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Abstract

It is shown that the upper and lower Henstock integrals coincide with
upper and lower Perron integrals, when the former exist.

1 Introduction

In [2], the notions of upper and lower Henstock integrals are defined using a
set-valued map of an interval variable, called a contraction. In this paper, we
show that when defined, these agree with the usual upper and lower Perron
integrals.

The usual definition of the upper Perron integral is given in terms of major
functions, see [5]. Pfeffer has shown that it can also be defined in terms of
Riemann-Stieltjes sums, see [3] and [4]. See also [1].

2 Notation and Terminology

Throughout the paper, f will refer to a measurable function f : [a, b] → R,
and δ will refer to a gauge δ : [a, b]→ (0,+∞).

A Perron partition is a set P := {(ti , [xi−1, xi]) : i = 1, . . . n }, where
a = x0 ≤ x1 ≤ ... ≤ xn = b and xi−1 ≤ ti ≤ xi for i = 1, . . . n.

We let I[a, b] denote the set of closed subintervals of [a, b]. We include sin-
gletons in this set. Let 2[a,b] denote the set of all subsets of [a, b]. A contraction
is a map ν : I[a, b]→ 2[a,b] having the following three properties:

C1. For each J ∈ I[a, b], v(J) ⊆ J.

C2. For each J1, J2,∈ I[a, b], J1 ⊆ J2 implies that ν(J2) ∩ J1 ⊆ ν(J1).
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C3. ∪{ν(J)∩J◦} = [a, b], where J◦ is the interior of J in the relative topology
of [a, b].

For any gauge δ[a, b] → (0,∞), define a mapping νδ : I[a, b] → 2[a,b],
called the gauge contraction corresponding to δ by νδ : J 7→ {x ∈ J : J ⊂
(x− δ(x), x+ δ(x))}. It is an easy exercise to verify that νδ is a contraction.

Let ν : I[a, b] → 2[a,b] be a contraction and let P = {(ti , [xi−1, xi]) : i =
1, . . . n } be a Perron partition. We say that P is ν − fine if ν([xi−1, xi]) 6=
∅ for i = 1, . . . , n. We note in passing that the tags of P are irrelevant to this
definition. However, given a gauge δ , it is easy to see that if P is δ- fine, then
P is νδ- fine.

If ν1 and ν2 are contractions, we say that ν1 ≺ ν2 if for every closed interval
I, ν1(I) ⊇ ν2(I). It is easy to see that if ν1 ≺ ν2, and P is ν1-fine, then P is
ν2-fine.

Let f : [a, b] → R be a function. Let ν : I[a, b] → 2[a,b] be a contraction
and P = {(ti , [xi−1, xi]) : i = 1, . . . n } be a ν-fine Perron partition. As in [2],
we define the following analogues of lower Riemann sums for f bounded on
ν([xi−1, xi]), i = 1, . . . , n.

Sl(P, f) =
n∑
i=1

inf{f(t) : t ∈ ν([xi−1, xi])} (xi − xi−1)

Sl(ν, f) = inf
P
Sl(P, f),

where the infimum is taken over the set of all ν-fine partitions P = {(ti , [xi−1, xi]) :
i = 1, . . . , n } .

The analogs of upper Riemann sums, Su(P, f) and Su(ν, f) are defined
similarly using supremums in place of infimums. As is noted in [2] , Sl(ν, f)
and Su(ν, f) can be written in terms of a single infimum or supremum. In
fact,

Sl(ν, f) = inf
P

σ(P, f),

where the infimum is taken over the set of all ν-fine Perron partitions P =
{(ti , [xi−1, xi]) : i = 1, . . . n } . Su(ν, f) is given by the same formula with inf
replaced by sup. We remark that Sl(P, f), Sl(ν, f), Su(P, f), and Su(ν, f)
are defined in [2] only when they are finite. It is shown in [2] that Sl(ν, f) is
monotone increasing and Su(ν, f) is monotone decreasing in ν.

The upper Henstock integral of f is defined to be:
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(H)

b∫
a

f(x)dx := inf
ν
Su(ν, f)

where the infimum is taken over the set of all contractions ν for which
Su(ν, f) is defined and ν0 ≺ ν, where ν0 is a fixed contraction for which
Su(ν0, f) is defined. We follow [2] in declining to define this upper integral if
the appropriate set of contractions is empty. The lower Henstock integral is
defined analogously

(H)

b∫
a

f(x)dx := sup
ν
Sl(ν, f).

Major and minor functions are defined as in [5]. The upper Perron integral
of f is defined to be

(P )

b∫
a

f(x)dx := inf{Uδ(b) : U is a major function for f(x)on [a, b]}

The lower Perron integral of f is defined to be

(P )

b∫
a

f(x)dx := sup{Uδ(b) : U is a major function for f(x)on [a, b]}

We adopt the conventions that sup ∅ = −∞ and inf ∅ = +∞. The Perron
integral exists if and only if the upper and lower integrals are finite and equal.

Let f : [a, b] → R be a measurable function, and P a Perron partition.
We use the following notation for the Riemann sum of f with respect to P

σ(P, f) :=
n∑
i=1

f(ti)(xi − xi−1). Let δ : [a, b] → (0,+∞) be a gauge and P a

Perron partition. P is δ− fine if [xi−1, xi] ⊆ (ti− δ(ti), ti + δ(ti)), i = 1, ..., n.
Let f : [a, b]→ R be a measurable function, and δ : [a, b]→ (0,+∞) be a

gauge. We define the upper interval function Uδ : I[a, b]→ Re as follows. For
each c ∈ [a, b], we define Uδ[c, c] = 0 and for a ≤ c < d ≤ b, we define

Uδ[c, d] = sup{σ(P, f) : P is a δ-fine partition of [c, d]}.

We note that Uδ[c, d] > −∞. We allow the possibility that Uδ[c, d] = +∞.
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Lδ[c, d] is defined analogously, with the supremum replaced by infimum.
We note that Lδ[c, d] < +∞. We allow the possibility that Lδ[c, d] = −∞.

Let δ1 and δ2 be gauges. We say that δ2 is a refinement of δ1 and write
δ1 ≺ δ2 if for each x ∈ [a, b] we have δ1(x) ≥ δ2(x).

The following result was proven in [3].

Theorem 2.1 The upper and lower Perron integrals may be defined as:

2.1.1. (P )
b∫
a

f(x)dx := inf{Uδ[a, b] : δ is a gauge}.

2.1.2. (P )
b∫
a

f(x)dx := sup{Lδ[a, b] : δ is a gauge}.

3 Relation of Upper and Lower Perron Integrals to Up-
per and Lower Henstock Integrals

Lemma 3.1 For each contraction ν, there is a gauge δ such that ν ≺ νδ.

Proof. For each x ∈ [a, b], define

δ(x) := min{2, inf{max{x− c, d− x} : c ≤ x ≤ d and x /∈ ν([c, d])}}.

For clarity, we point out that x is being considered as fixed, and that the
infimum is taken over all intervals [c, d] for which x ∈ [c, d]\ν([c, d]).

Clearly, 0 ≤ δ(x) ≤ 2 < +∞. In order to establish that δ is a gauge, we
need only show that δ(x) > 0. Consider x to be fixed. By the third of the
defining properties of a contraction, [C3], there is a subinterval, J , of [a, b]
such that x ∈ ν(J) ∩ J◦. Call J = [g, h].

We proceed by examining three cases. First, suppose that g 6= a and h 6= b.
Then g < x < h. Assume without loss of generality that [c, d] is an interval
for which x ∈ [c, d]\ν([c, d]). By way of contradiction, suppose [c, d] ⊆ [g, h],
then by defining property [C2] of a contraction, ν[g, h] ∩ [c, d] ⊆ ν([c, d]). But
x /∈ ν([c, d]) and x ∈ ν([g, h]) ∩ [c, d]. This contradiction shows that [c, d]
is not a subset of [g, h]. Therefore, either h < d or g > c. Hence, either
d− x > h− x or x− c > x− g. Therefore, δ(x) ≥ max(h− x, x− g) > 0.

The cases where g = a or h = b are handled similarly. Thus, δ is a gauge.
In order to verify ν ≺ νδ, it suffices to show that νδ([g, h)] ⊆ ν([g, h]) for

each subinterval [g, h] of [a, b]. Let x ∈ νδ([g, h]). By definition of νδ, x ∈ [g, h]
and [g, h] ⊆ (x − δ(x), x + δ(x)), or equivalently, δ(x) > max(h − x, x − g).
Therefore, x ∈ ν([g, h]), and hence νδ([g, h]) ⊆ ν([g, h]).
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Theorem 3.2 The upper Perron integral of a function is finite if and only if
the upper Henstock integral exists. It this case, the two upper integrals have
the same value. A similar assertion holds for the lower Perron and Henstock
integrals.

Proof. We give the proof only for the upper integrals. The result for the
lower integrals follows upon replacing the integrand by its negative. Assume

that (P )
b∫
a

f(x)dx < +∞. Pick ε > 0. By Theorem 2.1, there is a gauge δ such

that

(P )

b∫
a

f(x)dx ≤ Uδ[a, b] < (P )

b∫
a

f(x)dx+ ε.

It follows readily from the definitions that Uδ[a, b] = Su(νδ, f). We may
take the contraction, ν0, in the definition of the Henstock integral to be νδ.
Thus, the upper Henstock integral is defined, and moreover

(H)

b∫
a

f(x)dx ≤ Uδ[a, b] < (P )

b∫
a

f(x)dx+ ε.

Letting ε go to zero, we obtain

(H)

b∫
a

f(x)dx ≤ (P )

b∫
a

f(x)dx.

Now assume that the upper Henstock integral of f is defined. Pick ε > 0.
There is a contraction ν such that

(H)

b∫
a

f(x)dx ≤ Su(ν, f) < (H)

b∫
a

f(x)dx+ ε.

By Lemma 3.1, there is gauge δ such that ν ≺ νδ. Hence,

(P )

b∫
a

f(x)dx ≤ Su(νδ, f) ≤ Su(ν, f) < (H)

b∫
a

f(x)dx+ ε.

Since ε is arbitrary, the result follows.
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