., Veloo & Lopez-Real, 1994). Thus, students’ use of 
diagrams can inhibit rather than facilitate their mathematical performance.  

DIAGRAMMATIC KNOWLEDGE 
Three useful diagrams that have broad applicability in mathematics and unique 
spatial structures are the matrix, network, and hierarchy (e.g., Novick, Hurley, & 
Francis, 1999) (see Figure 1). For example, the row and column structure of a matrix 
makes it useful for depicting a combinatorial relationship between two distinct sets.  

Matrix Network Hierarchy 
 

 

 

 

 

 

Figure 1: Three general purpose diagrams. 
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While diagrams have been studied intermittently over the past three decades (e.g., 
Diezmann, 2000), it is only recently that a cohesive framework of ten distinguishing 
properties of spatially-oriented diagrams has emerged from research with college 
students (Novick, 2001; Novick & Hurley, 2001). This is a major advance in 
diagrammatic research because these properties constitute the “building blocks” of 
diagrammatic knowledge, and are applicable to all spatially-oriented diagrams. 
Novick and Hurley (2001) confirmed the existence of these properties but found that 
only six of the ten properties were sufficiently discrete to be readily investigated. 
These six properties are shown in the first vertical column on Table 1. Each of these 
properties differs according to the particular spatially-oriented diagram, as shown in 
the overview on columns two to four on the table.  

Properties of Diagrams Matrix Network Hierarchy 

1. Global structure: the 
general form 

a factorial structure lacks formal 
structure 

an organisational 
structure 

2. Number of sets ideally 2 sets of 
information 

1 set of information no limit on sets of 
information 

3. Item/link constraints: 
how items link together 

factorial structural 
constraints 

no constraints 

 

organizational 
structural 
constraints 

4. Link type: links 
between items are best 
conveyed by a particular 
diagram 

associative non-
directional links 

flexible links directional links 

5. Linking relations: 
one-to-many links, 
many-to-one links or 
both 

not salient, but can 
have both linking 
relations 

both linking 
relations 

either linking 
relation but not 
both 

6. Transversal: the 
possible paths 

paths are not 
relevant 

multiple paths 
connect item “A” 
and “B” 

only 1 path 
connects items 
“A” and “B” 

Table 1: Discrete properties of spatially-oriented diagrams. 

The ability to identify the properties of diagrams is fundamental to the selection of an 
appropriate diagram for problem solving (Novick, 2001). This ability involves the 
recognition of particular representations and knowledge of “where to look and what 
to look for or look at” (Rogers, 1995, p. 482). Hence, if diagrams are to be useful 
cognitive tools for problem solving, students of all ages need to know their 
properties. The focus of this paper is on primary students’ knowledge of the 
properties of diagrams.   
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METHODOLOGY 
This investigation is part of a larger study that aims to increase our understanding of 
primary students’ knowledge about the properties of diagrams and to identify 
influences on the development of that knowledge. The larger study has an accelerated 
longitudinal design, in which two differently-aged cohorts are being studied for three 
years. This paper reports on two aspects of this study which were:  

1. To document Grade 3 and Grade 5 students’ knowledge about the properties of 
a matrix, and  

2. To determine whether the ability to identify the properties of a matrix increases 
with age.  

The Participants  
There are a total of 137 participants in the larger study. The results of eleven students 
were excluded from this investigation for various reasons (e.g., inconclusive coding). 
Hence, the results are reported for a total of 126 students comprising 62 Grade 3 
students (8- or 9-year-olds) and 64 Grade 5 students (10- or 11-year-olds). 

The Tasks  
Students’ knowledge of the properties of diagrams was investigated in the larger 
study through a series of 15 scenario-based tasks, which were designed to focus on a 
range of properties of the matrix, network and hierarchy. Appendix A presents the 
Matrix task which was the focus of this investigation. The 15 tasks were designed in 
accordance with the principles used by Novick and Hurley (2001) in the design of 
scenario-based tasks for college students. The first sentence or two of the scenario 
tasks sets up a cover story. The same broad scenario of “The Amusement Park” was 
used for all tasks with primary students to avoid them selecting their responses on the 
basis of the cover stories rather than the structural information. The next sentence or 
two focuses on a particular property of a diagram (e.g., the number of sets). The final 
sentence indicates that someone wants a diagram for a purpose relevant to the cover 
story. Only two (correct/incorrect) spatially-oriented diagrams were presented for 
each task. In one of these diagrams, the property was correctly represented, and in the 
other diagram, the property was not represented (see Appendix A). The scenario-
based tasks required students to (1) select a diagram that best suits the given 
information and to (2) justify their selection and (3) non-selection of particular 
diagrams. These 15 tasks were presented to students in two individual interviews to 
avoid undue fatigue. During the first interview, students engaged in a task that 
emphasised that the diagrams presented were representative of a specific class of 
diagram rather than the particular problem. This paper reports on one of these tasks.  

Students’ knowledge of the properties of diagrams was determined by their 
correct/incorrect selection of a diagram. Categories were developed from the reasons 
that students gave for selecting and not selecting particular diagrams and frequencies 
of students’ responses calculated.  
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Results and Discussion 
The results reported here are necessarily limited. They focus on the number of 
students at each grade level who selected correct/incorrect diagrams on the Sandwich 
Bar task (see Appendix A) and the reasons why students correctly selected the matrix 
to represent the problem information. The reasons why students incorrectly selected 
the hierarchy and the reasons why students did not select either the matrix or the 
hierarchy are not discussed here.   

The results of the Sandwich Bar task for Grades 3 and 5 of 66.1% and 71.9% 
respectively indicate that many students had difficulty identifying which of the two 
diagrams (matrix, hierarchy) would best show the information given (chance 
accuracy = 50%) (see Table 2). The mere 6% difference between the Grade 3 and 
Grade 5 results suggests that additional two years of schooling have limited impact 
on students’ ability to select the correct diagram.   

 Grade 3 (n = 62) Grade 5 (n = 64) 

Diagram Selection Number Correct Percentage 
Correct 

Number 
Correct 

Percentage 
Correct 

Correct  41 66.1% 46 71.9% 

Incorrect 21 33.9% 18 28.1% 

Table 2: Number and percentage of students selecting a correct/incorrect diagram. 

The explanations for students’ correct responses are presented on Table 3 together 
with the frequency of these responses. As shown on Table 3, there was great variation 
in the type of explanations given by the 87 students who correctly selected the matrix 
as the best diagram to represent the given information. Of the 16 types of 
explanations given by students, 11 types of response (indicated by *) were specific to 
tasks in which the matrix was the correct diagram and five types of response 
(indicated by #) were more generic and could have referred to any of the spatially-
oriented diagrams (see Table 3).  

Only three of the total 87 students (3.45%) provided an exemplary or ideal response 
for their selection of a matrix with a reference to the representation of combinations 
(CO). However, a further 16 students’ explanations showed they had some 
understanding of the matrix as having a row and/or column structure (LR, LC, RC). 
Hence, a total of 19 students provided an explanation that was either fully (CO) or 
partially correct (LR, LC, RC). There was only a 4% difference between the 
performance of Grade 3 (19.5%, n = 8) and Grade 5 (23.9%,  n = 11) students who 
made fully and partially correct responses.  

A total of 32 students (36.8%) based their explanations for selecting the matrix on 
another visual representation that is used in mathematics, such as a picture graph 
(PG), (non picture) graph (GF), co-ordinates (UC) or a tally reference (grid) (TR). 
Fewer Grade 3 students made this type of response (21.9%, n = 9) than Grade 5 
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students (50%, n = 23). A possible explanation for students’ references to other visual 
representations in mathematics is their attempts to capitalise on prior knowledge of 
mathematics to make sense of a novel representation. Although some diagrams and 
other visual representations can be informationally equivalent and content transfer 
between these is desirable (Baker, Corbett, & Koedinger, 2001), the informational 
equivalence of representations cannot be assumed. For example, the content of a co-
ordinate representation is unlikely to be informationally equivalent to that of a 
matrix. Of the 28.1% difference between Grade 3 and Grade 5 students who referred 
to other visual representations used in mathematics, 21% of the variance can be 
accounted for by the differences between Grade 3 and Grade 5 students’ references to 
a graph format (GF). This response was made by 7.3% (n = 3) Grade 3 students and 
28.3% (n = 13) of Grade 5 students. A possible explanation for the greater percentage 
of Grade 5 than Grade 3 students making reference to a graph could relate to recent 
instruction about graphs or the use of graphs in the Grades 4 and 5 curricula.    

Code Explanation  Grade 3 
(n = 41) 

Grade 5 
(n = 46) 

*BR Box Reference (not a list); used as a storage space 7 3 
#CA Correct Appearance; “looks right”, “would work” 1 2 

*CL Create a List  4 4 

*CH A Checklist; uses ticks 3 1 

*CO Ideal response that described Combinations 1 2 

*GF Graph Format - not a picture graph 3 13 

*LR Create a List using Rows 4 5 

*LC Create a List using Columns 3 1 
#NO Not the Other diagram 3 0 
#NS Response makes No Sense, illogical, vague 

response, insufficient information supplied 
3 1 

*PG Picture Graph  5 2 

*RC Create a list using Rows and Columns 0 3 
#SI Size Issues, could be the right size 0 1 

*TR Tally Reference (number) 1 7 

*UC Used for Co-ordinates 0 1 
#VD Visual/pictorial Description eg., shelves, bread slice 3 0 

Table 3: Explanations for why the matrix was selected for the Sandwich Bar task.  
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A number of students’ explanations were inadequate. One type of inadequate 
explanation focussed on the matrix as a visual representation at a surface level.  
Students’ visually-oriented responses ranged from the broad explanation that the 
matrix had the correct appearance (CA) to more specific comments about boxes 
(BR), or a visual/ pictorial description (VD). These responses were made by 10.9% (n 
= 5) of Grade 5 students and 26.8% (n = 11) of Grade 3 students. It is encouraging 
that older students made fewer of these types of response than younger students. 
Another type of inadequate response made by three students was the adoption of the 
default position that they selected the matrix because the correct response was not the 
other diagram (NO). All default explanations were made by Grade 3 students (7%).  

CONCLUSIONS  
Overall, the results suggest that Grade 3 and Grade 5 students have a limited 
knowledge of the properties of diagrams, in particular the matrix. Although there 
were some indications of improvement in performance with an increase in age, this 
was not universally true. There were five key results related to students’ performance. 
First, Grade 3 and Grade 5 students’ performed similarly in their ability to correctly 
select the matrix to represent problem information. Second, students’ selections were 
based on a variety of reasons that may be fully or partially correct, incorrect or 
inadequate (e.g., default responses). Third, less than 24% of Grade 3 and Grade 5 
students made responses that were fully or partially correct. Although Grade 5 
students outperformed Grade 3 students, the percentage difference was small. Fourth, 
over 36% of all students featured another visual representation used in mathematics 
in their explanations. There was a large difference between Grade 3 and Grade 5 
responses with more than double the percentage of Grade 5 students (50%) proposing 
this type of explanation compared to Grade 3 students (21.9%). Finally, students 
made a variety of inadequate responses, which included basing their explanations on 
the surface features of a matrix or providing a default explanation. These visually-
oriented responses were made by Grade 3 students (26.8%) substantially more than 
Grade 5 students (10.9%). Additionally, only Grade 3 students gave default 
explanations (7%).  

If diagrams are to be effective in problem solving, students must be diagram literate 
(Diezmann & English, 2001). Thus, students need to be able to select the appropriate 
diagram for a particular problem and adequately justify their selection. The results of 
this investigation suggest that primary students need considerable teacher support in 
diagram selection and justification. There are particular concerns with students’ 
performance related to: the scant exemplary responses of students for selecting a 
matrix; the small differences between Grade 3 and Grade 5 students’ performance on 
correct diagram selection, and the numbers of fully or partially correct responses; and 
the possible negative effect that an increased familiarity with graphing may have with 
Grade 5 students making inappropriate transfers between knowledge of graphs and 
knowledge of the matrix. Limitations of this investigation are that the results are 
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based on the analysis of one task and that task focused on only one of the three 
spatially-oriented diagrams. However, the generalisability of these results will be 
informed by other aspects of the larger study, which includes a further 14 tasks, 
which incorporate the three spatially-oriented diagrams, and the monitoring of 
students’ performance on diagram selection and justification over a 3-year period.  
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Appendix A. Sandwich Bar Task 

 
The Sandwich Bar sells sandwiches made with different types of bread and different 
kinds of meat. The Sandwich Bar Manager wants to know which different 
combinations of bread and meat are ordered the most, so that she can get her workers 
to prepare the right types of sandwiches for the busy lunch time rush. The Manager 
would like a diagram to record how many people buy each different combination of 
bread and meat during one lunch time. 

 
Which type of diagram would best show the information given?  
 

Hierarchy  Matrix 
 

 

 
 

 

 
 

 
1. Tick the box   

 
 

 
2. Why?  

 
 

3. Why not? 
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A CONCEPTUAL FRAMEWORK FOR STUDYING TEACHER 
PREPARATION: THE PIRIE-KIEREN MODEL, COLLECTIVE 

UNDERSTANDING, AND METAPHOR 
Maria A. Droujkova, Sarah B. Berenson, Kelli Slaten, Sue Tombes 

North Carolina State University 

This theoretical paper describes a conceptual framework for studying metaphoric 
mechanisms of the growth of collective understanding among prospective middle and 
high school mathematics teachers. The framework draws upon a growth of 
mathematical understanding model, studies of metaphor, and research on collective 
understanding. Researchers whose studies contributed to this conceptual framework 
include Pirie and Kieren, English, Lakoff and Nunez, Sfard, Davis, and Simmt. The 
framework is further defined and illustrated with examples from a teaching 
experiment in a first mathematics methods class. 

FOCUS 
This paper develops a conceptual framework to study growth in pedagogical content 
knowledge (PCK) of prospective teachers. We assume that PCK is grounded in 
mathematical understanding. Based on this assumption, we use theories on learning 
mathematics as a basis for the framework. These theories include the Pirie-Kieren 
model, metaphor analysis, and a collective understanding perspective. 

THEORETICAL BACKGROUND 
We consider three theoretical perspectives as background frameworks to study the 
growth of understanding among prospective teachers. Shulman (1986), in defining 
the knowledge base of teaching, initiated the notion of pedagogical content 
knowledge (PCK) as one of the fundamental categories of teacher knowledge. This 
type of knowledge is unique within each subject matter domain, and mathematics 
PCK is accessed by teachers, in concert with their knowledge of mathematics, to 
communicate mathematical ideas. The Pirie-Kieren model for the growth of 
mathematical understanding (Pirie & Kieren, 1994b) is fundamental to our studies of 
prospective teachers. The Pirie-Kieren model is enhanced by coordinating it with 
metaphoric mechanisms of movement across the layers of the model. Metaphor 
studies (English, 1997; Lakoff & Nunez, 2000; Sfard, 1997) provide the second 
theoretical perspective for our framework. Finally, we selected Collective 
Understanding (Davis & Simmt, 2003; Kieren & Simmt, 2002) to accommodate for 
the contexts where PCK growth occurs. The Collective Understanding perspective 
provides the view of learning within a social endeavour, such as a methods class, a 
school class, or work with others on projects outside of class. Next, we give 
backgrounds of the three perspectives that provide the theoretical foundation for our 
research.  
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Pirie-Kieren Model for the Growth of Mathematical Understanding 
The first of the theoretical perspectives we consider is a description of the growth of 
understanding as a dynamic, levelled but non-linear and recursive process (Pirie & 
Kieren, 1994b). The Pirie-Kieren model was originally designed as a perspective to 
study students’ changing mathematical ideas. The model provides a framework to 
map student actions in a variety of contexts, tracing the back and forth movement 
among eight levels of understanding activities. Within these activities, learners build, 
search, and collect ideas. The innermost level is Primitive Knowing, consisting of 
one’s previous knowledge brought to the learning context. This level serves as a 
source of materials to build subsequent understanding. Moving outward within the 
model, Image Making and Image Having are learner activities for making a new 
image or revising an existing image, and then for manipulating that image in the 
mind. These two levels of activity play a prominent role in growth of prospective 
teachers’ understanding (Berenson, Cavey, Clark, & Staley, 2001). The next level, 
Property Noticing, is an action of identifying properties of the constructed image. A 
method, rule, or property is generalized from the properties in the level of 
Formalising. Beyond are levels of Observing, Structuring, and Inventising. Pirie and 
Kieren (1994b) describe the process of folding back to inner levels of understanding 
to retrieve primitive knowledge, make or have new images, or notice new properties. 
Metaphor 
Defined in the past as an embellishment or a figure of speech, metaphor is now seen 
as a primary mechanism of thinking (Lakoff & Nunez, 2000). The process of 
metaphoric projection involves a source, consisting of more concrete, better 
understood images, and a target, which is the new, more formal concept being 
constructed (English, 1997). This process is a recursive, zig-zag movement between 
the source and the target, where the target is created and the source is modified 
(Sfard, 1997).  

A metaphor has a certain “life cycle” (Figure 1). When a metaphor is born from its 
grounding, the target is the source. The two parts of the metaphor are inseparable; in 
other words, the target is not yet constructed. For example, a learner may work with 
the metaphor of “fair sharing,” grounded in sharing actions. In the next stage, the 
target emerges from the source, which starts to fade, and the metaphor turns into a 
simile. Now the target is like the source; division is like fair sharing. Finally, the 
target disconnects from the source. The metaphor “dies” (Pirie & Kieren, 1994a; 
Sfard, 1997), and the target lives on as a self-sustained entity. In our example, the 
learner is able to think about the idea of division without referring to fair sharing. 
The paradox of metaphor analysis is that a metaphor can only be studied when it dies, 
or at least turns into a simile. While the source and the target are inseparable, the 
metaphor is unnoticeable. Researchers can analyse this first stage in the metaphor’s 
life retrospectively, from the vantage point of the future emergence and separation of 
the target. A participant observer can also influence a metaphor, thus helping 
metaphor’s users learn. 
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Figure 3: Metaphor life cycle 

Collective understanding 
The theory being developed by the Collective Understanding Research Collective 
(Davis & Simmt, 2003; Kieren & Simmt, 2002) focuses on emergent phenomena in 
groups seen as wholes, rather than simple sums of individuals. A key feature of the 
complexity of these emergent structures is that they cannot be caused, but may be 
occasioned, and analysed retrospectively. The authors claim five necessary 
conditions for such collective understanding: internal diversity, redundancy, 
decentralized control, organized randomness, and neighbour interactions. Internal 
diversity in response to a task means that members of the collective contribute in 
different ways. Diversity creates possibilities for new, varied paths toward 
understanding. Redundancy is defined as the occurrence of more actions or ideas 
than, seen retrospectively, would be necessary to complete the task. Redundancy 
serves the role of supporting communication and the feeling of “us” within the 
collective, and of helping to cope with perturbations. Decentralized control suggests 
no single organizing agent within the collective; in the classroom, it means that the 
teacher is not the only authority on correctness. Organized randomness is a set of 
proscriptions and within it, freedom from prescriptions. “Neighbours” interacting in 
the fifth conditions are not people, but ideas, metaphors, and other representations. 

PROBLEM 
The research problem this study addresses is constructing a conceptual framework for 
analysing learning of prospective teachers during an introductory methods class, and 
for designing ways to help them learn. Each of the three theoretical perspectives 
described above provided a necessary lens for the framework. The Pirie-Kieren 
model, initially focused on mathematical understanding and adapted to teacher 
preparation by Berenson et al. (2001), describes the actions of understanding. The 
model has been related to metaphor theories (Droujkova, 2004; Pirie & Kieren, 
1994a), the lens for examining mechanisms of growth of understanding. The Pirie-
Kieren model helps to map what is happening with understanding, and metaphor 
describes how it is happening. The Pirie-Kieren model, as well as metaphor theories, 
was initially developed for describing individuals. However, we looked at a group of 
prospective teachers interacting, connecting ideas, and building their understanding 
together. We used the third lens: work on collective understanding (Davis & Simmt, 
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2003), which arose out of the work of Pirie and Kieren, and was developed, in part, 
within the context of teacher preparation. The resulting conceptual framework helps 
to map the growth of collective pedagogical content knowledge of a group of 
prospective teachers, and to analyse mechanisms of this growth. Applying metaphor 
analysis to preparation of teachers and tracing collective metaphors are two theory 
bridges constructed in the teaching experiment that is the source of examples for this 
work (Figure 2). 

 
 

Figure 4: Theories and bridges in our conceptual framework 

TEACHING EXPERIMENT METHODOLOGY 
Examples in this paper come from a teaching experiment conducted during an 
Introduction to Teaching class at a large South-Eastern US university. The class met 
for two hours, one day a week, for fourteen weeks. Paper authors collaborated on 
planning, teaching and observing during the class. Teaching experiments are defined 
by the role of researchers as teachers and co-learners, and “environments that are 
explicitly designed to optimize the changes that relevant developments will occur in 
forms that can be observed” (Kelly & Lesh, 2000, p. 192). Since the background 
theories of our conceptual framework use recursive models of learning, it was 
especially important to allow data from each week to enter the interpretation cycle, 
and to influence the future data collection. The data include primary artefacts such as 
home and in-class assignments, teaching portfolios, and videotapes of lessons 
conducted by prospective teachers; and secondary artefacts such as field notes taken 
by researchers during class observations and planning meetings. 
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PEDAGOGICAL CONTENT KNOWLEDGE  
In this part, we trace growth of collective PCK in the group of prospective teachers 
and researchers. Conditions for the emergence of collective understanding help to 
analyse the features of the class which supported growth.  

Image Making: birth of metaphors 
“Multiple instructional representations” was a theme included in class activities and 
homework assignments every day. In first classes and homework assignments, 
prospective teachers were creating collections of instructional representations of 
different kinds, such as pictures, definitions and symbols. These collections were 
based on their Primitive Knowledge of mathematics. The recurring homework of 
creating four different representations for introducing a mathematical concept, such 
as slope or ratio, invited the diversity of actions and ideas, and illustrated inter-
personal redundancy in actions and ideas – two conditions for emergence of 
collective understanding. Small group discussions and sharing their results with the 
whole group supported idea exchange. For example, small groups discussed Pi 
representations from homework, and sorted them into visual, manipulative, numerical 
and symbolic and so on to display to the whole class on bulletin boards. An example 
of a collective image made by the class is “multitude of instructional 
representations.” This image included the ideas that there are many different ways to 
learn each concept, and that these choices can be sorted into categories. We, as a part 
of the group, were folding back to Image Making as well. An example of a change in 
our image at the time is the focus on overlaps, links and interactions between 
different types of representations, which we describe in a separate paper (Reference 
withheld). 

Image Having and beyond 
Assignments on mathematical and pedagogical connections among representations 
show that the class was using the idea of multiple representations without the actions 
of creating them, which indicates Image Having. Class assignments continued to 
invite individual ideas, either from homework or from a period of contemplation in 
class, into small group tasks. Each group then reported to the whole class, answered 
questions, and participated in whole-class discussions. This supported interactions of 
neighbour ideas within small groups and the whole class, which is another condition 
for emergence of collective understanding. Such “bumping of ideas” (Davis & 
Simmt, 2003) looked like animated discussions, and sometimes emotional arguments, 
within groups, between a group reporter and the rest of the class, and between 
individuals. In these discussions, we observed Image Having and actions from the 
further levels. 

Property Noticing: metaphor turns into simile 
Property Noticing actions are manipulations of images to construct their relevant 
properties. A transformation of metaphor corresponds to these actions. The newly 
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constructed properties are the metaphor target; they are built on, and separated from, 
images, which are the source. A plethora of potential properties can be constructed 
from images. Emphatically, properties are not embedded in images, but constructed 
from images, and co-determined by images and actions during Property Noticing. In 
the case of prospective teachers, mathematical and pedagogical sides intertwine in 
Property Noticing actions, and metaphor targets are PCK concepts. 

An example of Property Noticing comes from the class task of making 
representations for connections between scaling and ratio, slope, and proportion. In 
an example of idea redundancy, two groups, working with maps and similar triangles, 
independently commented that the same representation can be used for scaling-ratio 
and scaling-proportion connections. The mathematical properties they noticed were 
connections between ratios and proportions. There were also pedagogical comments: 
prospective teachers noticed that they can help students learn relationships between 
ratio and proportion through one activity on scaling, and found two examples of such 
activities.  

During the same task, the organized randomness feature of the collective 
understanding was expressed as the discussion turned toward the question of what 
kinds of representations are better as a starting point for students. Prospective 
teachers used the same image of multiple representations, but were now noticing 
other pedagogical properties. For example, they determined what representation was 
more abstract, or what representation was easier for learners to understand. Initially, 
prospective teachers were talking about particular representations, claiming that maps 
are easier than similar triangles, or vice versa. When the target of the metaphor began 
to separate, and the metaphor turned into a simile, prospective teachers started to 
name noticed properties directly. The sources of metaphors were still present at this 
point in the learning. A prospective teacher said she would start her lesson from a 
concrete representation, like a map, because it is easier. However, the sources were 
fading, and the targets became more self-sustained, as the group moved to 
formalising. 

Formalising: death of metaphor, and self-sustained target 
During the activities when prospective teachers noticed properties of instructional 
representations, they also noticed differences in pedagogical uses of representations. 
Disagreements about uses of representations arose on many counts, such as which 
representation is better as a starting point, or whether students would have enough 
prerequisite knowledge to handle a particular representation. The formalising actions 
were evidenced by abstracting this noticed idea of differences and disagreements 
about representations as the concept of learner diversity. As evidenced by comments, 
sometimes emotional, contradictions between ideas were frustrating, and it was 
imperative for the group to come to an overarching understanding resolving the 
contradictions. The formalization of the concept of learner diversity was greeted by 
the group members as a relief of this cognitive tension, and appeared, in many 
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different formalised forms, in the remaining homework assignments, lesson plans, 
and teaching philosophies of most students.  

From the perspective of this formalising we retrospectively see that metaphor started 
from the images of multiple representations during Image Making and Image Having 
actions. It turned into a simile while prospective teachers were noticing different, 
oftentimes contradictory, instructional uses of representations among group members. 
This property was formalised as the idea of learner diversity. Here are examples of 
individual expressions of collective formalised understanding, taken from teaching 
philosophy statements of three prospective teachers: 

Using different types of representations to explain a concept will give students a chance 
to see the lesson from a different perspective. 
Sometimes students lose motivation when they don’t understand the material. I plan to 
use a variety of instructional representations in order to give students who come from 
different backgrounds and learn differently the opportunity to learn the material. 
Students learn best when they are presented with several different ways of looking at a 
topic. A lecture can only do so much but in combination with hands-on activities and 
group work students can learn much more effectively. 

These examples show variability in individual threads of meaning in the collectively 
understood idea: one class member focused on learning of a particular concept, 
another on motivation, and another on class format. Individually and as a collective, 
prospective teachers started to develop a crucial area of their PCK: understanding of 
how a particular mathematical concept can be represented in multiple ways, and how 
differences in learners inform choices, decisions, and development of these 
instructional representations.  
CONCLUSIONS AND FUTURE RESEARCH 
Using data from a teaching experiment, we developed a conceptual framework for 
studying growth of prospective teachers’ collective understanding. Our data illustrate 
metaphoric mechanisms of the growth of understanding, and correspondences 
between stages in metaphor development, and understanding actions observed at the 
onset of each stage and mapped by the Pirie-Kieren model (Table 1).  

Stage Metaphor birth 
from 

grounding 

Inseparably, 
target is source 

Metaphor into simile: 
target is like source 

Metaphor death: 
self-sustained 

target 

Actions Image Making Image Having Property Noticing Formalising 

Example “Multitude of representations” “Learning differences are 
like contradicting 

instructional uses of 
representations” 

“Learner diversity” 

Table 1: Co-occurrence of stages in metaphor development,  
and understanding actions. 
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Within a metaphor, there is a recursive movement between the emerging target and 
the source. Growth of understanding, as describe by the Pirie-Kieren model, is also a 
recursive process where folding back to inner levels is prominent. However, the 
development of metaphor: birth, turning into simile, and death into the self-sustained 
target, is unidirectional. This leads us to questions for the future studies: “What is the 
role of metaphor in folding back? In particular, how does a simile inform folding 
back from Property Noticing? What is the role of self-sustained targets in folding 
back from Formalising?” Answers to these questions can help us study ways 
prospective teachers learn, and ways to prepare teachers. 
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MATHEMATICAL MODELLING WITH 9-YEAR-OLDS 
Lyn D. English and James J. Watters 

 Queensland University of Technology 

This paper reports on the mathematical modelling of four classes of 4th-grade 
children as they worked on a modelling problem involving the selection of an 
Australian swimming team for the 2004 Olympics. The problem was implemented 
during the second year of the children's participation in a 3-year longitudinal 
program of modelling experiences (i.e., grades 3-5; 2003-2005). During this second 
year the children completed one preparatory activity and three comprehensive 
modelling problems. Throughout the two years, regular teacher meetings, workshops, 
and reflective analysis sessions were conducted. The children displayed several 
modelling cycles as they worked the Olympics problem and adopted different 
approaches to model construction. The children’s models revealed informal 
understandings of variation, aggregation and ranking of scores, inverse proportion, 
and weighting of variables.  

INTRODUCTION 
With the increased importance of mathematics in our ever-changing global market, 
there are greater demands for workers who possess more flexible, creative, and 
future-oriented mathematical and technological capabilities. Powerful mathematical 
processes such as constructing, describing, explaining, predicting, and representing, 
together with quantifying, coordinating, and organising data, provide a foundation for 
the development of these capabilities. Also of increasing importance is the ability to 
work collaboratively on multi-dimensional projects, in which planning, monitoring, 
and communicating results are essential to success (Lesh & Doerr, 2003).  

Several education systems are thus beginning to rethink the nature of the 
mathematical experiences they should provide their students, in terms of the scope of 
the content covered, the approaches to student learning, ways of assessing student 
learning, and ways of increasing students’ access to quality learning. One approach to 
addressing these concerns is through mathematical modelling (English & Watters, 
2004). Indeed, a notable finding across studies of professionals who make heavy use 
of mathematics is that a facility with mathematical modelling is one of the most 
consistently needed skills (Gainsburg, 2003; Lesh & Zawojewski, in press).  

Traditionally, students are not introduced to mathematical modelling until the 
secondary school years (e.g., Stillman, 1998). However, the rudiments of 
mathematical modelling can and should begin much earlier than this, when young 
children already have the foundational competencies on which modelling can be 
developed (Diezmann, Watters, & English, 2002; Lehrer & Schauble, 2003). This 
paper addresses the mathematical modelling processes of children from four classes 
of nine-year-olds (4th-grade), who are participating in a three-year longitudinal 
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program of modelling experiences. The children commenced the program in their 
third-grade, where they completed preparatory modelling activities prior to working 
comprehensive modelling problems (English & Watters, in press).  

MATHEMATICAL MODELLING FOR THE PRIMARY SCHOOL 
The problem-solving experiences that children typically meet in schools are no 
longer adequate for today’s world. Mathematical problem solving involves more than 
working out how to go from a given situation to an end situation where the “givens,” 
the goal, and the “legal solution steps” are specified clearly. The most challenging 
aspect of problems encountered in many professions today involve developing useful 
ways of thinking mathematically about relevant relationships, patterns, and 
regularities (Lesh & Zawojewski, in press). In other words, problem solvers need to 
develop more productive ways of interpreting and thinking about a given problematic 
situation. Interpreting a situation mathematically involves modelling, where the focus 
is on the structural characteristics of the situation, rather than the surface features 
(e.g. biological, physical or artistic attributes; English & Lesh, 2003).  

The modelling problems of the present study require children to generate 
mathematical ways of thinking about a new, meaningful situation for a particular 
purpose (e.g., to determine which set of conditions is more suitable for growing 
certain types of beans; English & Watters, 2004). In contrast to typical school 
problems, modelling tasks do not present the key mathematical ideas “up front.” 
Rather, the important mathematical constructs are embedded within the problem 
context and are elicited by the children as they work the modelling problem. The 
problems allow for multiple approaches to solution and can be solved at different 
levels of sophistication, thus enabling all children to have access to the important 
mathematical content.  

The problems are multifaceted in their presentation and include background 
information on the problem context, “readiness questions” on this information, 
detailed problem goals, tables of data, and supporting illustrations. In turn, the 
problems call for multifaceted products (models). The nature of these products is 
such that they reveal as much as possible about children's ways of thinking in 
creating them. Importantly, the models that children create should be applicable to 
other related problem situations; to this end, we have presented children with sets of 
related problems that facilitate model application (English & Watters, in press).  

The problems require the children to explain and justify their models, and present 
group reports to their class members. Because their models are to be sharable and 
applicable to classes of related situations, children have to ensure that what they 
produce is informative, “user-friendly,” and clearly and convincingly conveys the 
intended ideas and ways of operating with these. Because the problems are designed 
for small group work, each child has a shared responsibility to ensure that their 
product does meet these criteria. 
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RESEARCH DESIGN AND APPROACH 
Multilevel collaboration, which employs the structure of the multitiered teaching 
experiments of Lesh and Kelly (2000) and incorporates Simon’s (2000) case study 
approach to teacher development, is being employed in this study. Such collaboration 
focuses on the developing knowledge of participants at different levels of learning. 
At the first level, children work on sets of modelling activities where they construct, 
refine, and apply mathematical models. At the next level, classroom teachers work 
collaboratively with the researchers in preparing and implementing the child 
activities. At the final level, the researchers observe, interpret, and document the 
knowledge development of all participants (English, 2003). Multilevel collaboration 
is most suitable for this study, as it caters for complex learning environments 
undergoing change, where the processes of development and the interactions among 
participants are of primary interest (Salomon, Perkins, & Globerson, 1991).  

Participants 
Four 4th-grade classes (9 years) participated in the second year of this study, after 
having also participated in the first year. One of the four class teachers had also been 
involved in the first year of the study, whereas the remaining three teachers were new 
to the study. The classes represented the entire cohort of fourth graders in a school 
situated in a middle-class suburb of Brisbane, Australia. The school principal and 
assistant principal provided strong support for the project’s implementation.  

Procedures and activities 
At the beginning of the year, a half-day professional development workshop was held 
with the teachers where we outlined the project and negotiated plans for the year. The 
four teachers involved in the first year of the study also provided input by sharing 
their experiences and highlighting what they had learned about implementing 
modelling activities, as well as describing student learning that had occurred.  

An initial preparatory activity (focusing on reading and interpreting data) and three 
modelling problems were implemented during the year. The first modelling activity 
was conducted in winter over four weeks and focused on “Skiing for the First Time.” 
The second problem focused on the “Olympics,” which was pending at the time of 
the activity, and the third was conducted during a theme on weather and required the 
children to decide where to locate a resort in a region subject to Cyclones. 

The Olympics problem was undertaken with children working in groups of three or 
four in four 40-minute lessons conducted over two weeks. Audio-taped meetings 
were held with teachers to plan the lessons beforehand and to analyse outcomes 
immediately on conclusion of the activity. The children weer presented with an initial  
readiness activity containing background information on the history of the Olympics 
and a table of data displaying the men’s world 100 metre freestyle records from 1956 
to 2000. The children were to answer a number of questions about the information 
and data. They were then presented the main modelling problem comprising (a) the 
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data displayed in Table 1; (b) the accompanying information: We (Australia’s Olympic 
Swimming Committee) need to make sure that we have selected our best swimmers. The 
Olympic Swimming Committee has already selected the women’s swim team. However, they 
are having difficulty in selecting the most suited swimmers for competing in the men’s 100m 
freestyle. The Olympic Swimming Committee has collected data on the top seven (7) male 
swimmers for the 100m freestyle event. The data collected (see Table 2; Table 1 in this 
paper) show each of the swimmer’s times over the last ten (10) competitions. It has been 
decided by the Olympic Swimming Committee to have you as part of their selection team; 
and (c) the problem goal: Being selectors for the Olympic Swimming Committee, you need 
to use the data in Table 2 to develop a method for selecting the two (2) most suited 
swimmers for the Men’s 100m Freestyle event. Write a report to the Olympic Swimming 
Committee telling them who you selected and why. You need to also explain the method you 
used in selecting these swimmers. The selectors will then be able to use your method in 
selecting the most suited swimmers for the other swimming events.  

Data Collection and Analysis 
Each of the four teachers was fitted with a radio microphone and videotaped during 
the lesson so that her dialogue with children could be monitored. A second video 
camera captured critical events as they occurred or was focused on selected groups of 
students to monitor student interactions. Audio recordings of conversations among 
children and with teachers complemented video data. Other data sources included 
classroom field notes, children’s artefacts (including their written and oral reports), 
and the children’s responses to their peers’ feedback in the oral reports. In our data 
analysis, we employed ethnomethodological interpretative practices to describe, 
analyse, and interpret events (Erickson, 1998). 

FINDINGS 
From our analysis of the children's transcripts as they worked the modelling problems 
and reported to their peers, we identified a number of different approaches to model 
development. These included: (a) focusing on personal best times (PBs) only, with 
some groups also considering the extent of a swimmer’s variation from his PB; (b) 
tallying the number of winning races for each swimmer in each event, and comparing 
the totals; (c) aggregating the two or three lowest times of each swimmer and 
comparing the totals; (d) assigning scores (and weighted scores) to the two lowest 
times of each swimmer and aggregating the scores; (e) in addition to [d], assigning 
weighted scores to the two lowest PBs, aggregating all the scores, and then ranking 
the totals (refer Figure 1); and (f) before working with the data, eliminating those 
swimmers with the most number of DNCs (“Did Not Compete”). Page limit prevents 
us from providing detailed accounts of the children’s developments, however, it is 
important to note that the groups displayed several cycles of modelling as they 
worked the problem. That is, they interpreted the problem information, expressed 
their ideas as to how to meet the problem goal, tested their approach against the given 
criteria, revisited the problem information, revised their approach, implemented a 
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new version, tested this, and so on. We consider just a couple of the above modelling 
approaches in this paper. 

A Focus on Personal Best Times (PBs) 
Lana’s group chose to focus on the swimmers’ PBs from the outset, but did consider 
other options in justifying their decision. Initially, the group thought they might “add 
up the amounts,” to which one member responded, “Yeah, and whoever has the 
smallest…” Later on, when the group revisited this option, Lana felt this was not 
feasible because “what I’m arguing is, well, I’m not really arguing, what I’m saying 
is … we can’t add up the totals because there are so many Did Not Competes, and 
they’ve got uneven amounts, so that wouldn’t be fair.” Another child responded, 
“And they would get a lot lower (total).”  

In comparing the swimmers’ PBs, the group members clarified their interpretation of 
this notion: “Don’t you want the lowest time, whatever? The lowest time is the fastest 
swimmer.” “Because that means they don’t take as long to swim.” As the group were 
considering the swimmers’ PBs, they also noted an error in the data (Ashley Callus’ 
PB was higher than his score for the 2001 Pan Pacs.) The group spent quite some 
time arguing about how to resolve this dilemma but decided to accept the error.  

In reflecting on their focus on PBs, three of the group members questioned the 
reliability of these data. In the transcript below, the children are starting to think 
about trends in the data and swimmers’ variation from their PBs.  

Kelly continued her argument that “It doesn’t just Kelly: Yeah, but Lana they might 
just one day swim really, really well, like…they might have just had a really, 
really good day, yeah, or week or whatever. 

Lana: Yeah, I know... 
Kelly: They might be a really good swimmer and then they sort of you know they 

might have had an injury and gone back but their not as good, so…it might have 
changed.  

Sam: Yeah it might help to stop swimming, and like start… 
Tony: What we would have to do is look at the latest times, compare those, and then 

we will know.  
Kelly: Yeah but see in the Olympics, you don’t all get into the Olympics. So, obviously 

they weren’t… 
Lana: Oh but he’s saying latest times, so everyone’s latest times would be in different 

place really…  
depend on their PB, I mean you might be a really good swimmer…your PB might, 
like, change…because your personal best is your best but changes all the time.” The 
group also spent time considering the PBs in relation to the level of the competition 
in which these were attained (e.g., a PB earned at the 2000 Olympics was more 
significant than one at the Telstra Australian Championships). Here the children were 
displaying an informal understanding of weighted variables, however, they did not 
pursue this further.  
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Children in another class were also aware of the limitations of relying solely on PBs, 
and began to consider possible variations from a given PB. After one group presented 
their report, a boy asked, “How come you just compared their personal best because 
they don’t do that all the time?” In subsequent class discussion the children explained 
that the swimmers’ most recent times should be considered, “because they could have 
been slow when they first started, and they could have got stronger…and now they’re 
going faster and faster.” The children also commented that the swimmers “could get 
slower and slower,” or “they could just stay on their personal best,” or “they could go 
faster and then slower and then fast.”  

Assigning Scores and Ranking 
We consider here how James’ group developed their model. First, they considered 
each row of Table 1 in turn, and awarded a score of 2 to the swimmer with the lowest 
time and a score of 1 to the swimmer with the second lowest time. They then added 
each swimmer’s scores and recorded these in their own table (see the first row of 
Figure 1). As James explained, “Some people got the most amount of points...like, 
some people both got first…because they need two people, so whoever came first, 
they would have both got two points.” Second, the group considered the PBs of each 
of the swimmers and awarded 2 points to the lowest PB and one point to the second 
lowest (see the second row of Figure 1). The group then aggregated each swimmer’s 
scores to find the “total rank.” Ian Thorpe and Michael Klim were thus selected.  

Other groups only assigned one point to the swimmer with the lowest time in each 
swimming event and tallied the points to determine the two swimmers to be selected. 
Ashley’s group explained, “Our selection is Ashley Callus and Ian Thorpe because 
they both had the most winning streaks. We looked at all the competitions and we put 
a tally on the fastest time and then we counted them up.” Ashley’s group did not 
consider the swimmers’ PBs.  

 Ashley 
Callus 

Michael 
Klim 

Eamon 
Sullivan 

Ian Thorpe Todd 
Pearson 

Grant 
Hackett 

Adam 
Pine 

Rank 10 10 0 11 4 1 1 
PB 0 2 0 1 0 0 0 
Total Rank 10 12 0 12 4 1 1 

Figure 1: The table created by James’ group  

CONCLUDING POINTS 
The present study is providing young primary school children with opportunities to 
develop powerful mathematical ideas and processes through mathematical modelling. 
A modelling problem is a realistically complex situation where students engage in 
mathematical thinking (beyond that of the traditional school problem) and generate 
conceptual tools needed for some purpose (Lesh & Zawojewski, in press). Modelling 
problems foster and reveal children’s mathematical thinking thus enabling teachers to 
capitalise on the insights gained into their children's mathematical developments. 
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Table 1: Swimming Times Recorded for the Men’s 100m Freestyle 

 
 
Competition 

Ashley 
CALLUS 
(PB: 
48.43 
secs) 

Michael 
KLIM 
(PB: 
47.98 
secs) 

Eamon 
SULLIVAN 
(PB 50.06 
secs) 

Ian 
THORPE 
(PB: 
48.11 
secs) 

Todd 
PEARSON 
(PB: 48.45 
secs) 

Grant 
HACKETT 
(PB: 48.67 
secs) 

Adam 
PINE 
(PB: 
48.68 
secs) 

2004 Telstra 
Swimming 
Grand Prix 

51.50 secs 
50.44 
secs 

50.35 secs 49.23 secs 50.19 secs 51.42 secs 
51.87 
secs 

2004 Telstra 
Olympic Team 
Swimming 
Trials 

49.31 secs 
49.78 
secs 

50.06 secs 48.83 secs 49.78 secs 50.40 secs 
50.24 
secs 

2003 Telstra 
FINA World 
Cup 

48.06 secs 
50.12 
secs 

50.24 secs 48.94 secs 48.83 secs DNC 
49.67 
secs 

2003 Telstra 
Australian 
Championships 

49.07 secs DNC 51.86 secs 49.07 secs 49.29 secs 50.32 secs 
50.69 
secs 

2002 Pan Pacs DNC 
48.44 
secs 

52.43 secs 48.98 secs 49.64 secs 48.67 secs 
48.93 
secs 

2002 Telstra 
Swimming 
Grand Prix 

51.12 secs 
48.58 
secs 

51.32 secs 48.11 secs 48.45 secs 51.90 secs 
51.62 
secs 

2001 Telstra 
FINA World 
Cup 

48.43 secs 
48.43 
secs 

51.74 secs 48.81 secs 50.80 secs DNC 
48.90 
secs 

2001 Pan Pacs 47.81 secs 
49.13 
secs 

53.73 secs 50.79 secs 50.30 secs 51.93 secs 
49.46 
secs 

2001 Telstra 
Australian 
Championships 

49.46 secs 
49.53 
secs 

55.12 secs 49.05 secs 49.67 secs 51.69 secs 
50.27 
secs 

2000 Telstra 
FINA World 
Cup 

49.62 secs 
47.98 
secs 

DNC 49.99 secs 48.98 secs 51.42 secs 
48.68 
secs 

2000 Olympic 
Games 

DNC 
48.56 
secs 

DNC DNC DNC DNC DNC 

Note:  DNC means did not compete; PB means personal best 
Modelling problems are designed to ensure that the product generated embodies the 
mathematical ideas and processes that children constructed for dealing with the 
problem situation. In the case of the Olympics problem, the children’s creations 
revealed informal understandings of variation, aggregation and ranking of scores,   



English & Watters  

 

2- 304 PME29 — 2005 

inverse proportion (the lower the time, the faster the swimmer), and weighting of 
variables—all of which are not normally part of the 4th-grade curriculum.  
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EXPLORING “LESSON STUDY” IN TEACHER PREPARATION 
Maria L. Fernández 

Florida State University 

 
Prospective secondary mathematics teachers continue to lack images of “reformed” 
teaching. This investigation studied prospective teachers’ development of reform-
oriented teaching through Micro-teaching Lesson Study [MLS], an experience based 
on Japanese lesson study (Stigler and Heibert, 1999). A qualitative analysis of 
various data sources (video-taped lessons, written lesson plans and reflections, 
observations, and surveys) for 18 participants working in groups of three was 
conducted. Findings include growth in understanding and implementing reform-
oriented teaching and development of subject matter knowledge. Participants 
perceived the experience and its components as beneficial in their development as 
teachers.  

INTRODUCTION AND RATIONALE 
In many countries, dissatisfaction with teacher education is pressuring toward more 
field-based programs (Korthagen and Kessels, 1999). More school-based 
experiences, however, is not the panacea that some expect. Teachers’ learning based 
on their own observations of practices while being students and their individual 
observations of teachers in placement schools within their teacher education 
programs leads to teacher preparation that is idiosyncratic and particular (Ball and 
Cohen, 1999). Zeichner and Tabachnick (1981) and Lortie (1975) have revealed the 
socialization of teachers into the status quo through the participation in field 
experiences and personal observations of practice. Prospective secondary 
mathematics teachers continue to lack images of “reformed” teaching, teaching that 
engages students in experimenting, analyzing, conjecturing, justifying, and making 
connections. To better prepare secondary mathematics teachers and reduce the 
idiosyncratic nature of their development, it seems appropriate to engage them in 
more collaborative tasks, discourse and environments that will help them more 
systematically develop images of reformed mathematics teaching and the capabilities 
to reflect on, reason about and engage in change. As prospective teachers engage in 
these collaborative experiences, teacher educators should study their development in 
order to inform the pedagogy of teacher education. The National Academy of 
Education [NAE] (1999) in a research advisory report underscored as a priority the 
need for further research on the preparation of teachers. 

Mathematics teacher educators need to seek and investigate activities, tasks and 
contexts that provide prospective teachers with common experiences that will help 
them more systematically develop images of reformed mathematics teaching. The 
purpose of this study was to investigate the professional development of prospective 
teachers engaged in one such experience, named Micro-teaching Lesson Study 
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[MLS]. The development of MLS is based on “lesson study,” a component of 
professional development that is highly valued by Japanese teachers and is 
considered one of the best ideas for improving teaching and education from the 
world’s teachers (Stigler and Heibert, 1999). MLS incorporates key features and 
phases of Japanese lesson study. The phases of MLS follow those of lesson study: 
collaborative planning, lesson observation by colleagues and other experts, analytic 
reflection, and ongoing revision (Curcio, 2002). MLS provides a context for 
prospective teachers to develop pedagogical content knowledge, knowledge of 
teaching, content and learning, and images of reform-oriented teaching. MLS may 
take on different formats. The present investigation studied the use of MLS within an 
initial course on teaching mathematics. The prospective teachers collaborated in 
groups of three through three cycles of planning, teaching, analysis and revision of 
one lesson. As with Japanese lesson study, an important feature of MLS is the focus 
on learning goals. During this study, the main learning goal for the lessons was to 
develop students’ reasoning and ability to study patterns in discovering relationships 
or constructing concepts. The following questions were under investigation: 

(1) To what extent does MLS help prospective mathematics teachers develop 
knowledge of teaching aligned with recent reforms in mathematics education? 

(2) What were prospective teachers’ perceptions of the MLS experience and its 
components? 

RELEVANT LITERATURE 
The National Commission on Teaching and America’s Future [NCTAF] (1996) 
identified uninspired methods of teaching prospective teachers as a barrier in the 
education of qualified teachers that make learning come alive. Prospective teachers 
are expected to excite and motivate students to learn; yet their own learning 
experiences are often uninspired and traditional. Methods courses are often taught 
through lectures and recitation. Prospective teachers complain that methods courses 
are not intellectually substantive or that discussions of theory and research are not 
sufficiently oriented toward practice (Commission on Behavioral and Social Sciences 
and Education [CBSSE], 2000). MLS provides prospective teachers with an 
intellectually challenging opportunity to explore the use of theory and research based 
instructional methods.  

From a cognitive perspective, knowledge construction is assumed to be a dynamic 
and active process. Learners construct knowledge while attempting to make sense of 
their experience. The construction of knowledge involves the interaction of past 
knowledge with the experience of the moment (Resnick, 1987). 

Current information about human learning suggests that learning environments 
should be learner centered, knowledge centered, assessment centered, and community 
centered (CBSSE, 2000). The MLS is a collaborative experience encompassing these 
four components. The MLS is learner centered with prospective teachers working in 
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small groups to develop, implement, and analyze the teaching of mathematics 
lessons. It is knowledge centered focusing on helping prospective teachers 
understand and develop images of reform-oriented teaching as envisioned by the 
National Council of Teachers of Mathematics [NCTM] (1991, 2000) through 
discussion, exploration, experimentation, and analysis. Knowledge is developed 
through cycles of planning, implementing, and reflecting on lessons. The opportunity 
for feedback and revision within the teaching cycles provides for the assessment 
centeredness of the task. The MLS is community centered in that it provided 
prospective teachers with opportunities to experiment, make mistakes, discuss, and 
negotiate among peers and an instructor their emerging understandings of teaching 
toward goals aligned with reform-oriented teaching.  

METHODS, DATA COLLECTION AND ANALYSIS 
The research design involved primarily qualitative data collection and analysis. Data 
collection included observations of planning, implementing, and analysis of lessons, 
group documentation of three cycles of planning, teaching, analysis and revisions, 
video-tapes of lessons, and surveys of feedback, analysis, and collaboration. The 
investigation was conducted in an initial course on learning to teach mathematics that 
included 18 prospective teachers. Prior to the MLS experience, the prospective 
teachers were engaged in discussing readings and analyzing videotaped lessons, 
focusing on reform-oriented teaching of mathematics. Additionally, they were 
engaged in mathematical tasks modeling the current vision of mathematics teaching 
proposed by NCTM (1991, 2000). The prospective teachers were given an initial 
survey to assess their knowledge of potential mathematics topics for lessons. Based 
on these surveys and instructor observations, the prospective teachers were grouped 
heterogeneously into six MLS groups each consisting of three prospective teachers. 

Each group was involved in three cycles of planning, teaching, analyzing and 
revising a mathematics lesson with a goal of promoting reasoning and the study of 
patterns in discovering a relationship or constructing a concept. Mathematics topics 
for the lessons included fractals, traceable paths, Euler’s formula, permutations, 
prisms and pyramids, and ellipses. The lessons were taught to small groups of peers 
in the same course; class members lacked understanding of the lesson topics as 
determined by the initial survey. Each group completed a written assignment 
consisting of 5 sections that guided them through the phases of the MLS based on 
Japanese lesson study: Section I included pre-lesson thoughts, materials explored and 
lesson plan; Section II included video of first teaching, analysis of the lesson 
(individual and group reflections) and revisions to lesson plan; Section III included 
video of second teaching analysis (individual and group reflections) and revisions; 
Section IV included video of the third teaching, analysis (individual and group 
reflections) and final revisions; Section V included the final revised lesson along with 
suggestions for teaching the lesson to be distributed to class members. Analysis of the 
lessons was conducted with respect to a video analysis framework based on the 



Fernández  

 

2- 308 PME29 — 2005 

vision of mathematics teaching promoted by NCTM (1991). Groups were observed 
working together and given feedback on their video-taped lessons by the instructor 
during the phases of the MLS. Field notes of these observations and interactions were 
kept. At the end of the four week MLS experience, final surveys assessing 
prospective teachers’ views of lesson feedback, analysis, collaboration and 
understanding of reform-oriented teaching were gathered.  

The multiple data sources described above were used to triangulate the findings. 
Analysis began with the MLS projects. The videotapes of the lessons and the written 
lesson plans, submitted as part of the MLS projects, were coded with respect to the 
pedagogy used and the knowledge of the subject-matter presented. In particular, 
lessons were coded and compared with respect to the engagement of student peers in 
discovering, developing or constructing relationships or concepts (student-
centeredness), and teacher telling, showing, and stating the relationships or concepts 
(teacher-centeredness). The MLS projects and observation notes were coded with 
respect to the prospective teachers’ learning about content and pedagogy, and their 
perceptions of the experience. Findings from the projects and the observations were 
triangulated with prior findings from the analyses of the videotaped lessons and 
lesson plans. Finally, responses to the Microteaching Feedback Surveys were tallied 
and open-responses coded, and then compared and contrasted with the emerging 
themes. The Microteaching Feedback Surveys were analyzed for participants’ 
perceptions of their learning and views about the MLS experience. As themes 
developed throughout the data analyses, they were confirmed or disconfirmed 
through data triangulation.  

FINDINGS 
From analysis of the video-taped lessons and the written lesson plans, as prospective 
teachers engaged in the MLS their second lessons became less teacher-centered and 
incorporated more student experimentation, analysis and reasoning than their first 
lessons. For example, the group teaching Euler’s formula for polyhedrons, had in 
their first lessons typically provided the formulas or definitions for their topic and 
focused on application of that information. Later during the second phase of the 
project, after receiving feedback from the instructor and analyzing the video-tape of 
their own lesson, they engaged the students in experimenting with a variety of 
polyhedrons, looking for patterns and using reasoning to generate a relationship. The 
prospective teachers themselves observed this difference in their own lessons:  

The improvement from our first to second lesson was dramatic. Our first lesson was far 
more teacher-centered and did not really center around the idea of constructing a concept 
or discovering a relationship. This time, we kept to the idea of constructing definitions, 
not stating, and then justifying them. This time it seems as though we had a better 
understanding of how to do this. (MSL Group 1) 

In the MLS group teaching about ellipses, one of the participants was one of the high 
math content exam scorers. Her group observed that her lessons were more effective 
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in engaging students’ thinking and all three improved on their student-centeredness 
and engagement of students in the discourse during the second lesson: 

As a group we realized how important it was to make each lesson more student led rather 
than teacher led. Getting away from a teacher-centered classroom is hard, since that is 
how most of us learned. After seeing how a student-led lesson can improve a student’s 
performance, we see how valuable it is in our teaching. (MSL Group 6) 

Participants also reflected on their own changes with respect to student participation. 
For most of the prospective teachers, the feedback and analysis of their video-taped 
lessons seemed to be an important aspect of the MLS. This feedback and analysis 
helped them to think about their own teaching. One prospective teacher reported,  

I feel that the input that I received from the first lesson had an impact on the way I intend 
to run my classroom. It made me realize that I needed to get the students to participate 
and play a more active role in the learning process. I think this helped a lot with the 
success of the [second] lesson” (member MLS Group 2)  

Through the MLS experience, in addition to developing their understanding of 
teaching strategies aligned with recent reforms, the prospective teachers enhanced 
their mathematics subject matter knowledge. For example, after the first lesson, a few 
groups struggled with understanding the relationships they were teaching and the 
need to understand more in-depth arose from questions raised during the lessons. For 
example, toward the end of the initial lesson on traceable paths, the students being 
taught asked why a traceable path can have at most two odd vertices (the teacher 
could not figure it out before time ran out). After the lesson, when the teacher for that 
lesson got together with her MLS Group members they further explored the 
relationship in order to understand why this occurred and incorporated this into their 
next lesson. The next two times the lesson was taught, the teachers did not raise this 
question and their students did not bring it up as in the first group. The teachers in all 
of the MLS groups tended to focus less attention on deductive reasoning, justifying 
the relationships that were discovered or constructed, and more on inductive 
reasoning, analyzing, looking for patterns and making conjectures. In another 
example, during the initial lesson on permutations, the group member teaching about 
permutations had students develop two formulas for determining permutations but 
did not engage the students in explaining how the formulas were related nor had she 
thought about it with he group members. The instructor’s feedback challenged this 
aspect of their lesson and the group struggled to understand the relationship and 
incorporated this connection into their next lessons.  
Although most of the lessons improved as the groups progressed through the MLS 
cycles, the last lesson on traceable paths did not demonstrate as much improvement 
as the others. This group engaged in limited collaboration as a whole and tended to be 
overly concerned with others feelings as they discussed the lessons taught. (Their 
concern for the others feelings was expressed in the Microteaching Feedback 
Survey.) The member teaching the third lesson did not fully develop her 
understanding of traceable paths. During her teaching, although she tried to engage 
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the students in reasoning about traceable paths and non-traceable paths, she quickly 
gave up when the students began to struggle with discovering the relationship (this 
struggle is a normal aspect of problem solving). She moved on to provide the 
definition for them and then explained how to use paths to represent maps. Although 
her MLS group members’ assessment of her lesson lacked some depth because of 
concern for her feelings, through the experience of reflecting on her group members 
prior lessons on traceable paths, she recognized that she gave up and did not achieve 
the overarching lesson goal of developing students’ reasoning and ability to study 
patterns in discovering relationships or constructing concepts. She commented, “I 
believe that I could have been a little more prepared with the definitions and paid a 
little more attention to the students constructing their ideas of the concepts but I don’t 
think that John and Tami would say that to me.”  
The Microteaching Feedback Survey provided valuable information about individual 
and group perspectives on the MLS experience and its components. When asked 
“What were the two most important things you got out of the Microteaching Project, 
the participants tended to feel primarily that the feedback they received from their 
own group members along with their own observations through the videotapes was 
most beneficial in their learning to teach. Several commented on learning to facilitate 
student engagement in exploration, analysis and explanation as most important while 
others felt that the experience help them understand lessons as “works in progress.”  
On the feedback survey, the participants were asked to provide a rating and 
explanation of their rating for each statement. The ratings were (1) Strongly Agree, 
(2) Agree, (3) Nuetral, (4) Disagree, (5) Strongly Disagree. Table 1 summarizes their 
perceptions by average ratings. 

Feedback Item Summary Ave. 

1. Planning in a group broadened my knowledge of teaching ideas 2.0 

2. Analyzing others’ lessons helped me think more deeply about mine 2.0 

3. Analyzing each others’ lessons helped me learn to assess lessons 2.3 

4. The video analysis framework was helpful in analyzing our lessons 2.6 

5. Feedback from group members was helpful 1.8 

6. Concern for others’ feelings influenced my feedback 3.3 

7. I was upset by feedback from my peers 4.4 

8. I was upset by feedback from my instructor 4.0 

9. Planning together broadened my knowledge of the mathematics  1.9 

10. Preparing to teach this topic caused me to engage in mathematical 
reasoning and problem solving 

2.2 

Table 1: Summary of MLS Feedback Survey 
From the survey, group member feedback and group planning were revealed to be 
very important to the participants. The participants, however, expressed some 
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concern for other’s feelings when providing feedback. This is important to be aware 
of in experiences where prospective teachers are asked to provide feedback to one 
another or engage them in thinking critically about their teaching because they may 
not be helping their partners reach higher levels of thinking about their teaching. The 
role of the instructor or expert in these cases becomes more important in order to 
facilitate greater learning opportunities for prospective teachers. The feedback also 
indicated that students felt they were broadening their mathematics knowledge 
through the MLS experience. 

CONCLUSIONS AND IMPLICATIONS  
The MLS experience seems to help prospective teachers understand and begin 
implementing teaching practices that are consistent with reform-oriented teaching. It 
also raised the tension between subject matter knowledge, pedagogical knowledge, 
and practice for prospective teachers to begin experiencing, reflecting on, and 
working through. This experience provides an opportunity for prospective 
mathematics teachers to begin linking theory and practice as they engage in cycles of 
planning, implementing and reflecting on lessons.  

In communities where appropriate placements for prospective secondary mathematics 
teachers are limited, MLS can reduce the burden of school placements. This 
opportunity can be used in addition to school-based experiences to provide less 
idiosyncratic teacher preparation experiences.  
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CHILD-INITIATED MATHEMATICAL PATTERNING IN THE 
PRE-COMPULSORY YEARS  

Jillian Fox 

Queensland University of Technology, Brisbane, Australia 

 
This paper addresses the nature of child-initiated episodes of mathematical 
patterning prior to formal schooling. In a multi-site case study, children’s 
engagement in mathematical patterning experiences was investigated as was the 
teachers’ involvement and influence in these experiences. A conceptual framework 
was used to guide the examination of how children generate, engage in, and direct 
mathematical patterning activity. The analysis of two child-initiated patterning 
episodes revealed that they provide rich learning opportunities for both the children 
who initiate the episodes and their peers who share the episodes. The results also 
highlight the important role of the teacher in fostering children’s patterning 
development.   

BACKGROUND 
Educators and mathematicians have emphasized the importance of pattern in 
mathematics and acknowledge its essential role in the development of mathematical 
knowledge, concepts and processes. In fact, Steen (1990) argued that “Mathematics is 
the science and language of pattern” (p. 5). Pattern exploration has been identified as 
a central construct of mathematical inquiry and as a fundamental element of 
children’s mathematical growth (Burns, 2000; Clemson & Clemson, 1994; Heddens 
& Speer, 2001; NCTM, 2000). The years prior to formal schooling (pre-compulsory 
education and care services) are widely recognised as a period of profound 
developmental change, where many mathematical concepts begin (Clements, 2000; 
Ginsburg, 1997). The salient role of patterning in the development of mathematical 
knowledge is evident in its inclusion in various curriculum documents (National 
Council of Teachers of Mathematics [NCTM], 2000; Queensland School Curriculum 
Council, 1998; Queensland Studies Authority, 2004; Ministry of Education [N.Z.], 
1996).  

SIGNIFICANCE OF MATHEMATICAL PATTERNING 
Young children’s knowledge and skills in mathematics are developed and made 
meaningful through processes such as comparing, counting, symbolizing, classifying, 
measuring, representing, estimating and patterning. Within the mathematical domain, 
patterning can be defined as something that remains constant within a group of 
numbers, shapes or attributes of mathematical symbols or concepts. The arrangement 
of the group possesses some kind of clear regularity through the use of repetition. For 
example, Charlesworth (2000) proposed that patterning is a process of “discovering 
auditory, visual, and motor regularities” (p. 190). Whilst there are three categories of 
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patterning (repeating, growing, and relationship), repeating patterns are the earliest 
form of pattern explored (Burns, 2000). Children as young as three and a half years 
of age display a strong interest in patterns (Ginsburg, Inoue, & Seo, 1999). Ginsburg 
et al. investigated preschool children’s participation in everyday mathematical 
activities within the educational setting. The aim of their study was to investigate the 
relative frequency of different types of mathematical activity. Children engaged in 
pattern and shape activities for 30% of the observed time. This degree of engagement 
was markedly higher for patterning than for the other mathematically-orientated 
activities identified, such as dynamics (i.e., the process of change or transformation), 
relations, classification and enumeration.  

Mathematical patterning provides a substructure upon which formal mathematical 
competencies can be built. Because the study of patterns underpins all mathematical 
thinking, it has a close connection to mathematical content areas, such as number, 
geometry, measurement, and data. Although patterning is integral to the mathematics 
curriculum in the compulsory years of schooling, it is also a feature of other 
curricula. Patterning opportunities occur across the curricula in science, art, language, 
music, and physical education. Hence, from a child’s earliest years, patterning is 
foundational within and beyond the mathematics curriculum because it assists 
children in making sense of their everyday world. 

MATHEMATICS LEARNING IN PRE-COMPULSORY SETTINGS 
In early childhood education (as with later education), mathematics is not simply “a 
static network of terms, rules and procedures that are conveyed by teachers and 
absorbed by students for recall upon demand” (Campbell, 1999, p. 108). Rather, 
recent curriculum documents describe mathematics as a way of thinking about 
relationships, quantity, and pattern via the processes of modelling, inference, 
analysis, symbolism, and abstraction (e.g., NCTM, 2000).  

Recent research has provided considerable insight into how children learn 
mathematics and has influenced current curriculum documents (Ginsburg, 2002). 
Curriculum documents such as Early Years Curriculum Guidelines (Queensland 
Studies Authority, 2004), Te Whariki (Ministry of Education [N.Z.], 1996) and 
Principles and Standards for School Mathematics (NCTM, 2000) currently reflect 
the constructivist and social constructivist theories of learning. The basic tenet of 
constructivism, as described by Heddens and Speer (2001) is that “learners construct 
their own meaning through continuous and active interaction with their environment” 
(p. 13). Social constructivism, informed by Vygotsky, recognises that learning is a 
process that occurs within social interactions emphasised by social collaboration and 
negotiated meanings (Klein, 2000). Social constructivism theory recognises that 
children’s social and material interactions with their environment are the means 
through which they learn.  

Early childhood curricula also recognise the value of play and the use of concrete 
materials in children's mathematical development (NCTM, 2000; Perry & Dockett, 
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2002). Young children’s play can be elaborate depending on the theme, content, 
social interaction and the nature of the understandings demonstrated and generated 
(Perry & Dockett, 2002). Many mathematical experiences occur during children’s 
play. For example, Ginsburg et al. (2000) noted that 42% of observed play activities 
engaged in by 4 and 5-year-old children featured mathematical experiences. Play is a 
valuable component of child-initiated curriculum, an approach which recognises 
children as the source of the curriculum (Perry & Dockett, 2002). Thus, for young 
children, playtimes provide an opportunity for the exploration of mathematical 
patterning and other mathematical concepts. Provided that their mathematical 
experiences are appropriately connected to their world, young children are capable of 
exploring ideas “in more sophisticated and rich ways than previously believed 
possible” (NCTM, 2000, p. 103).  

RESEARCH DESIGN 
Settings and Participants 
Two classrooms were chosen for involvement in this study: one preschool classroom 
(site A) and one preparatory year classroom (site B). The two sites were located in 
inner city Brisbane and were geographically close (two kilometres apart); they shared 
similar socio-economic clientele. Both classroom settings were arranged into interest 
areas such as block corner, home corner, collage table, and sand and water areas. The 
teachers’ daily programs incorporated both teacher-directed times and free play 
opportunities. Each setting had 13 female and 12 male children and was staffed by a 
4-year trained early childhood teacher. Each teacher had in excess of 10 years 
teaching experience in both informal and formal educational settings. 

Data analysis 
A case study (Yin, 2003) was undertaken to gain an understanding of the nature and 
occurrence of mathematical patterning in pre-compulsory settings. Analysis of a total 
of approximately 80 hours of video observations collected in the two classrooms 
revealed ten mathematical patterning episodes. Two episodes were initiated by 
children and the other eight were guided by the teachers. This paper focuses on the 
observed child-initiated episodes. An episode is defined as an observed occurrence 
containing some aspect of mathematical patterning behaviour.   

CHILD-INITIATED EPISODES 
Episodes instigated by the children were explicit (clearly articulated) or implicit 
(suggested but not clearly expressed). The analysis of these episodes was informed 
by Stein, Grover and Henningsen’s (1996) conceptual framework, which focuses on 
classroom-based factors that influence student engagement with cognitively 
demanding mathematics tasks in real classroom settings. The Stein et al. framework 
was adapted to suit early-childhood settings (see Figure 1) in order to examine 
episodes that children initiated and that featured mathematical patterning. The 
framework comprises three phases (as represented by the rectangular boxes). The 
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first phase depicts the original context prior to the child-initiated event. A child-
initiated episode (phase two) is where a child initiates an occurrence that incorporates 
an aspect of mathematical patterning behaviour. The third phase, responses to child-
initiated task, considers the responses made to the child’s overtures by both the 
teacher and class members. The child’s peers may contribute to the newly initiated 
task or engage in dialogue with them and extend the task further. This framework 
also includes factors which influence the initiation and response phases (phases two 
and three). Factors influencing the event include children’s knowledge of 
mathematical patterning, their interests, and prior experiences. The physical 
environment and availability of resources can also influence the episode. The factors 
influencing participation in the episode include task appeal, the involvement and 
encouragement of the teacher and peers, and other participants’ knowledge of 
patterning. 

 

Figure 1: Framework illustrating components contributing to child-initiated activities. 

FINDINGS 
Two episodes of child-initiated mathematical patterning were observed in the case 
study. The first episode occurred in the preparatory setting (site B). A child named 
Ashleigh engaged in an independent activity at the painting easel (original context). 
Paints, paint brushes, paper and toothbrushes were placed in the outdoor area and 
made available for children to use at their own instigation. Ashleigh was observed 
using the brushes to paint stripes. She was talking to herself saying “pink, purple, 
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pink, purple.” She repeated the set twice before beginning a new set of stripes (child-
initiated episode-phase 2). Another child, Nicole, observed Ashleigh’s painting and 
said “I’m going to be green, pink, purple.” Nicole made four sets of a green, pink and 
purple pattern. She then painted lots of green stripes and then put orange stripes in 
between the green lines. Nicole made more AB patterns using orange/green and 
purple/yellow. Nicole then said aloud (to who-ever was present) “Look at my 
patterns” (see Figure 2). Nicole’s participation in this event constitutes the response 
to child-initiated task (phase 3). From a distance, Mrs Jones (teacher) observed the 
children discussing their creations. Mrs Jones called out “Looks like you are doing 
some lovely art work”, and continued inside the Centre. Mrs. Jones did not seem to 
be aware of the opportunity she had failed to capitalise on through not noticing the 
children’s interest in mathematical patterning. Factors influencing this episode 
included Ashleigh and Nicole’s knowledge of repeating linear patterns. The available 
paint and resources provided them with the opportunity to play and explore. 
Influencing factors such as the degree of teacher involvement and encouragement 
may have limited the potential of this activity however the children shared their 
knowledge and encouraged each other to participate in the experience. 

 

 

 

 

Figure 2: Example of pattern creation 
using paint colours 

 Figure 3: Example of pattern creation 
using tap-tap equipment. 

 

The second episode occurred in the preschool setting (site A). A child named Chelsea 
was sitting at an inside table independently interacting with manipulative equipment 
called ‘tap tap’ (a hammer and nails construction kit). This construction material had 
been placed on a table for the children’s use. No instructions for its use were 
provided by the teacher (original context). Chelsea initiated an episode (phase 2) by 
tapping shapes on to the cork board and described it to other children at the table. “It 
is a necklace with diamonds – diamond, funny shape, diamond, funny shape, 
diamond, funny shape” (Figure 3). The teacher questioned Chelsea about her 
creation. After teacher intervention, another child, Harriet, began to use the ‘tap tap’ 



Fox  

 

2- 318 PME29 — 2005 

equipment to make a repeating pattern (yellow circle–green triangle). A second child, 
Emma, joined the table and created a necklace utilising an ABBA pattern (response 
to child-initiated task-phase 3). Chelsea’s explicit interest in mathematical patterning 
(factors influencing event) seemed to provide the stimulus for other children to join 
her in creating patterns. The teacher’s involvement and intervention also encouraged 
the children to participate and create patterns. Three children participated in this 
episode enthusiastically and the episode provided exposure to mathematical 
patterning concepts in a play-based experience.  

The two child-initiated episodes occurred as a result of children’s current interests 
and as the individuals shared their thoughts or creations with peers, their interest 
grew and developed. As other children became involved and contributed to both 
activities the learning and knowledge was shared, altered, and extended. Table 1 
illustrates that all the components of the learning framework were present with the 
exception of factors influencing participation in the first episode. While this episode 
involved a successful interaction and exchange of knowledge between two girls, the 
teacher’s acknowledgement and involvement could have also contributed to the 
episode. As seen in the second episode, when the teacher played a role in the episode 
more children seemed to engage in mathematical patterning behaviours. During these 
episodes repeating linear patterns were created by children in unstructured play times. 
These occurrences were productive exchanges initiated by the children THAT 
encouraged the exploration of mathematical patterning. 

 

Episode 
number 

Phase 1 Phase 2 Phase 3 Learning 
outcome 

Factors 
inf. setup 

Factors inf. 
participation 

1 � � � � � � 

2 � � � � � � 

Table 1: Framework elements observed during child-initiated episodes 

CONCLUDING POINTS 
Mathematical patterning provides an essential foundation for many mathematical 
concepts and processes. Williams and Shuard (1982) claimed that “the search for 
order and pattern … is one of the driving forces of all mathematical work with young 
children” (p. 330). As Piaget (1973) attested, children are natural learners and are 
motivated to learn – their minds are created to learn. Early childhood curricula 
support these beliefs in their endorsement of constructivism, social constructivism, 
and play-based learning (NCTM, 2000; QSA, 2004). 

Findings in this case study suggest that child-initiated episodes containing 
mathematical patterning are productive learning occurrences. During unstructured 
play times, children initiated activities that explored repeating patterns, pattern 
language, and the elements of linear patterns. These episodes were rich opportunities 



Fox 

 

PME29 — 2005 2- 319 

where children shared, refined, and developed their knowledge of patterns. The 
children featured in these episodes manipulated the resources provided in the pre-
compulsory settings to explore mathematical patterning. Thus, child-initiated 
experiences can be powerful learning opportunities with the potential to develop 
children’s knowledge of mathematical patterning in meaningful contexts.  

Teachers within the early childhood settings have an essential role in fostering 
children's mathematical patterning activities. However, teachers need to have 
knowledge of mathematical patterning and be capable of capitalising on children’s 
interests (Waters, 2004). The role of the teacher in questioning, providing resources, 
being involved, and offering encouragement has the potential to enrich mathematical 
patterning experiences and extend the children’s existing knowledge. Further studies 
could provide greater insight into how teachers’ knowledge and involvement could 
influence and enhance similar learning opportunities. 
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THE TACIT-EXPLICIT NATURE OF STUDENTS’ KNOWLEDGE: 
A CASE STUDY ON AREA MEASUREMENT  

Cristina Frade 
Universidade Federal de Minas Gerais – UFMG – Brazil 

This paper reports on case study that investigated the development of mainly tacit 
and mainly explicit components of knowledge of area measurement of a student-pair. 
The research covered two terms or periods of the students’ learning of the subject: 
when they were aged 11 to 12 and when they were aged 12 to 13. The data analysis 
was based on Ernest’s model of mathematical knowledge, with reference to its mainly 
tacit and mainly explicit components, and Kitcher’s ideas about the development of 
mathematics practice. The results of the research reinforced our hypothesis that 
students’ mathematical knowledge displays a very similar structure to that of the 
mathematical knowledge of the mathematicians.   

INTRODUCTION 
The concept of tacit knowledge does not have a single meaning. As discussed in 
Frade’s (2004) work some researchers address what can be called Polanyi’s 
psychological version of tacit knowledge: knowledge that functions as subsidiary to 
the acquisition of other knowledge. Other researchers use the words tacit and explicit 
as opposites to refer to different, but complementary ontological dimensions of the 
same component of a certain practice. Whatever meaning we choose – psychological 
or ontological – the researchers quoted by Frade (ibid) share in some way Polanyi’s 
(1969) epistemological thesis that all knowledge is tacit or constructed from tacit 
knowledge: put it in another way, language alone is not enough to render knowledge 
explicit.  

We used the two above-mentioned meanings of tacit knowledge in a research to 
investigate its manifestation in empirical data. Our research was carried out in a 
mathematics classroom of a Brazilian secondary school and consisted of two 
sequential studies. In the first study (see Frade, 2004) we analysed an episode related 
to a class discussion about the difference between plane figures and spatial figures. 
The aim of this study was to identify how the mainly tacit and mainly explicit 
components of students’ knowledge (see Ernest, 1998) could manifest in learning 
processes or in a subsidiary way, from Polanyi’s (1962, 1969) perspective. The 
results of the research strongly pointed to a perspective of cognition not necessarily 
restricted to and coincident with language, but seen as a situated social practice, 
moving between the poles of the tacit – effective action – and the explicit – 
intersubjective projection of such an action – dimensions. 

In the second study a student-pair (2 boys) in the same class was investigated as they 
undertook different mathematical tasks on area measurement. Here, the research 
covered two terms or periods of the students’ learning of the subject: when they were 
aged 11 to 12 and when they were aged 12 to 13. The aim of this study was twofold: 
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1) to observe the development of the mainly tacit and mainly explicit components of 
the student-pair’s area measurement knowledge; 2) to provide more information on 
how the tacit and the explicit interact during tasks involving conversation. The study 
in question and its results are presented in this paper. In particular, we highlight the 
first aspect of our analysis, for the later was intensively discussed in the first study.  

THEORETICAL FRAMEWORK  
Ernest (1998) uses the ontological meaning of tacit knowledge to classify the nature 
of the components of his model of mathematical knowledge. To the author, mainly 
explicit mathematical knowledge is related to those types of knowledge that can be 
communicated through propositional language or other symbolic representation, as 
for instance: 1) accepted propositions and statements (e.g. definitions, hypotheses, 
conjectures, axioms, theorems); 2) accepted reasoning and proofs (all types of proofs 
including the less formal ones, inductive and analogical reasoning, problem solution 
including all analysis and computing); 3) problems and questions relevant to be 
solved by the mathematicians (e.g. Hilbert’s problems, Last Fermat’s theorem). 
Alternatively, mainly tacit mathematical knowledge is related to the ways in which 
the mathematicians use their knowledge, as well as how they appropriate 
mathematical experiences, values, beliefs through their participation in mathematics 
practice. And this, says Ernest, cannot be fully communicated explicitly. As mainly 
tacit components of mathematical knowledge he cites: 4) knowledge-use of 
mathematical language and symbolism; 5) meta-mathematical views, that is, views of 
proof and definition, scope and structure of mathematics as a whole; 6) knowledge-
use of a set of procedures, methods, techniques and strategies; 7) aesthetics and 
personal values regarding mathematics1.  

From this perspective, we hypothesized that the students’ mathematical knowledge 
could display a similar structure to that of the mathematical knowledge of the 
mathematicians. Thus, the above-mentioned components were those ones which we 
search to identify in the case study. To this end, we proposed an adaptation of 
Ernest’s model of mathematical knowledge to the students’ knowledge. Such 
adaptation is illustrated in the next section, and accounted for the fact that the 
students are learners and part of the learning process consists in a gradual 
improvement of their understanding and procedures, which in their initial 
manifestation may seem mistaken from the viewpoint of the discipline. In particular, 
the component aesthetics and values was associated with the students’ predisposition, 
motivation and participation in classroom practices, or else to the students’ 
mathematical identity as, for example, Boaler (2002) and Winbourne (2002) put it. 
Therefore, this component has a macro character in the sense that it is a necessary 

                                                      
1 In this presentation of Ernest’s model, the first five components were proposed by Kitcher (1984) 
whereas the last two ones were proposed by Ernest. Due to lack of space we opted not to present the 
arguments used by Ernest to classify the model’s components as mainly explicit or mainly tacit. 
These arguments are very insightful and can be seen in Ernest (1998). 
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condition for the development of the remaining components. The component 
problems and questions was not investigated, as it was difficult to adapt it adequately 
to the students’ knowledge.  

THE CASE STUDY 
This study consisted of a set of short sequential episodes – seventeen in total – 
constructed to identify the student-pair’s stages of development in terms of the 
mainly tacit and mainly explicit components of area measurement. The data were 
collected from their work on mathematical tasks (e.g, oral and written exercises, 
problem solving, individual tests, interviews) and from audio and video recording of 
the student’s class work. In all episodes that involved mathematical conversation we 
also examined the internal articulations that preceded the students’ utterances, 
applying the categories presented in the first study (see Frade, 2004) : priority of 
tacit, tacit on the borderline with the explicit, tacit coincides with explicit, explicit 
separate from tacit, explicit under check. Bellow we provide a description of an 
episode to exemplify how the data were treated in this study.  

Episode 1: Student 1 confuses a counting, and student 2 discovers the 
multiplication formula length× width.  
During the course of classes 1 and 2, student 1 and student 2 were doing some 
exercises proposed by their textbook. They were trying to calculate how many 
ceramic tiles covered the floor of a rectangular room. The book displayed the 
drawing of the room, which facilitated the students in counting the tiles. Calculating 
area by counting the units of measurement was the only procedure worked at class, 
until then. While student 1 finds apparent meaningless numbers, student 2 discovers 
the multiplication formula length×width. Let us see what happened in the protocol 
below transcribed from audio tapes:  

Student 2:  What is the result? 

Student 1:  71 and 57.  

Student 1:  178.  

Student 2: 15, 1, 2, 3...15 times 12. 170? Because here, look 1, 2, 3 ... 16. (Student 2 
multiplication is incorrect: 15×12 = 180) 

Student 2:  1, 2, 3... 16. 16 times 12. 192.  

Student 2:  It’s 16. 1, 2...16. 

Student 2:  The result is 192, isn’t it? Because here, look, 16, we have to count the 
width of the tiles. 

Student 1:  178 

Student 2:  178? 

Student 1:  Then write it there: 178. (...) There are 178, 178 tiles on the floor.  

Student 2:  On the floor, on the floor. 
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The underlined utterances show that, instead of counting the number of tiles that 
covered the floor, student 2 chooses to multiply the number of tiles in each row by 
the number of tiles in each column. However, the utterances in italics suggest that he 
gave up of that procedure, probably influenced by student 1’s insistence to give the 
final result: 178. Searching for a better understanding of the students’ calculations, 
we have analyzed their written registers of the exercises. Both students wrote: ‘178 
tiles’, but they did not record any calculation or reasoning.  

Student 2’s utterances seemed to be good external representations of what he was 
thinking while solving the problem, as it was possible to infer about his reasoning. 
The same cannot be said in relation to student 1’s utterances. When he refers to 
numbers 71 and 57 it is possible that the tacit could be prevailing over the explicit: 
the clues gave by him were extremely vague. And this would only support an equally 
vague hypothesis about his reasoning, which could not be publicly checked.  

In short, this episode captures a moment of strategy choice by student 2: the above-
mentioned multiplication. This strategy choice was identified with a manifestation of 
the model’s component knowledge-use of a set of procedures, methods, techniques 
and strategies by student 2. The component reasoning and proof, which includes the 
students’ argumentations and computations, is also identifiable in this episode, for 
example, in the stated computation ‘1, 2, 3... 16. 16 times 12. 192’ made by student 2. 
It is interesting to note that this component manifests when student 2’s strategy 
choice looses its ‘tacitness’, or else when this strategy choice become explicit 
through the stated computation. The internal articulations identified were: tacit 
coincides with explicit for student 2, and priority of tacit for student 1 (see Frade, 
2004). 

End of episode 1 
As exemplified in episode 1, we identified all components of Ernest’s adapted model 
(see table 1) in the episodes with variable intensity and visibility. Further, the 
analysis showed that, throughout the students’ learning, some components of the 
model predominated over others. The components statements, proofs and reasoning, 
language and symbolism, methods, procedures and strategies appeared more clearly 
and more often than, for example, the components propositions and aesthetics and 
values. It is possible that the component propositions was not so evident in the 
analysis because of the way the study of area measurement was approached during 
the two stages of the research: propositions was not stressed as an objective of 
teaching at this level of the course. Yet the identification of the component aesthetics 
and values demanded more effort in terms of reflection and interpretation (probably 
due to the macro feature attached to it as argued previously). On the other hand, the 
criteria (motivation, interest, high level of interaction between students and between 
the students and the teacher) used to select the student-pair for the study directed us 
towards students who had already shown some identity as participants in 
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mathematics practice in school as well as some taste for mathematics, some sense of 
aesthetics and values concerning the discipline or some of its aspects.  

Component/
Nature 

Activity Example 

Propositions 
and 
statements/ 
Mainly 
explicit 

The teacher and the 
students discussing the 
following proposition for 
K=3: if the sides of a 
rectangle are multiplied by 
K (K > 1), then its area 
grows K2 times. 

‘It’s, its side is 2 and D is 6… Then I saw 
that the area of the square C equals 4 and 
that of square D equals 36, which is 9 times 
bigger. Then after my mother gave me 
another example that it did not matter, that it 
was only that the number should be the 
triple, she put it here side 3 and the area 9. 
In the other 9, that is, if the side is 9 then it’s 
81, it’s the same thing.’ 

 
 

Answering a written 
questionnaire question: 
what do you mean by 
‘area’ in mathematics? 

‘I remember that area represents a certain 
space or place. Based on that we can find 
that area is used to calculate the size of a 
space or place. Take the example of a piece 
of land, how many square meters it has. 
This is already a way to use area as 
measure.’ 

Reasoning 
and proofs/ 
Mainly 
explicit 

One of the students of the 
pair explaining to a 
classmate how they solved 
the following problem: a 
wall with height of 2.30 
meters and length of 8.76 
meters built with square 
tiles having sides 
measuring 2 centimetres. 
Calculate the number of 
tiles on the wall. 

‘We found out that the area of the wall is, 
we multiply length times width and to 
obtain the area of the tile we multiply side 
times side. When we find the result of the 
two, we divide the area of the wall by the 
area of the tile. The result was…’ 

 
 

All the activities in which 
the students proved a 
proposition or displayed 
calculations or any other 
form of computation. 

Area calculation of rectangles by counting 
the units of measure or using the formula: 
length × width. 

Language, 
symbolism/ 
Mainly tacit  

All the activities. Oral and written language, and 
mathematical symbolism used by the 
students to communicate their area 
measurement knowledge in class. 

Meta-
mathematics 
views/ 

Written report in which 
the students had to reflect 
and to express the general 

Student: …the spatial figures that can have 
volume, seem to be real.  
Teacher: Okay, but what does this mean, 



Frade  

 

2- 326 PME29 — 2005 

Mainly tacit view they constructed on 
area measurement and 
excerpts of conversations 
where the students made 
some ontological reference 
to a mathematical entity.    

why did you say that is seems real?  
Student: This thing [spatial figure that can 
have a volume] here looks like an egg.  
Teacher: Oh, yes. 
Student: This thing [plane figure] here 
seems to be kind of a drawing.  
Teacher: Oh, yes, this one here seems to be 
a concrete object; what about that one?  
Student: No.   

Methods, 
procedures, 
techniques 
and 
strategies/ 
Mainly tacit 

Problem solving. For 
example, the students were 
asked to calculate the 
perimeter of a rectangular 
piece of land with an area 
of 450m2 and 25m in 
length. 

‘Now we have to find which number that is. 
The length is 25, we already know. And 
what about this one here? 25 times 20. Wait, 
I understood. 25 times 21. Oh, oh, no God, 
this is too much.’   

Aesthetics 
and values 
Mainly tacit 

All the activities. This component was observed in terms of 
students’ curiosity, interest, motivation and 
participation in classroom practices.  In all 
the episodes that involved conversation we 
found a high degree of interaction between 
students of the pair, and, in many cases, 
between them and the teacher. This was 
interpreted as indicating the students had 
some affective components in relation to 
mathematics. 

Table 1 – Components of Ernest’s model identified 

To explain the development of mainly tacit and mainly explicit components of the 
student-pair’s knowledge of area measurement we found support in Kitcher’s ideas 
(1984) about the development of mathematics practice. First, we could see that many 
episodes evidenced that the students of the pair had built new statements or rebuilt 
previously known statements. According to Kitcher, this action results necessarily in 
the development or in the change of mathematical language and symbolism. For 
example, a diagnostic questionnaire at the beginning of the first stage of the research 
showed that student 1 had some previous concept of area as a physical geographic 
space: ‘The word area means a certain location or piece of land, or space.’ Another 
questionnaire at the end of the second stage of research showed that student 1’s 
concept of area had evolved and a specific measure had been incorporated into it: ‘I 
think that area is a place or space…used to calculate the size of a place or space’.   
Kitcher says that the component proofs and reasoning develops or changes, for 
example, when new reasoning is added. As this component was identified in various 
episodes when the students had to work on new concepts and procedures, it seems 
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reasonable to say that both the students developed this component in general. In 
relation to proofs, the analysis demonstrated that both students improved their 
knowledge: they started their area calculation by counting the units; at a later stage 
they found, although at different times, that such counting relates to a multiplication 
(length×width, in case of rectangles); at a third stage, they have this multiplication as 
a formula. Although the development of the component methods, techniques and 
procedures had been identified in many episodes, how the other components affected 
it was not clear. This could be due to the fact that this component can be said to be 
the most tacit of all, as we are not given privileged access to mental processes to 
know when or how a technique or strategy is chosen. 
Kitcher argues that the changes in the component meta-mathematics views are rooted 
in the changes of other components. We had evidence that ontological mathematical 
entities such as plane and spatial figures and area, for example, were created by the 
students as shown in table 1. The analysis of the component aesthetics and values 
was limited in what concerns how much the other components were linked to it. 
What we have emphasized is that the component aesthetics and values involves 
affective components and thus has an impact on the development of the other 
components of the model. These affective components certainly depend on factors, 
which are external to mathematics per se. Boaler and Greeno (2000) show how the 
way a mathematics class is conducted impacts on the mathematical identity of the 
students. Once this identity is seen as linked to the component aesthetics and values, 
that influence may affect the development of this and of the other components of the 
model with more or less intensity.   
Another result was that the development of the components as a whole was not 
harmonious. In many episodes one of the students of the pair showed difficulty in 
expressing his ideas or procedures in mathematical language, producing utterances 
identified as explicit separate from tacit. Despite this difficulty, student 1 was able to 
develop, for example, the ability to use the rectangle area formula adequately and the 
‘know how’ to solve a number of problems. This may indicate that one element of 
oral mathematical language – the social communication of mathematical knowledge 
– can be expressed somehow independently from the ‘know how’ factor. And, as in 
the first study (see Frade, 2004), this independence seemed to be directly related to 
the manner in which the tacit interacts with the explicit in the process of articulation. 
Here, once more the teacher can play a crucial role in the student’s development of 
that component by promoting conversational practices (see Lerman, 2001). 

FINAL COMMENTS 
The theoretical perspective developed in this paper is innovative in the field of 
mathematics education in some important ways. Our research offers a contribution to 
the debate on the theory-practice divide, as it was possible to investigate deep 
theoretical constructs in practice. The research used Ernest’s model of mathematical 
knowledge and Kitcher’s ideas about the development of mathematics practice to 
open up a line of investigation into the nature and development of students’ 
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mathematical knowledge in formal schooling contexts. Although the model does not 
account for cognitive/sociocultural processes involved in mathematical learning, it 
helped us understand the types of knowledge – concepts, procedures, attitudes or 
dispositions – that are presently valued in mathematics curricula. In other words, 
Ernest’s model is a model of scientific mathematical knowledge, and therefore, 
requires adaptation of the kind suggested in this paper to be applicable to the school 
context. However, the model is closer to school-acquired mathematical knowledge in 
the following sense: by the end of a period of learning, and for each level of teaching, 
learners are expected to have acquired knowledge of a set of statements and 
propositions; be able to use mathematical reasoning and justify it; use mathematical 
language and symbolism in individual and social contexts; develop a certain view of 
the scope and structure of mathematics as a whole; and be able to decide which 
methods, strategies or procedures are more adequate to the resolution of problems 
and when to use those methods, strategies or procedures. Moreover, and probably 
most importantly, learners are expected to have developed a favorable disposition 
towards mathematical investigation. We believe that such disposition originates 
mostly from individual experiences with, and values and beliefs about mathematics.  
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TEACHERS AS INTERNS IN INFORMAL MATHEMATICS 
RESEARCH 

John M. Francisco and Carolyn A. Maher 

Rutgers University 

 
This study reports on teacher-interns’ observations of research sessions involving 
urban students participating as subjects in an informal mathematical learning after-
school program. The research comes from a project that investigates how minority 
students from low-income, urban community build mathematical ideas and engage in 
mathematical reasoning. Videotape data from debriefing sessions of the research 
team, including teacher interns, show that teacher-interns attend to the behavioural 
and cognitive aspects of the students’ mathematical activity as well as the research 
interventions. 

INTRODUCTION 
The purpose of this research is to describe patterns of teacher-interns’ observations of 
research sessions involving sixth-grade students engaged in well-defined, open-ended 
mathematical tasks in fractions, combinatory and probability, over a 6-month period. 
The research is an outgrowth of a study, known as the Informal Mathematical 
Learning project (IML) and funded by the National Science Foundation (NSF award 
REC-0309062), which investigates how minority students build mathematical ideas, 
engage in and articulate their mathematical reasoning in the context of an after-school 
mathematics program. The IML research takes place in Plainfield school district, a 
low income-urban community whose school population is 98% African American 
and Latino students. The 9-member team of teacher interns includes elementary and 
middle-school teachers of the district. During the IML sessions, groups of 2 or 3 
teacher interns took ethnographic notes of small group of students working on 
mathematical tasks. This study reports on such observations. Four research questions 
guided this study: (1) what behaviours of students did the teacher interns attend to? 
(2) What evidence, if any, is there that the teacher interns attended to students 
building of mathematical ideas reasoning? (3) What evidence, if any, is there that the 
teacher interns attended to the researchers’ interventions? (4) What evidence, if any, 
is there that the teacher-interns’ observations varied over time? The general approach 
was to provide the teacher interns with the opportunity to decide what issues about 
the IML sessions stood out for them and how they wished to articulate them. 
However, given the focus of the IML project, there was a special interest in the 
teacher-interns’ observations about the students’ mathematical reasoning. It turned 
out, as described in this study, that the teacher-interns’ observations were broader in 
scope. They included also observations of the students’ behavioural and research 
interventions and varied over time. It may be worth mentioning that, the teacher-
interns were more than just observers in the IML project. They also provided 
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important contributions to the o-going research decision-making that helped plan 
subsequent research sessions. Their observations and teaching experience were useful 
in designing new seating arrangements for the students, new activities, and providing 
effective ways of dealing with the students, which helped increased student 
engagement and productivity. 

THEORETICAL FRAMEWORK 
According to the discussion document for ICMI study 15, the teachers’ role in 
promoting students’ learning is no longer being overlooked or taken for granted. 
There is a growing awareness that no effort to improve students’ learning can 
succeed without a parallel effort to improve teachers’ learning. Research on teacher 
education has been also expanding rapidly. However, the document recognizes that 
much more remains to be known about teaching and research on teaching. In 
particular, it calls for more research on “the knowledge, skills, personal qualities and 
sensibilities that mathematics teaching entails, and about how such professional 
resources are acquired (p. 3).” Another area of need is a study of teaching in 
particular [socio, cultural] contexts. Cohen and Ball (1999) identified two main 
reasons for the failure of research programs that were based on the “building of 
instructional capacity” in promoting lasting or even “detectable” improvements in 
schools. One reason is the use of methodological approaches that are not 
comprehensive enough to capture the “complex social organizations” that schools 
often represent. In particular, they claim that, if any teacher development program is 
to be successful, it must examine the triangle involving students, teachers and class 
material in an interrelated rather than isolated fashion. The other reason is that most 
improvement programs do not provide “opportunities for teachers’ learning that 
would be needed to change classroom instruction (p. 1).” In particular, they argue 
that teachers need to be offered opportunities to learn more about not only the content 
that they are supposed to teach, but also, and most importantly, about “about how 
students think about that content (p. 1).” Similarly, Maher (1987), Martino and Maher 
(1999) and Wood (2004) emphasize the importance of teachers attending to students’ 
mathematical thinking, as they pursue teaching approaches that promote learning in 
classrooms. Finally, Putnam and Borko (2000) focus particularly on actual 
professional development programs. They argue that the best models of teacher 
professional development combine workshops that introduce research-based ideas 
with on-going support. Such an approach requires the development of teachers as 
communities of learners who are enculturated into new practices and ways of 
thinking, which takes time, trust and support to develop (Grossman, Wineburg & 
Woolworth, 2001; Sherin & Han, 2004). For instance, Sherin and Han studied the 
effectiveness of video clubs, where groups of teachers come together to discuss video 
segments of their practice in mathematics teachers professional development 
programs. They found that through a year of in-depth analysis of videos of their 
practice, the main focus on teachers’ discussions shifted from teacher actions to 
increasingly in-depth analysis of student thinking. 
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The design and implementation of this study builds on key theoretical issues 
discussed above. In particular, given the research its focus, the IML project provided 
the teacher interns with research-supported learning opportunities on students’ 
mathematical thinking and access to research interventions that could be potentially 
modelled into classroom pedagogical interventions. The research uses a fairly 
comprehensive approach, extending the triangle of students, teachers and class 
material to include also researchers. Finally, similar studies (Beswick, 2004; Siemon, 
Virgona, Lasso, Parsons & Cathcart, 2004) suggest that examining practicing 
teachers’ observations of teaching experiences, over time, is an important way of 
influencing teacher practice and a useful mechanism for teachers to reflect on their 
practice.    

METHODOLOGY 
This study relies on videotaped observation reports of nine teacher interns who 
participated regularly in the classroom-based research sessions of the IML project. 
The reports were collected during 1-hour long debriefing sessions that were held 
immediately after each research session. Fourteen debriefing sessions constitute the 
data for this study and correspond to an equal number of research sessions held 
during the 6 months of IML project. The analysis of the videotapes of the debriefing 
sessions followed data treatment procedures recommended for videodata (Powell, 
Francisco & Maher, 2003; Erikson, 1992) and qualitative phenomenological research 
(Moustakas, 1994; Giorgi, 1985). Seven analytical procedures were used. First, each 
session was watched entirely to have a sense of its content as a whole. Second, each 
session was partitioned into segments identified by particular issues being reported. 
Third, each issue and segment were described in as much detail as possible. Fourth, 
the issues were scrutinized and significant or critical issues selected on the basis of 
their significance to the research questions. The fifth and sixth procedure aimed at 
characterizing the significance of the issues. The fifth procedure involved 
transcribing entire the segments corresponding to the critical issues. In the sixth 
procedure, narratives were written that described the significance, or insight, of the 
issues. Finally, the seventh procedure involved a structural analysis across the 
fourteen debriefing sessions to identify emerging categories for the entire data set. 
The characterization of the categories constitutes the teacher-interns’ observation 
described in this study.  

RESULTS 
The teacher-interns’ observations of the IML research sessions can be summarized in 
three main categories, referring to teacher-interns’ observations of the students’ 
behaviour, students’ mathematical reasoning and of research interventions, 
respectively. The categories and the main issues raised by the teacher interns are 
presented in the table shown below and discussed in the next three sub-sections. Due 
to limitation in space, supporting excerpts are provided for only some the issues. 
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Students’ behaviour Students’ reasoning Research interventions 

Discipline Language Tasks design 

Group dynamics Strategies Closure 

Engagement Confidence Withholding answers 

Rapport Meaning Justification 

 Novel ideas  

Students’ behaviour 
The teacher-interns’ observations of the students’ behaviour focused on discipline, 
group dynamic, engagement issues and rapport between students and researchers and 
among themselves. The rapport issue is discussed in the sections on observations 
about mathematical reasoning. A few major patterns can be distinguished. First, in a 
particular debriefing session, the teacher interns almost invariably reported about 
behavioural issues before making observations about the students’ mathematical 
thinking or research interventions. Second, over time, the teacher interns made fewer 
and fewer observations about the students’ behaviour, as the observations focused 
more and more on the students’ mathematical reasoning. Third, reports about the 
students’ engagement in the tasks were more predominant. As result, the teacher-
interns’ reports suggested potentially interesting insights regarding students’ 
motivation to do mathematics, In particular, students reportedly tended to enjoy 
working some problems more than they liked working on others. This suggests a 
task-dependent type of motivation. The teacher interns also reported observing that 
some students showed signs of frustration for not being able to express their 
mathematical ideas and reasoning, particularly in ways that some of the researchers 
could understand them. The teacher-interns argued that this was particularly the case 
in the early stages of the program. Interestingly, however, the teacher interns noticed, 
below, that the language of the students grew increasingly more sophisticated over 
time. Competition among students was also mentioned as a disruptive aspect group 
dynamics, which resulted in a diminished engagement in mathematical tasks by some 
students. Finally, motivation was related to two specific research interventions. In 
one, some teacher interns reported cases of students whose lack of involvement could 
be attributed to research sessions dwelling for so long on the same tasks. The students 
did not necessarily solve the tasks successfully, but reportedly showed sign signs of 
boredom after working on the same task for too long. The other research intervention 
related motivational issue follows from the excerpt below: 

Teacher Intern 1: Herman was getting frustrated with Robert [research facilitator] 
because he kept asking “This opposite. I don’t understand this 
opposite.” And then after a while, I think he [Herman] really turned 
off, and then Robert moved on to Dante to see if he could get 
something out of him because Herman wasn’t getting it. 
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The excerpt suggests that frustration may be the result of intense interviewing that 
does not provide time for students to think and organize their ideas.  

Students’ mathematical reasoning 
The teacher-interns’ observations on the students’ mathematical focused on five 
major issues. Overall, the teacher-interns reported observing that, over time, the 
students’ mathematical reasoning grew increasingly more sophisticated. The teacher 
interns explained the idea in a number of ways. First, the teacher interns reported that 
the language of the students became more sophisticated, as the students’ vocabulary 
started to include the names of and the mathematical concepts involved in the tasks 
they were assigned to work on. Second, the teacher interns reported cases in which 
they had been surprised or amazed at the strategies used by the students to solve 
particular problems. Third, the following excerpt suggests that the rapport between 
teachers and students and among students improved. Most importantly, however, it 
also suggests that students became intellectually more independent learners:  

Teacher Intern 2: I spent the last week looking at a November CD [CD tape with 
students work in November]. I walked around in today expecting 
Cuisenaire rods [the students had worked on fraction activities 
involving cuisenaire rods], and I was really taken aback by the level 
of sophistication. There is something coming from them that’s kind 
of saying to me, “You know, a problem is worth putting time in. It’s 
worth thinking about.” And that’s a lot of growth from the 
beginning, when they kind of looked at us like, “What do we want 
them to do?” Okay, I see a lot of growing going on, a lot of 
socializing going on. They’re more comfortable, around each other. 
They are more comfortable with us. I think a lot of genuine 
personalities are beginning to shine through, and that’s okay, 
because that’s part of what they have to learn right now. I really 
enjoyed it today. 

Fourth, the teacher interns reported noticing the students’ concern for meaning and, 
in particular, personally meaningful ideas and ways of expressing them. In the 
excerpt below, Teacher Intern 3 reports attempts by the students to develop their own 
idea of what counts as a convincing argument, as they debated whether or not a 
diagram or picture should also include a text to count as a convincing argument: 

Teacher Interns 3: From listening to them, basically posting out, they developed an 
unspoken rubric to determine what is needed to make this a 
convincing piece of work. One group stated that the diagrams are 
fine but there is no text to support the diagram. And then there’s text 
without support for my diagram. So, it seems as if like teachers we 
use the specific rubric to follow certain things. The students have 
developed upon themselves the specific rue-brick” to determine what 
is convincing or not convincing.  
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Fifth, the mathematical behaviour of the students supposedly became more 
sophisticated also as a result of the students starting to take up the mathematical 
behaviours of mathematicians and researchers. This was particularly the case 
regarding the concern in mathematical for not accepting mathematical statements 
without a proof:   

Teacher Intern 4: Some of the discussion was very detailed. It wasn’t frivolous 
discussion. Like “I don’t like this just because I [inaudible]. They 
were, really, acting, well, they were real mathematicians. Walking 
around, I was impressed to see the interaction and even the 
communication among themselves. Within the groups they 
conversed about what was missing, they asked each other, “Are you 
convinced?” “Where are you convinced?” or “Why or why not?” 
And they kept on trying to get more specific. So, I thought the 
conversation were really good, on point. 

Finally, it may be worth mentioning that some teacher interns reported learning new 
ideas from observing the students working on particular tasks. For instance, Teacher 
Intern 5 below marvels at and admits never seeing before the strategy a particular 
student used to solve a mathematics problem, which involved finding all 4-tall towers 
that could be built when choosing from two colours, yellow and blue: 

Teacher Intern 5: I had never seen anyone do it quite that way. Whenever we’ve done 
this with a group of teachers or adults, and then he did the other one, 
and then he noticed the pattern at first, and he might have had it, but 
I just don’t know where to go with it, but he was like, “uh” counting 
on the top, “yellow, blue, yellow, yellow, blue, two blues” and I 
think that’s the way it went. He knew exactly how it placed them and 
I thought that was interesting 

Research interventions 
Some of the issues that the teacher interns attended regarding researcher interventions 
are already reported above. One is Teacher Intern 3’s observation that students 
seemed to take up researchers’ investigative roles. Other insights on the teacher-
interns’ observations of research roles follow from the four issues mentioned in the 
table above. Two observations on research interventions are closely related to the 
claim above by some students seemed to get frustrated with intensive interviewing 
that did not allow them time to think about the mathematical activity. The two 
observations concern closure and tasks design. More specifically, regarding the 
appropriate research intervention to deal with the issue above, some teacher interns 
took notice of the advantages of avoiding forcing closure and of introducing new 
problems, which, by design, were extensions of previous problems. However, the 
teacher interns highlighted the importance of two specific research interventions. 
First, one teacher-intern reported noticing and reiterated the importance of 
withholding answers from students and, instead, encouraging them to rely on their 
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thinking, either individually or as a group. In particular, teacher Intern 6 suggests that 
such an intervention enhances intellectual independence in students: 

Teacher Intern 6: One of the things I like about your [the leading researcher’s] idea, by 
the way, is that you are saying that you don’t need an authority to 
figure out if what you’ve done is right or wrong. It can come from 
you, and boy, that’s a lot of empowerment. That’s very special. 

The research intervention noticed and supported the teacher interns is the importance 
of justification of students justifying their answers or mathematical arguments, as part 
of their normal students’ mathematical activity: 

Teacher Intern 7: In terms of where, in my opinion, to go next, I do agree that they 
may feel like “I am finished with it” but the idea of the justification, 
I think, is really, important for them to see what it looks like. 
Because we have this issue in the elementary school where I will, 
you know, give kids an open-ended question and they’ll give me an 
answer and I will write on the paper, “Can you prove it to me?” and 
fourth-graders will say, “Well, what do you mean by that? They 
really don’t understand that. So, I’m sure kids who are coming into 
sixth grade have really not had that many experiences. So, if we 
show them some models of what justification looks like, they’ll have 
a sense of “Oh, this is what you mean.” You know, it’s not just 
drawing what I’ve built; it’s also trying to talk about what my 
thought process is in how I’m determining that I have everything 

It may be worth mentioning that the teacher-interns’ debriefing reports suggested that 
that much of the teaching in their schools was based on teachers showing and telling 
students what to do and did not emphasize justification of mathematical arguments.  

CONCLUSIONS 
The results of this study provide evidence for the claim that carefully designed 
professional development programs can help teachers appreciate the importance of 
attending to students’ mathematical thinking. The sophistication of the teacher-
interns’ observations is evident in the content of their observations and in the 
comprehensive approach used, which relates observations about mathematical 
reasoning to observations about behaviour and researcher [pedagogical] 
interventions. The results are consistent with findings from similar studies discussed 
above. The teacher interns relate their teaching experiences in schools to their 
observations (see excerpt from teacher Interns 7). This is consistent with studies 
(Beswick, 2004; Siemon et al. 2004), which show that teachers’ observations of 
teaching experiences, over time, influences their practice and is a useful mechanism 
for them to reflect on it. The teacher interns’ observations also evolved from a focus 
on behavioural issues to more detailed accounts of the students’ mathematical 
thinking. This also supports the findings by Sherin and Han (2004) described above. 
Finally, the results of this study provide evidence of the advantages of research-
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supported longitudinal teacher professional development programs, particularly those 
that examine simultaneously teaching and learning. 
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EXPLORING EXCELLENCE AND EQUITY WITHIN CANADIAN 
MATHEMATICS CLASSROOMS  

George Frempong 

York University, Toronto, Canada 

 
In an attempt to understand the processes that allow all students to successfully learn 
mathematics this paper conceptualizes a successful mathematics classroom in terms 
of excellence in mathematics and how equitably achievement is distributed. The study 
employs multilevel models and the Canadian data from the Third International 
Mathematics and Science Study to identify the characteristics of successful 
classrooms. The analysis indicates that the most successful classrooms are those in 
which students from disadvantaged socioeconomic backgrounds excel in 
mathematics. Disadvantaged students excel in mathematics classrooms in which 
instructional practices involve less groupings, the mathematics teachers are 
specialized, and in schools with lower student-teacher ratio.    

INTRODUCTION  
One of the major objectives of mathematics education systems around the world is to 
understand the processes in mathematics education that provide opportunities for all 
students to successfully learn mathematics. The successful mathematics learning for 
all requires that schools and school systems function in a way that students’ success 
in learning mathematics is not determined by their background characteristics. That 
is, in an effective mathematics education system, we would expect the mathematics 
achievement levels of successful schools/classrooms to be related to their capabilities 
in helping their disadvantaged students to successfully learn mathematics. In this 
respect, the relationship between the mathematics achievement level (excellence) of a 
school and the equitable distribution (equity) of mathematics outcomes within a 
school is an important indicator of the effectiveness of a school and a mathematics 
education system.  

In a school system where the resources within a school are used in a manner that 
ensures the successful learning of all students, we would expect equity in high 
achieving schools. While the relations between excellence and equity are important in 
defining successful education systems, research on school effect has emphasized 
exclusively on either achievement levels or equity. As a result, we do not have 
studies that provide an understanding of how the best schools in an education system 
function to ensure the successful learning of all students. This understanding is 
necessary to inform policies on the use of resources and the processes for improving 
schooling outcomes. The main objective of this paper is to understand how the 
Canadian mathematics education systems function to include or exclude their 
disadvantaged students from successfully learning mathematics.   
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The emphasis will be on school effect on the mathematics outcomes of students from 
disadvantaged socioeconomic home backgrounds. A substantial body of research 
points to a consistently strong influence of family background factors, especially their 
socioeconomic background on mathematics achievement (see Secada, 1992). 
Unfortunately, many researchers hold the view that these factors are the least 
amenable to change within an educational policy framework and should therefore be 
discussed in the context of social policy initiatives rather than from the perspective of 
school effectiveness. Mathematics education for all makes an understanding of how 
students from disadvantaged socioeconomic backgrounds come to successfully learn 
mathematics fundamental to understanding school effect on mathematics outcomes.  
This paper explores three main issues: the extent to which students’ background 
characteristics affect their mathematics achievement, the extent to which differences 
in classrooms affect students’ mathematics achievement, and the characteristics of 
mathematics classrooms where students irrespective of their backgrounds succeed in 
learning mathematics. 

Theoretical Perspective (Successful Learning Environment) 
When we consider learning as situated in a social and cultural context, the 
sociocultural perspective provides a useful lens for understanding how schools might 
function to provide opportunities for all children, especially those from 
disadvantaged backgrounds, to learn mathematics. The theoretical position of this 
perspective is motivated largely through the work of Vygotsky, who argues that, in 
general, learning occurs when an individual internalizes a social experience through 
interacting with a peer or adult (Vygotsky, 1988). The process of learning occurs 
through cognitive processes that originate and form through social interaction. 
Leantev (1981) supports Vygotskys view but stresses the importance of engagement 
in activity. He maintains that learning occurs through interaction and participation in 
activity. Other researchers emphasize the importance of locating learning in the co-
participation in cultural practices (Lave & Wenger, 1991; Rogoff, 1990). In this 
model, the student’s social engagements through interaction with more experienced 
others, and through participation in cultural activities are the driving forces for 
learning. 

Bourdieu (1986) argues that often schools operate such that the social and cultural 
upbringing of students from working class families is not consistent with school 
norms making it more difficult for these students to engage and participate in 
learning activities. When school norms and the cultural traditions of children conflict, 
a school can address the problem from two perspectives. One perspective is to leave 
students to adapt to the school culture. From this perspective, the success of a 
disadvantaged student depends on the ability and willingness of the student to 
function within the two cultures. In cases where a student is unable to function within 
multiple cultures, success in school leads to losing their cultural traditions. Another 
perspective is to accommodate all cultural traditions to create a micro-culture that 
allow all students to participate. In this approach, the success of disadvantaged 
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students depends on school processes and facilities in the school to enhance learning 
of students from diverse backgrounds. Both perspectives seem to suggest that, for 
students to succeed in school, they need to acquire certain practices related to 
understanding a particular subject content.   

This suggestion is consistent with an emerging perspective in mathematics education 
that highlights both the social and mathematical norms in a mathematics classroom.  
Yackel and Cobb (1996) distinguish between social and sociomathematical norms.  
Social norms refer to classroom practices that teachers and students engage and that 
develop gradually over time. They include practices such as learning to participate in 
group work. Sociomathematical norms are lenses through which teachers and 
students assess their choices of mathematics teaching and learning activities. To the 
extent that these norms play important role in learning, we would expect that 
equitable access to these practices is likely to ensure that students from disadvantaged 
backgrounds successfully learn mathematics. The question is, whether these practices 
are the norm in high achieving schools, and to what extent do these practices account 
for the successful learning of students from disadvantaged backgrounds?   

Multilevel models 
The concept of “successful schools” defined in terms of excellence and equity poses 
a considerable methodological challenge as it requires estimates of school 
achievement levels and inequalities in school outcomes, and most importantly, the 
processes that account for the variation in these estimates. In the past, researchers 
assessed school effectiveness through production function models (e.g., Bridge, Judd, 
& Moock, 1979) from multiple regression statistical techniques, where schooling 
outcomes are regressed on variables describing students and their schools. However, 
during the 1980s, there was intense debate as to whether the student or the school was 
the correct unit of analysis for estimates of school effects (Burstein, 1980). This 
debate culminated in the development of multilevel statistical models that allow 
researchers to examine the separate effects stemming from processes at the student, 
classroom, and school levels (see Goldstein, 1995). These multilevel techniques are 
now used fairly routinely in analyses of educational data, but rarely by researchers in 
mathematics education.  

This paper employs multilevel statistical analysis techniques that we can describe as 
regression analyses within and between groups, in this case, schools/classrooms. The 
analyses provide estimates of regression intercepts (levels of school outcomes) and 
regression coefficients within schools (measures of, for example, SES achievement 
gaps). These intercepts and regression coefficients can be regressed on school and 
classroom characteristics so that the characteristics of schools with high achievement 
levels and narrow SES achievement gap can be easily identified.  

TIMSS 
The multilevel models are estimated using the 1995 Third International Mathematics 
and Science Study (TIMSS) data for Canada. TIMSS is a study of classrooms across 
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Canada and around the world involving about 41 countries, which makes it the 
largest and most comprehensive comparative project to assess students= school 
outcomes in mathematics. TIMSS targeted three populations: population 1 B students 
in adjacent grades containing a majority of 9-year-olds (grades 3 and 4 in most 
countries), population 2 B students in adjacent grades containing a majority of 13-
year-olds (grades 7 and 8 in most countries), population 3 B students in their final 
year of secondary schooling (grade 12 in most countries). This research study utilized 
the Canadian population 2 data describing the mathematics achievement levels of 13-
year-old students in Canada. In Canada, these students are in grades 7 and 8 
(Secondaire I and II in Quebec). Both grades are part of the secondary school system 
in all provinces except British Columbia, where grade 7 is part of the elementary 
program.  

The TIMSS Canada population 2 data were collected from a random sample of 
Canadian schools and classrooms. The random sampling and selection were carried 
out by Statistics Canada and data were collected in the spring of 1995. Over 16 000 
students and their teachers and principals participated in the population 2 component 
of the study in Canada. Students wrote achievement tests that included both multiple-
choice and constructed-response items which covered a broad range of concepts in 
mathematics. The students also responded to questionnaires about their backgrounds, 
their attitudes towards mathematics, and instructional practices within their 
classrooms. Principals completed a school questionnaire describing school inputs and 
processes, and teachers responded to questionnaires about classroom processes and 
curriculum coverage. 

Instructional Practices and other School Processes 
Students responded to a wide range of questions in the questionnaire about 
instructional activities within their mathematics classroom. In this paper, the 
classroom instructional practices are classified as grouping, problem solving, 
traditional, technology, and assessment. Grouping is the extent to which students 
work in pairs or small groups during mathematics lessons or on projects. Problem 
solving is a composite score of variables describing the extent and nature of problem-
solving activities students are exposed to in a mathematics classroom. The problem-
solving activities included giving students problems involving practical and everyday 
life experiences. Traditional is a composite score of three instructional techniques 
where students usually copy notes from the board, often work from worksheets, and 
rely extensively on textbooks. Technology is a description of the extent to which 
calculators and computers are used in mathematics classrooms. Assessment includes 
quizzes and homework. 

The other school process variables are teacher-specialize, student-teacher-ratio 
(STR), remedial-tracking, and school disciplinary problems. Teacher-specialize was 
constructed by dividing the total number of periods a teacher is scheduled to teach 
mathematics by the total number of periods allocated to that same teacher. This 
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variable served as a proxy for a teacher’s specialization in mathematics teaching. 
Given the challenge mathematics teaching poses to a number of teachers, one will 
expect that teachers who spend relatively more time teaching mathematics are likely 
to specialize in this field. There may however, be cases where teachers are assigned 
to teach mathematics because there are no qualified mathematics teachers. STR is the 
total number of students per teacher in a school. The STR variable was constructed 
by dividing the total school enrolment by the full-time teacher equivalent (FTE) of a 
school. Remedial-Tracking is a dummy variable denoting whether in a particular 
school, students in remedial classes are removed from regular classes. School 
disciplinary problems measured the extent of disciplinary problems, such as stealing, 
in a school. 

The dependent variable, students’ mathematics scores, is scaled such that the mean 
score for grade 7 is 7 and the mean score for grade 8 is 8. The scale represents “years 
of schooling”, seven years for an average grade 7 student and 8 years for an average 
grade 8 student, and is intended to re-express the magnitude of the differences in 
mathematics scores in a metric based on the mathematics test scores for grade 7 and 8 
students in Canada. 

Analysis and findings from the multilevel models 
 Models 

 1 2 3 4 

Within-School Effects 

Socioeconomic status  .52 .50 .50 

Female  -.15 -.15  -.16  

Immigrant  .36 .36  .34  

Variance Components 

%Var. among classrooms 19.2 18.2 17.9 13.6 

Corr. Intercept/Gradient  -.14   

Within classrooms (S.D) 2.20 2.13 2.13 2.13 

Amongst classrooms (S.D.) 1.07 1.00 .99 .84 

Effect on mean achievement 

School mean SES   .47 .38 

Students grouped    -.10 

Traditional approach    -.12 

Use computers    -.15 

Use calculators    .26 
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Regular homework    .15 

Disciplinary problems    -.36 

Teachers Specialize    .61 

Student-Teacher Ratio    -.02 

Topic Covered This Year    .31 

Topic Covered Last Year    .18 

Effects on SES Gradients 

School Mean SES   .14 .09 

Students Grouped    .08 

Traditional Approach    -.08 

Regular Homework    .08 

Teachers Specialize    -.14 

Student-Teacher Ratio    .02 

Note: Bold indicates statistical significance at p<.05 

Table 1: Estimates from the multilevel models  

Variation among Schools and Classes in Mathematics Scores 
The first model tests the hypotheses that schools and classrooms differ in their 
unadjusted scores. The results indicate that they do indeed differ: 19.2% of the 
variance is among classrooms (and therefore 80.8% is within schools). The model 
also yields estimates of the magnitude of the within- and between-school 
components. Within classrooms, the standard deviation is about 2.20 years. This 
suggests that in a typical middle school, at each grade level, about two-thirds of all 
children would have scores within about 2.2 years of the average for their age. But 
about 16% of all children would fall above or below that range. What this means for 
most middle school teachers is that in a class of 25 pupils they can expect to have 4 
students with scores that are at least two year behind those of their peers, and 4 pupils 
with scores that are at least two year above those of their peers. Similarly, the range 
of classroom means scores vary considerably. The results indicate that about two-
thirds of all classrooms have average scores that fall within a year of the national 
average. 

The second model in Table 1 asks whether there is variation among classrooms at 
these levels after taking account of students= characteristics and family background. 
The covariates accounted for only about 5.2% of the variance among classes 
(reducing it from 19.2% to 18.2%). Thus, one cannot claim that schools vary in their 
mathematics scores mainly because of the types of students they enroll. This model 
also indicates that the socioeconomic gradients vary significantly among classes in 
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the TIMSS. The intercepts were correlated negatively with the SES gradients 
providing evidence of converging gradients (magnitude of the correlation, -.14 is 
small). That is, variation among classes in their mathematics achievement levels 
tends to narrow at the higher SES level. This seems to suggest that low SES students 
tend to do well in schools with high mathematics achievement levels.      

In the third model, I added the mean socioeconomic status of a class to the second 
model. The estimate of the effect for mean socioeconomic status is .47, which is 
comparable to the effect associated with the socioeconomic status of the child. In 
practical terms, this means that if a child has a socioeconomic status which is one 
standard deviation below the national average, he or she is likely to have a 
mathematics score that is the equivalent of about six months below that of his or her 
peers. But if this child also attends a classroom that has a low average socioeconomic 
status, say one where the average for the classroom is also one standard deviation 
below the national average, the child is likely to be a full year (i.e., .50 + .47) below 
national norms. The classroom mean SES was also positively related to the SES 
gradient, indicating that the SES gradient is shallower in low mean SES classrooms, 
and steeper in high mean SES classrooms.  

The last model in Table 1 includes several variables describing school and classroom 
variables. These were modeled on both the intercepts and the gradients, although the 
model for the gradients was reduced as most of the processes did not have a 
significant effect. The results indicate that the most successful classrooms are those 
where: (a) less grouping is practiced, (b) calculators are used but computers are not, 
(c) there is regular homework, (d) there are few discipline problems, (e) teachers 
specialize, and (f) there is low student-teacher ratio. Results for the model describing 
socioeconomic gradients indicate that classrooms have more equitable results (i.e., 
shallower slopes) when: (a) less grouping is practiced, (b) there is less homework, 
where teachers are specialized, and (c) there is low student-teacher ratio.  

CONCLUSION 

This paper conceptualized successful schools in terms of achieving the twin goals of 
excellence and equity. The analysis indicates that there are schools in Canada that are 
successful in achieving both excellence and equity. Successful schools and 
classrooms tend to be those which have relatively high achievement levels for 
students from lower socioeconomic backgrounds. These schools have low student-
teacher ratio, specialized mathematics teachers who rarely employ grouping in their 
instructional practices. The finding pertaining to small grouping is not consistent with 
the theory that holds that interaction among students within small groups through 
discussion, debating, and expressing ideas creates the opportunity for multiple 
acceptable solutions to mathematics problems. The belief is that, through these 
interactions, students would experience cognitive conflicts, evaluate their reasoning, 
and enrich their understanding about mathematical concepts. However, as Springer, 
Stanne, and Donovan (1999) have noted, without the appropriate structures to make 
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each member of a small group accountable for learning, the expected benefits of 
small groupings may not be realized, since the interaction would be in most instances 
merely sharing answers instead of ideas. Effective interactions characterized by high-
level deliberations about issues that enhance conceptual understanding occur when 
teachers clearly define issues, give specific guidelines, and define roles for members 
in a group (see Johnson and Johnson, 1994). The data from TIMSS do not provide 
details about small grouping practices in school to allow for further analysis. The 
finding however calls for a better understanding of how current reform practices 
should work to provide opportunities for all students to learn mathematics. Current 
reform in mathematics education in Canada advocates for a more interactive 
mathematics classroom. 
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