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Abstract. World Math literature is growing at an alarming rate (3.3M

journal articles today increasing by 120k a year). While much of that can be

retrieved online, we lack technologies to navigate and understand the space

of math literature. The OpenMathMap project develops and deploys novel

interfaces that empower interested parties to find their way. We conjecture

that such maps can act as cognitively adequate access mechanisms to many

large-coverage MKM systems.

The first concrete interface is an interactive map generated from publi-

cation data. We have developed a prototype map generation service based

on MSC classifications and deployed the maps resulting from ZBMath Data

in OpenStreetMap. Interaction mechanisms allow for providing details on

demand.

1. Introduction

In the information age fuelled by the Internet, the problem of information

and knowledge foraging changed from one of retrieving documents to finding out

about them. In particular, navigating the space of available documents efficiently

becomes an important subtask. This is especially pertinent for the scientific

literature, which largely consists of original publications and therefore has very

little redundancy. The times where single individuals could have an overview over

all of science are long past: Even in the Renaissance polymaths like Leonardo de

Vinci were considered a rare exception.

The scientific community has developed various tools to work around this

problem: encyclopaedias, survey articles, classification systems, and review ser-

vices. But with the proliferation of scientific publication – 50 million articles in
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2010 [Jin10] with a doubling time of 8-15 years [LI10] these tools start collaps-

ing under the sheer mass of information. Internet-age tools like search engines,

bibsonomies, and citation databases solve (part of) the information retrieval and

navigation problems by providing word-based search and browsing along cita-

tions. But these tools are “myopic” in the sense that they only give very local

view of the immediate surroundings of a word or document.

Classification systems like the Math Subject Classification (MSC, see [Msc]),

the Physics and Astronomy Classification Scheme (PACS, see [PACS10]), or the

ACM Computing Classification System (CCS [ACM-CCS98]) take a more global

stance, but they lack user interfaces that give information foragers an intuitive

sense of direction and locality that is so helpful to humans in navigation tasks.

Figure 1. Map of Online Communities, XKCD

2010 http://xkcd.com/802/

In the MathSearch

Project [MathSearch] we

are currently rethinking

access to mathematical

knowledge and resources.

As a first experiment,

we are building a global,

map-based navigation

service for mathematics.

The main idea is that

humans are very skilled

in spatial navigation and

in particular have learned

to use map representation

to navigate spaces and

locate targets. Concretely,

we want to create a map

of mathematics akin the

one in Figure 1 used to

visualize usage patterns

of online communities.

We want to base the map

on ideas from Rusin’s

Math Atlas [MathAtlas]

(created 1998, last updated 2001, see also Figure 2), which uses topics from the

Math Subject Classification for map regions and calculates the positioning and

relative sizes from topic interconnections and the numbers of publications. Based

http://xkcd.com/802/
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on the visual encoding through the geographical map metaphor, we built an

interactive tool for data exploration following the concept ‘overview first, detail

on demand’. We give examples on how our system can be used to explore the

given data.

Section 2 discusses the publication data used as a foundation and Section 3

the process by which map images can be computed from it. In Section 4 we

discuss how such images can be deployed in a map server (here OpenStreetMap).

Section 5 discusses topical maps which can be realized with OpenStreetMap.

Related work is discussed in Section 6. We show in Section 7 how to integrate

information services. Section 8 concludes the paper and discusses future work.

Additional details in technical matters can be found in [Doe13].

Acknowledgements Work on the concepts presented here has been partially

supported by the Leibniz association under grant SAW-2012-FIZ KA-2. The

authors are indebted to Wolfram Sperber for the Zentralblatt Math publication

data and Patrick Ion for initial discussions.

2. ZBMath/MSC Data

In the creation of the map we made use of the 2010 Mathematics Sub-

ject Classification jointly developed by the American Mathematical Society and

Figure 2. Rusin’s Math Atlas [MathAtlas]

Zentralblatt Math. The result are

63 top-level classes, 528 second-

level classes and 5607 third-level

classes summing up to 6198 classes

in total. Each class has an identi-

fier of the form DDLDD (D for Digit, L

for Letter) and a title. For example

“68R05 Combinatorics” is the third-

level, “68R Discrete mathematics in

relation to computer science” is the

second-level, and “68 Computer Sci-

ence” is the top-level category.

Zentralblatt MATH provided us

with the metadata for more than 3

million articles in mathematics, in

particular article number, the au-

thors, the classification codes1, keywords, and publication year. As we will see

1On average, each classified article carries 3 codes.
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below, the classification codes allow us to create the map geometry by visualizing

proximity and size of MSCs, the publication year gives us the possibility to create

maps which only include publications from a given time span.

3. Map Geometry

The first step in map creation is to compute a geometrical representation of

the relations in the ZBMath publication data, which will use as the base of the

map. In this representation we want to adequately represent the relative sizes

and proximities of the MSC classes. The size of a class MSCc is given by the

number |MSCc| of papers2 and define the similarity of two classes as

s(i, j) =
|MSCi ∩MSCj |
|MSCi ∪MSCj |

The size of the intersection/union of two MSCs is defined as the number of

papers referencing both/any MSCs. This results in s(i, j) = s(j, i) ∈ [0, 1] and

s(i, i) = 1 for all MSC classes i and j.

Figure 3. Histogram of the similarity values

2In principle, any scalar value that represents a property of each MSC class can be mapped

to the size of the respective area in the map. Currently, we just use the number of papers (due

to data availability). In future work, we would like to add further functionality that allows the

user to interactively choose which measure should be mapped to size.
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Figure 3 shows a histogram of all similarity values3. This diagram reveals that

there very few classes are highly similar, or in other words, the space of MSC

classes has a graph-like structure under this similarity measure; this validates

our initial assumption that maps might be suitable for navigation of the MSC

space, even though they can only use two dimensions to render an a-priori 6198-

dimensional structure.

For the initial version of the map geometry (see Figure 4), we calculate the

similarity between every pair of top-level MSCs to obtain a similarity matrix of

size 63× 63. To transform the matrix into two-dimensional coordinates for each

MSC we apply Multidimensional Scaling (MDS; [KW78]).

3.1. Multidimensional Scaling. Multidimensional Scaling (MDS) is a tech-

nique applied to a set of points in n-dimensional space to visualize it in a low

dimensional space preserving distances between points as well as possible. Com-

mon values for the output dimension are 2 and 3. Formally this can be described

as the following: Given a distance function δ, target dimension p and an n × n
dissimilarity matrix

(1) ∆ :=


δ1,1 δ1,1 · · · δ1,n
δ2,1 δ1,1 · · · δ2,n

...
...

. . .
...

δn,1 δn,2 · · · δn,n


one needs to find n vectors x1, . . . , xn ∈ Rp such that ‖xi − xj‖ ≈ δi,j for

all i, j = 1, . . . , n. A solution may be found by numerical optimizations, for

example Matlab has a built-in method mdscale which takes as arguments the n×n
dissimilarity matrix D and the target dimension p. It returns Y , a configuration

of n points in p dimensions, and optionally a stress value, which by default is the

stress value given by Kruskal’s normalized Stress-1 criterion [mdscale13] σ1 with

(2) σ1 =

√∑
[f(pij)− dij(X)]

2∑
d2ij(X)

where pij is the proximity between two given objects, dij(X) is the Euclidean

distance between two points in the current configuration X and f : pij → dij(X)

is a representation function where the particular choice of f specifies the MDS

model ; see [MDS05]. Choosing an appropriate f allows Matlab to work with

both similarity and dissimilarity matrices (the exact choice for f is hidden in the

implementation of the algorithm).

3As similarity matrix is symmetric only the upper triangular part was considered
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For the Stress-1 coefficient σ1 Kruskal suggests the following benchmarks: 0.20

= poor, 0.10 = fair, 0.05 = good, 0.025 = excellent, and 0.00 = perfect [MDS05].

3.2. Radial Basis Functions. The configuration generated by MDS is a collec-

tion of points in 2D space respecting the relative distances between given points.

However for the visualization one also needs to take the size of each MSC into

account.

To give a dimension to the points we use radial basis functions (RBF), i.e

real-valued functions whose value depends only on the distance from the origin

or alternatively on the distance from some other point c, called a center [Wik12].

A common choice for RBF is a Gaussian model, but has the drawback of

an infinite support. Therefore, we decided to use a modified cosine function;

concretely

(3) f(d) =

{
1 + cos(d/k) if |d| ≤ kπ
0 else

where d denotes the distance of a given point to the origin of a given MSC and k

depends on the size of this MSC.

It is zero outside the given range d, which allows us to discard all points with

|d| > kπ. In our experiments, we have seen that this finite support of our RBF

choice speeds up the calculations by a large factor when compared to a Gaussian

RBF.

3.3. Borders and Coast Lines. To detect borders mechanically we rasterize

the map into a grid of cells and calculate the influence of the nearby MSCs on

each cell via the RBF specified in Section 3.2. Then we associate each cell with

the MSC with the highest influence. If there is no influence (i.e. the result of the

RBF was zero for every MSC) the cell is considered to be water.

The actual border detection considers each non-water cell and checks its 4-

neighborhood for changes in the associated MSC. If there are changes, the cell

added to the border sets of both MSCs. Note that border set detection includes

coastline detection, since water is considered as the empty MSC. Finally borders

are connected by considering each border set on its own and finding the shortest

path going through all contained items. This task was executed using the nearest

neighbor heuristic. It was able to produce nearly optimal results as the next cell

can always be found in the 8-neighborhood of the current cell.
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Figure 4. Geometry of the Math Subject Classifications

3.4. Hierarchical Map Geometry. As the MDS computation becomes in-

tractable for larger similarity matrices4 we opt for a hierarchical approach to de-

termining finer-grained map geometries (taking second-level and leaf MSC classes

into account). In order to incorporate the second-level classes into the map we

consider each top-level class independently, giving up on information of surround-

ing MSCs to make calculations tractable. For second-level classes belonging to

the same first-level class we create inner-class similarity matrices. This leads to 63

different matrices with sizes between 1×1 and 20×20. Then the same operations

as before were applied.

4MDS is super-linear; for the first-level 63×63 matrix computation takes seconds and exceeds

30 hours even for the 528 × 528 matrix of second-level MSC classes.
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Equipped with a color palette resembling natural maps we were able to create

a map seen in Figure 4. This map incorporates the Zentralblatt Math data for

the first two levels of the MSC. A close-up of second-level classes can be found

in Figure 5, which renders second-level borders in light gray to distinguish them

first-level borders.

3.5. Landmarks and Settlements. Optionally, we can populate the map ge-

ometry with “cities”, “towns”, and “villages”: we view every classified paper

Figure 5. Adding Settlements

as an “inhabitant” and compute the center of

gravity of the points representing the respec-

tive MSC codes. As the number MSC combi-

nations is finite, this yields a finite number of

positions. The positions are rendered as red

dots (see Figure 5 on the left), where the size

encodes the number of papers.

As this could lead to up to 50 million dif-

ferent cities in theory, we introduced a “pop-

ulation threshold” to avoid a cluttering of the

map. Note that papers with only a single MSC

classification will end up in the “capitals” of

the respective class. Difficulties arise when it

is ambiguous in which MSC a given city lies, or

if the computed location is inside water. Those

cases need special attention and the cities have to be moved manually.

4. Mapmaking & Deployment

The next step is to convert the geometry data from the last section into a map

that has the features we are used to from familiar maps ranging from street maps

to Google Earth. For that we apply a series of transformation to the geometry,

these include smoothing the coast line, adding names for the geographic features,

and structuring the uniform blue of the ocean. Now we can deploy the map in

a geographical information system. In our case we generate the specific XML

representations utilized by OpenStreetMap [OSM]. These consist to points iden-

tified by latitude and longitude and ways (point sequences) representing outlines,

borders, and contours. Figure 6 shows the result, where we use a “political map”

metaphor, coloring the areas by the colors Dave Rusin used in his Math Atlas
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(see Figure 2 on the right). These colors are distributed “0th level of classifica-

tion” designed by Rusin to highlight super-domains like Analysis (green), Algebra

(red), applications (blue), etc.

Figure 6. A “Political Map” of Maths using Rusin’s Color Coding

Concretely, we use the rendering service Maperitive [Map13] – a free desktop

application that generates small pieces of the maps called “tiles” – to render maps

the XML data. A tile in OpenStreetMap is a 256× 256 pixels sized PNG image

making up for a given part of the map, examples are given in Figure 7. Tiles

need to be generated only once in order to render a map since the contained

information is re-used. Additionally tiles allow for zooming, since they can be

pre-generated for different resolutions of the map. This enables us to fill the map

with many details which can be shown or hidden depending on the current zoom

level.
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Figure 7. OSM tiles at different resolutions; c© OpenStreetMap

Note that there is no encoding of the height in Figure 4, this leaves room for

visualizing additional information. We are currently experimenting with encoding

the “activity level” of an area with this: We can compute the “elevation of an

area” by counting the (relative) number of publications in that area e.g. in the last

year. This makes research hotspots peaks that can serve as additional landmarks

in the map.

5. Topical Maps

Additionally, we can generate topical maps that visualize additional features

of the data. For instance, we can apply the mapping procedure to the data

up to a given publication date and obtain a series of maps that visualize the

“continental drift” of areas in mathematics; see Figure 8. Note that the maps

are more “bubbly” than the two-level map in Figure 4, as they only comprise the

top-level MSCs. Nevertheless, we can already see interesting trends: The most

obvious one is that the field of Mathematics is growing rapidly. Furthermore, some

subdomains of mathematics move around, since their distance to other subdomain

change; e.g. the cluster of statistics (MSC62-XX; yellowish/ocre), operations

research (MSC 90-XX), and economics (MSC91-XX) moved from the north/west

in the 1980ies to the current position on the south-east. There is a corresponding

movement of Computer Science (MSC 68-XX) which has grown in size with the

advent of computational methods in mathematics.

As we have data about the journals papers are published in, we can also com-

pute the centers of gravity of journals (based on those of the papers they publish).

Based on a radial function technique similar to the one we used to determine MSC
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(a) MSC Map of 1986 (b) MSC Map of 1989 (c) MSC Map of 1992

(d) MSC Map of 1995 (e) MSC Map of 1998 (f) MSC Map of 2001

(g) MSC Map of 2004 (h) MSC Map of 2007 (i) MSC Map of 2010

Figure 8. MSC Maps evolving between 1986 and 2010

areas, we can compute “journal dominions” and generate maps colored by these

based on the MSC-induced geometry. Such a map could give mathematicians ori-

entation in the jungle of currently ca. 3500 journals, but might be controversial

for publishers.
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6. Related Work

There are other systems that visualize data in the form of generated maps.

The first one is Dave Rusin’s “Mathematical Atlas” [MathAtlas] which has been

an initial starting point of OpenMathMap. Rusin displays the MSCs as bubbles,

where the surface areas of the bubbles are proportional to the number of “recent”

(at the time of creation) papers in that area [Rus02] (see Figure 2). Just as in

OpenMathMap, the placement of the MSCs is determined by the frequency of

cross-listings of papers in two or more areas: the distance of MSCs is inversely

correlated to this [Rus02]. Rusin only considers the first level MSCs (61 in MSC

2000) and thus performs a 2-dimensional projection of a 61-dimensional space.

This was not perfectly possible and so Rusin did some small modifications man-

ually. He moved outliers inside to reduce wasted space, and spread overlapping

bubbles apart into the nearest empty space [Rus01].

OpenMathMap extends the Mathematical Atlas in several ways. It is based on

more recent data, integrates second-level MSC, generates non-overlapping territo-

ries that make MSCs more recognizable, and visualizes the map in the interactive

OpenStreetMap system whose zoom and pan features allow to integrate much

more information into the map.

Kuhn et al. [KLN12] describe the process of creating a thematic software map.

They defined a similarity measure for code of open source programs based on the

used “vocabulary”. Just like in OpenMathMap they compute a two-dimensional

configuration by Multidimensional Scaling (see Figure 9a). Around every point

(representing a class) in this configuration they draw a circle where the area

was proportional to the lines of code of a given class (see Figure 9b) and use

normal distributions to arrive at a height that is visualized with contour lines

and shadings (see Figure 9c).

The main difference lies in the choice of radial functions and the lack of bor-

ders – admittedly the “political map” metaphor used in OpenMathMap would

be less immediate for software classes than for MSCs. We also observe that the

“topographic map” metaphor underlying the Kuhn et al.’s maps uses the third

dimension (height) that is still free in OpenMathMap.

In [GJ12] Gronemann and Jünger provide a method how to visualize clustered

graphs in a topographic map. After constructing a clustered graph they apply fat

polygon partitioning and extract a mesh from the layout that models the terrain

features based on the clustering. Finally they apply an edge-routing algorithm

to the clustered graph. Their visualization of a collaboration graph filled with

data from the Graph Drawing E-print Archive [GDEA13] is available at [Gde]
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(a) After MDS (b) Adding Circles (c) Visualizing height

Figure 9. Steps in creating a thematic software map after [KLN12]

Figure 10. Author Search given Publication Data

and includes interactive search interface (see Figure 10). Although their methods

differ from the ones used here the concept is very similar in both approaches. We

plan to include similar highlighting of collaborating authors in a future version of

OpenMathMap.

7. Interactive Services & Mashups
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Figure 11. Initial User Interaction

Having our map deployed on OSM al-

ready gives us some base-level interactivity:

zooming and panning. Additional location-

based interactions can be implemented by

adding custom JavaScript to the pages

served by OSM subject to availability of

date. The JavaScript API Leaflet [Lea12]

used to render a contiguous map from the

generated tiles allows us among others to

resolve mouse-clicks on the map to latitude

and longitude coordinates. However, just retrieving the location is not of big in-

terest to us, much rather we would like to know which MSC was clicked on.

To map coordinates to MSCs we make use of a RESTful web-service. It takes

latitude and longitude as parameters and returns name and description of the

MSC in JSONP format allowing for cross-domain communication. Figure 11

shows an example of this. Mouse-clicks on the map trigger a pop-up providing

name and description of the clicked MSC in addition to the respective links to

PlanetMath and Zentralblatt MATH.

8. Conclusion & Future Work

We have presented a novel access method to mathematical knowledge and

resources that makes use of the highly evolved cognitive skills of spatial rep-

resentations in humans. We have implemented a first prototype (accessible at

http://map.mathweb.org) that deploys maps computed from mathematical pub-

lication data in a standard map server and instruments it with information ser-

vices.

The geometry computation part of OpenMathMap system is licensed under

GNU General Public License [Fre91] and the web front-end part under the GNU

Affero General Public License [Fre99]. The code can be obtained from github

at [Ope].

This prototype is just a first step we want to use in experimentation in human-

oriented access methods to mathematics. We could imagine that connections

between mathematical areas could be implemented as roads, highways or air/sea

connections (possibly depending on their salience), important theorems could

be entered/visualized as landmarks, and finally, we could imagine to go from

interactive map servers to much more immersive environments (from Minecraft

to second life).

http://map.mathweb.org


OPENMATHMAP: ACCESSING MATH VIA INTERACTIVE MAPS 95

With the current approach we encountered a few problems when two relatively

big areas are very close together in the map. In this case the shared area is split

between the two MSCs so that the total area is substantially less than the sum of

the areas if there were no bordering MSCs. In order to prevent this problem one

could implement a force-based model where we allow large MSCs to “push away”

surrounding MSCs. Thus even though we want a small overlap between MSCs to

have a contiguous land area this overlap would be minimized. This step would

have to be executed after MDS but before the application of the RDF since it has

a direct influence on the configuration found by MDS.

The current implementation of MDS achieves a Stress-1 coefficient of 0.25

according to Equation (2). While this implies a poor configuration according to

Kruskal (see Section 3.1) one has to keep in mind that reducing a 63-dimensional

configuration to a 2-dimensional one is certainly not an easy task. An example

where a high similarity did not lead to neighboring MSCs are Algebraic Geometry

(MSC14-XX) and Complex Variables (MSC32-XX). The map implies that both

classes have a higher similarity with Manifolds and cell complexes (MSC57-XX)

which is not true.

Unfortunately, in this case the stress can not be decreased without increasing

the target dimension (which would mean we have to drop the map metaphor).

However, with the introduction of WebGL enabling 3D rendering in browsers and

Google Maps already making use of it (http://maps.google.com/gl) one can

imagine to also develop a 3D version of the MathMap in the future. With the

current similarity values an MDS to three dimensions would decrease the stress

value to 0.16. But we can also think of non-geometrical ways of “relieving” stress

in the map via other map features. For instance, we could shorten the travel

distance between two MSCs that are stressed by being too far apart by adding

highways or shipping lines.

Another important area of future work is the exploration of useful interac-

tion. An immediate example is the generation of custom queries for publication

databases like Zentralblatt Math [ZBMath]: a right-click on the map could gen-

erate a query to ZBMath for all papers in the “vicinity”; a query for papers in a

selected area would be similar. Yet another service might be a query for journals

based on the data prepared for the “journal map”. Another service might be to

localize mathematicians by their publication record5 and give them a “home ad-

dress” according to their primary research topic (based on the center of gravity of

5We acknowledge that author identification in large corpora is a hard problem that is only

partially solved for the mathematics community.

http://maps.google.com/gl
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their publications; possibly with weekend retreats in the woods of an application

area). Similarly, research trajectories of mathematicians could be plotted on the

map by computing yearly centers of gravity.

A Web3.0 style interaction could be to allow (groups of) users to name settle-

ments, e.g. in honor of one of the most prolific contributors or landmark papers.

We could use the math maps as a target for mashups of external services. For

instance, the search results of a mathematical search engine e.g. [KMP12] could

be shown by localizing them on the OpenMathMap service.

Finally, we acknowledge that the motivation for the OpenMathMap project was

a cognitive question, which we have answered with a technical system.

Even though first feedback from mathe-

maticians ranged from puzzled to enthusias-

tic (with an emphasis on the latter), we will

have to systematically evaluate whether Open-

MathMap-like systems and services can help

with mathematician’s day-to-day navigation

problems and access tasks, or if OpenMathMap

is essentially the equivalent to the iPhone beer app, a useless, but fun gadget.
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