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Abstract
The purpose of this paper is to show a natural setting under which

we consider vector valued functions integrable in the generalized Rie-
mann sense, using nuclear mappings. The results of this paper contain
all of the results published already in [17-22].

K. Kunugi introduced the method of ranked space as a method for
the mathematical analysis in 1954 (cf. [6]). Following this, we intro-
duced the notion of ranked union space, and showed that the spaces
S, S ′, D, D′, etc., occurring in the distribution theory of L. Schwartz
[24], can be treated as ranked union spaces called “Ranked (UCs-N)
Spaces” in short, without changing the notion of convergence for the
countable sequence of points ([9], [11]). As other typical ranked (UCs-
N) spaces we know the spaces C([0, 1],S), C([0,∞),S), C([0, 1],D),
C([0,∞),D), C([0, 1],S ′), C([0,∞),S ′), C([0, 1],D′), C([0,∞),D′),
etc. ([13]). This paper is concerned with the McShane and Henstock-
Kurzweil integrals. We tried a Riemann approach to integration for
the functions taking values in a ranked Hilbertian (UCs-N) space en-
dowed with the nuclearity, and knew that the ranked Hilbertian (UCs-
N) space endowed with the nuclearity is a natural setting under which
we consider the vector valued integration in the generalized Riemann
sense. In this paper, we will explain the results obtained without use
of the notion of ranked space. Because, we do not necessarily need the
theory of ranked space on the study of the Riemann type integration.
We refer to the book [1] for the terminology concerning Hilbert space
etc.

I. (UCs-N) spaces

1. (UCs-N) spaces. Let X be a vector space over the real numbers,
and let (Xα, {pαm}∞m=0) (α ∈ Σ) be a family of subspaces Xα of X such that a
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sequence of semi-norms {pαm}∞m=0 is defined on Xα for each α. Suppose that
they satisfy the following conditions (I)-(V).

(I) ∪α∈ΣXα = X.
(II) Σ is an upward directed set with the ordering ≤ (see [27, p. 103] for

the definition).
(III) α ≤ β if and only if Xα ⊂ Xβ.
(IV) For each α ∈ Σ, pα0 (x) ≤ pα1 (x) ≤ . . . for x ∈ X.
(V) If α ≤ β, then pαm(x) ≥ pβm(x), for x ∈ Xα and m = 0, 1, 2, . . ..

Convergence, Cauchy sequence, Separation axiom
In the space X mentioned in the above, the notion concerned with “con-

vergence” is defined only for the countable sequence of points as follows.
(C1) A sequence xi (i = 1, 2, . . .) is said to be convergent to x in X if and

only if there exists an α such that xi (i = 1, 2, . . .) and x are contained in Xα

and the sequence is convergent to x in the space Xα topologized by {pαm}∞m=0

(cf. [2, p. 15]).
(C2) A sequence xi (i = 1, 2, . . .) is said to be a Cauchy sequence in X

if and only if there exists an α such that xi (i = 1, 2, . . .) are contained in
Xα and the sequence is a Cauchy sequence in the space Xα topologized by
{pαm}∞m=0.

(C3) The space X is said to be separated if x = y whenever limxi = x
and limxi = y.

By (C1) and (C2), we see that the space X is separated if and only if for
every α ∈ Σ, the space Xα topologized by {pαm}∞m=0 is separated.

Definition 1. If X is a vector space over the real numbers endowed with
(Xα, {pαm}∞m=0) (α ∈ Σ) satisfying (I)-(V) and if, on X, convergence, Cauchy
sequence and separation axiom are defined by (C1), (C2) and (C3), respec-
tively, then the space X is called a (UCs-N) space defined by (Xα, {pαm}∞m=0)
(α ∈ Σ) ((UCs-N ) standing for “union of countably semi-normed spaces”),
and each space (Xα, {pαm}∞m=0) is called a component space of the (UCs-N)
space X. We sometimes use the same notation (Xα, {pαm}∞m=0) to denote the
space Xα topologized by {pαm}∞m=0.

In particular:
[1] When Σ is a set consisting of a single element, say α, and pα0 (x) =

pα1 (x) = · · ·, the space X is called a (s-N) space. In particular, if the common
semi-norm is a norm, the space X is called a (N) space. We usually denote
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such a (s-N) space X by (X, p) as a vector space endowed with a semi-norm
p.

[2] When Σ is a set consisting of a single element, say α, and pα0 (x) ≤
pα1 (x) ≤ · · ·, the space X is called a (Cs-N) space. In particular, if pαm is a
norm for each m, then X is called a (CN) space. We usually denote such a
(Cs-N) space X by (X, {pm}∞m=0).

[3] When pα0 (x) = pα1 (x) = · · · for each α ∈ Σ, the space X is called a
(Us-N) space. In particular, if the common semi-norm is a norm, the space
X is called a (UN) space.

[4] When the space X is a (Us-N) space (resp. (UN) space) such that Σ is
a countable set, the space X is called a (CUs-N) space (resp. (CUN) space).

[5] When, for each α ∈ Σ, pαm is a norm for m = 0, 1, 2, . . ., the (UCs-N)
space X is called a (UCN) space.

[6] When the space X is a (UCs-N) space (resp. (UCN) space) such that
Σ is a countable set, the space X is called a (CUCs-N) space (resp. (CUCN)
space).

Example 1
The spaces S, S ′, D and D′ can be treated as follows without changing

the meaning of convergence for a countable sequence of points.
(1) S: a complete separated (CN) space ([10, (2), p. 198], [11, Proposition

1 p. 355])
(2) S ′: a separated (CUN) space with complete component spaces ([10,

II, p. 806], [11, Theorem 1, p. 359])
(3) D: a separated (CUCN) space with complete component spaces ([10,

p. 195]. [11, Propositions 2 and 4, pp. 356, 357])
(4) D′: a separated (UCs-N) space with complete component spaces ([11,

Theorem 2, p. 364], [11, Propositions 2 and 4, pp. 356, 357])

2. (UCs-N) space valued continuous functions. Let X be a (UCs-
N) space with component spaces (Xα, {pαm}∞m=0) (α ∈ Σ). An X-valued
function f defined on [a, b] is said to be continuous at t ∈ [a, b] if there are
an α ∈ Σ and a neighborhood V (t) of t in [a, b] such that

(1) the image of V (t) by f is contained in Xα,
(2) f is continuous at t as a mapping from V (t) into the component space

(Xα, {pαm}∞m=0), more precisely, if lim ti = t in V (t), then lim f(ti) = f(t) in
the countably semi-normed space Xα topologized by {pαm}∞m=0.
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An X-valued function f is said to be continuous on [a, b] if it is continuous
at every point of [a, b].

In general, we do not know whether or not t he following statement (UCs-
N,c) is true:

(UCs-N,c) If a (UCs-N) space valued function f is continuous on [a, b],
then there exists an α such that the image of [a, b] by f is contained in Xα

and f is continuous on [a, b] as a function taking values in the space Xα

topologized by {pαm}∞m=0.
We have characterized (UCs-N) spaces for which the statement (UCs-N,c)

is true (see [14, Propositions 15 and 16, pp. 116, 117]). In particular, we
have:

Example 2
In the S, S ′, D and D′-valued cases, the statement (UCs-N,c) is true ([14,

p. 117]).

3. (UCs-N) space valued countably additive measures. Let X be
a separated (UCs-N) space with component spaces (Xα, {pαm}∞m=0) (α ∈ Σ)
and M a ring of sets. A function F :M→ X is called a countably additive
vector measure if F (∅) = 0 and F (∪∞i=1Ai) = limn→∞

∑n
i=1 F (Ai) for every

sequence {Ai} of mutually disjoint sets ofM such that ∪∞i=1Ai ∈M (cf. [12,
p. 807]). In general, we do not know whether or not the following statement
(UCs-N,m) is true.

(UCs-N,m) LetM be a σ-ring of sets and let F :M→ X be a countably
additive vector measure. Then, there exists an α such that the image of [a, b]
by F is contained in Xα and F is countably additive as a function taking
values in the space Xα topologized by {pαm}∞m=0.

It is pointed out that the statement (UCs-N,m) is true if the (UCs-N)
space has the property (†) indicated in [12, p. 807] (see [12, Theorem 2, p.
808]). In particular, we have:

Example 3
In the S, S ′, D and D′-valued cases, the statement (UCs-N,m) is true

([12, p. 808]).

The statements in Sections 2 and 3 motivate us to define Bochner, Mc-
Shane and Henstock-Kurzweil integrals as in Definitions 6 and 7 of Chapter
IV below for the functions taking values in the (UCs-N) spaces.
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II. Nuclear Hilbertian (UCs-N) spaces

@Definition 2. Let Xα and Xβ be Hilbert spaces with scalar products
( , )α and ( , )β, and pα and pβ the norms associated with ( , )α and ( , )β,
respectively. A continuous linear mapping Tαβ of the Hilbert space Xα into
the Hilbert space Xβ is called a nuclear mapping if it has the following form.

N(α, β) : Tαβ (x) =
∞∑
k=1

λαβk(x, e
α
k )αe

β
k for x ∈ Xα,

where {eαk}∞k=1 and {eβk}∞k=1 are orthonormal systems of vectors in Xα and
Xβ, respectively, λαβk > 0 and

∑∞
k=1 λ

α
βk <∞.

Next, we define a (UCs-N) space endowed with nuclearity. We begin by
defining a mapping.

Let X be a separated (UCs-N) space with complete component spaces
(Xα, {pαm}∞m=0) (α ∈ Σ) such that, on each Xα, for m = 0, 1, 2, . . . a positive
hermitian form ( , )αm is defined and pαm is the semi-norm associated with ( ,
)αm.

Let α ≤ β and m ≥ n, and let Tαβ be the embedding mapping of Xα into
Xβ, i.e., Tαβ (x) = x for x ∈ Xα. Since then X is a (UCs-N) space, we have
Xα ⊂ Xβ and pαm(x) ≥ pβn(x) for x ∈ Xα. Therefore

pαm(x) ≥ pβn(Tαβ (x)) for x ∈ Xα.

Now, consider the quotient spaces Xα/N(α,m) and Xβ/N(β, n), where N(α,
m) = {x ∈ Xα : pαm(x) = 0} and N(β, n) = {x ∈ Xβ : pβn(x) = 0}. Then, the
quotient spaces X/N(α,m) and X/N(β, n), denoted by Xα

m and Xβ
n , become

prehilbert spaces with non-degenerate positive hermitian forms, still denoted
by ( , )αm and ( , )βn. We denote the norm associated with ( , )αm (resp. ( , )βn)
by pαm (resp. pβn) and the element of Xα

m (resp. Xβ
n ) having x ∈ Xα (resp.

Xβ) as a representative by [x]αm (resp. [x]βn). Let Tαmβn be the mapping of the
prehilbert space Xα

m into the prehilbert space Xβ
n defined as follows.

Tαnβn ([x]αm) = [x]βn.

Then
pαm([x]αm) ≥ pβn(Tαmβn ([x]αm)) for xαm ∈ Xα

m,

and the mapping Tαmβn is a continuous linear mapping of Xα
m into Xβ

n . Next,
we denote the completions of prehilbert spaces Xα

m and Xβ
n with respect
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to pαm and pβn by X̂α
m and X̂β

n , respectively. Then, they become Hilbert
spaces. If {[xi]αm}∞i=1 is a Cauchy sequence in Xα

m, then {[xi]βn}∞i=1 is a Cauchy
sequence in Xβ

n . Hence, the element of X̂β
n having the Cauchy sequence

{[xi]βn}∞i=1 as a representative is uniquely determined by the element of X̂α
m

having the Cauchy sequence {[xi]αm}∞i=1 as a representative. We denote the
correspondence by T̂αmβn . Then, T̂αmβn is a continuous linear mapping of X̂α

m

into X̂β
n such that

p̂αm(x̂αm) ≥ p̂βn(T̂αmβn (x̂αm)) for x̂αm ∈ X̂α
m,

where p̂αm and p̂βn are the norms associated with the scalar products on X̂α
m

and X̂β
n , respectively.

Definition 3. Let X be a separated (UCs-N) space with complete compo-
nent spaces (Xα, {pαm}∞m=0) (α ∈ Σ) such that, on each Xα, for m = 0, 1, 2, . . .,
a positive hermitian form ( , )αm is defined and pαm is the semi-norm associated
with ( , )αm. Suppose that, corresponding to each α ∈ Σ, we can find

(†) a β ∈ Σ and increasing sequences of non-negative integers {m(0) <
m(1) < · · ·} and {n(0) < n(1) < · · ·} such that:

(1) α ≤ β,
(2) m(i) ≥ n(i) for i = 0, 1, 2, . . ., and

(3) T̂
αm(i)
βn(i) is nuclear for i = 0, 1, 2, . . ., where T̂

αm(i)
βn(i) is the continuous

linear mapping of X̂α
m(i) into X̂β

n(i) defined in the above.
Then we call such a space X a nuclear Hilbertian (UCs-N) space. β, {m(i)},
{n(i)} is a system associated with α. We have:

Proposition 1. If m ≥ m(i) and n(i) ≥ n for some i, then T̂αmβn is a

nuclear mapping of X̂α
m into X̂β

n .

Example 4
(a) Nuclear Hilbertian (CN) space. Let X be a vector space endowed

with a sequence of norms {pm}∞m=0. Suppose that the sequence {pm}∞m=0 is
non-decreasing and all of the norms pm are compatible (see [2, p. 13] for the
definition). Completing the space X by pm , we obtain a Banach space. We
denote the Banach space by X̂m. In this case, the space X̂m (m = 0, 1, 2, . . .)
can be considered to have the following relationship with each other and with
X.

X̂0 ⊃ X̂1 ⊃ · · · ⊃ X.
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The topological space X topologized by such a {pm}∞m=0 has been called a
countably normed space [2, p. 15]. If the space is complete, then we have
X = ∩∞m=0X̂m ([2, p. 17]).

Now, consider a vector space X endowed with a sequence of nondegen-
erate positive hermitian forms ( , )m (m = 0, 1, 2, . . . ). Let pm be the
norm associated with ( , )m. In this case, the space X̂m defined as in the
above becomes a Hilbert space. Suppose that the sequence {pm}∞m=0 is non-
decreasing and compatible (so the space (X, {pm}∞m=0) is a countably normed
space) and the space (X, {pm}∞m=0) is complete. Then, the countably normed
space (X, {pm}∞m=0) has been called a nuclear countably Hilbert space if for
m > n, the embedding T̂mn of the Hilbert space X̂m to the Hilbert space
X̂n is a nuclear mapping [3, p. 62]. A nuclear countably Hilbert space is
an example of vector space which can be considered as a nuclear Hilbertian
(CN) space. The space S is such a typical space ([18, p. 331]).

(b) Nuclear Hilbertian (CUCN) space such that each component space is a
nuclear Hilbertian (CN) space. The space D is a nuclear Hilbertian (CUCN)
space such that each component space is a nuclear countably Hilbert space.
Further, in the case of space D, there is a sequence of non-degenerate positive
hermitian forms ( , )m (m = 0, 1, 2, . . .) defined on D such that in each
component space Xn (n = 1, 2, . . .), we have (x, y)nm = (x, y)m for x, y ∈ Xn

and m = 0, 1, 2, . . . ([18, p. 332]).
(c) Nuclear Hilbertian (CUN) space such that each component space is a

Hilbert space. Each component space Xn (n = 1, 2, . . .) is a Hilbert space
endowed with a non-degenerate positive hermitian form ( , )n for each n. In
this case, for every n there exists an m > n such that the embedding of Xn

into Xm is a nuclear mapping. The space S ′ is such a typical space ([18, p.
333]).

(d) Nuclear Hilbertian (UCs-N) space such that Σ is uncountable and each
component space is not a nuclear Hilbertian (Cs-N) space. The space D′ is
such a typical space ([18, p. 334]).

III. Bochner, McShane and Henstock-Kurzweil Integrals and
differentiations of (Cs-N) space valued functions

Consider a (Cs-N) space (X, {pm}∞m=0) (a (UCs-N) space with a single
component space). Then, {pm}∞m=0 is a sequence of seminorms such that
p0(x) ≤ p1(x) ≤ · · · for x ∈ X. Put N(m) = {x ∈ X : pm(x) = 0}. Then,
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the quotient space X/N(m) is a normed space. We denote the element of
the quotient space with x ∈ X as a representative by [x]m . We denote the
completion of the normed space X/N(m) by (X̂m, p̂m), where p̂m denotes the
norm on X̂m. In particular, we denote the element of X̂m with a Cauchy
sequence {[x]m, [x]m, . . .} (x ∈ X) as a representative by {[x]m}̂. For an X-
valued function f , we define X̂m-valued function f̂m by f̂m(t) = {[f(t)]m}̂.

1. Bochner integral of (Cs-N) space valued function.
Let (X, {pm}∞m=0) be a separated (Cs-N) space, and let (S,M, µ) be a

non-negative finite valued measure space such that S is an abstract set, M
is a σ-algebra of subsets of S, and µ is a real valued non-negative countably
additive measure on M. An X-valued function f on S is called simple
if there exist x(1), x(2), . . . , x(n) ∈ X and A(1), A(2), . . . , A(n) ∈ M such
that f =

∑n
i=1 x(i)χA(i), where χA(i)(x) = 1 if x ∈ A(i) and χA(i)(x) = 0 if

x /∈ A(i). An X-valued function f on S is called µ-measurable if there exists a
sequence of X-valued simple functions {fn}∞n=1 such that limn→∞ fn(t) = f(t)
µ-almost everywhere on S.

Definition 4.1. Let X be a separated (Cs-N) space (X, {pm}∞m=0). An
X-valued function f on S is said to be Bochner integrable with respect to
µ on S if f is µ-measurable and there exists a sequence of X-valued simple
functions {fn}∞n=1 such that

(1) limn→∞
∫
S pm(fn(t)− f(t))dµ = 0 for m = 0, 1, 2, . . . ,

(2) limn→∞
∫
S fn(t)dµ exists in (X, {pm}∞m=0).

In this case, the integral of f on S, written
∫
S f(t)dµ, is defined by limn→∞∫

S fn(t)dµ.
In the definition above, if the space (X, {pm}∞m=0) is complete,

limn→∞
∫
S fn(t)dµ necessarily exists. Hence, we obtain the following defini-

tion.
Definition 4.2. Let X be a separated and complete (Cs-N) space

(X, {pm}∞m=0). An X-valued function f on S is said to be Bochner integrable
with respect to µ on S if f is µ-measurable and there exists a sequence of X-
valued simple functions {fn}∞n=1 such that limn→∞

∫
S pm(fn(t)− f(t))dµ = 0

for m = 0, 1, 2, . . .. In this case, the integral of f with respect to µ on S is
defined by limn→∞

∫
S fn(t)dµ.

Proposition 2. ([19, (0.20), p. 373]). Let (X, {pm}∞m=0) be a separated
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complete (Cs-N) space. Let f be an X-valued function on S. Then, the
function f is Bochner integrable with respect to µ on S as an (X, {pm}∞m=0)-
valued function if and only if for m = 0, 1, 2, . . . the function f̂m is Bochner
integrable with respect to µ on S as an (X̂m, p̂m)-valued function. In this
case, {[

∫ b
a f(t)dµ]m}̂ =

∫ b
a f̂m(t)dµ for m = 0, 1, 2, . . . . .

2. McShane and Henstock-Kurzweil integrals of (Cs-N) space
valued function.

Definition 5. Let X be a separated (Cs-N) space (X, {pm}∞m=0), ν a
non-decreasing real valued function on [a, b] and f an X-valued function on
[a, b]. The function f is said to be McShane (resp. Henstock-Kurzweil )
integrable with respect to ν to z(∈ X) on [a, b] if for m = 0, 1, 2, . . . there
exists a positive function δm on [a, b] such that for any δm-fine Lebesgue
(resp. Perron) partition P of [a, b]: {([t0, t1], x1), . . . , ([tp−1, tp], xp)}, we have

pm(
p∑
i=1

f(xi)(ν(ti)− ν(ti−1))− z) < 1/2m.

Such a z is uniquely determined ([18, Lemma 4, p. 320]). In this case, the
integral of f with respect to ν on [a,b], written

∫ b
a f(t)dν, is z. Simply, we

set

σ(f, P ; ν) =
p∑
i=1

f(xi)(ν(ti)− ν(ti−1)).

Proposition 3. Let X be a separated complete (Cs-N) space (X, {pm}∞m=0).
Let f be an X-valued function on [a, b]. Then, the function f is McShane
(resp. Henstock-Kurzweil ) integrable with respect to ν on [a, b] as an (X,
{pm}∞m=0)-valued function if and only if for m = 0, 1, 2, . . . , the function f̂m
is McShane (resp. Henstock-Kurzweil ) integrable with respect to ν on [a, b]
as an (X̂m, p̂m)-valued function. In this case, {[

∫ b
a f(t)dν]m}̂ =

∫ b
a f̂m(t)dν

for m = 0, 1, 2, . . . .
Proof. We prove only for the case of Henstock-Kurzweil integral. The

“only if” part follows from [18, Lemma 6, p. 322]. The “if” part: Suppose
that f̂m is Henstock-Kurzweil integrable with respect to ν to an element of
X̂m , say ẑm , on [a, b] as an (X̂m, p̂m)-valued function. Then, there exists a
positive function δm on [a, b] such that for all δm-fine Perron partitions P of
[a, b] we have

p̂m(σ(f̂m, P ; ν)− ẑm) < 1/2m+1.

9



Since the set {{[x]m}̂ : x ∈ X} is dense in (X̂m, p̂m), there exists an xm ∈ X
such that

p̂m(ẑm − {[xm]m}̂ ) < 1/2m+1.

Therefore, for all δm-fine Perron partition P of [a, b] we have

p̂m(σ(f̂m, P ; ν)− {[xm]m}̂ ) < 1/2m.

Now, fix a non-negative integer n and let m ≥ n. Then, we have

p̂n(σ(f̂n, P ; ν)− {[xm]n}̂ ) ≤ p̂m(σ(f̂m, P ; ν)− {[xm]m}̂ ) < 1/2m

for all δm-fine Perron partitions P of [a, b]. Hence, by Cousin’s lemma, if
k,m ≥ n,

p̂n({[xk]n}̂ − {[xm]n}̂ ) < 1/2k + 1/2m,

and therefore
pn(xk − xm) < 1/2k + 1/2m.

Hence, the sequence {xm}∞m=0 in X is a Cauchy sequence under the semi-
norm pn for n = 0, 1, 2, . . . . Therefore, by (C2) the sequence is a Cauchy
sequence in the space (X, {pm}∞m=0). Since the space is complete, the limit
limm→∞ xm = x exists in (X, {pm}∞m=0). Now, we have

pn(xn+1 − x) ≤ 1/2n+1.

On the other hand, for all δn+1-fine Perron partitions P of [a, b], where δn+1

is the one chosen in the above, we have

pn(σ(f, P ; ν)− xn+1) < 1/2n+1.

Consequently, for all δn+1-fine Perron partitions P of [a, b] we have

pn(σ(f, P ; ν)− x) < 1/2n.

Thus, f is Henstock-Kurzweil integrable with respect to ν on [a, b] to x as
an (X, {pm}∞m=0)-valued function.

3. Differentiation of (Cs-N) space valued function. Let X be a
separated (Cs-N) space (X, {pm}∞m=0) and f an X-valued function on [a, b].
Let t ∈ [a, b]. If there exists an element x ∈ X such that for m = 0, 1, 2, . . . ,
there exists δm > 0 such that pm((f(s)− f(t))/(s− t)−x) < 1/2m whenever
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0 < |s − t| < δm (s ∈ [a, b]), then the function f is said to be differentiable
at t . Since X is separated, such an element x is uniquely determined, and
we denote the element x by f ′(t).

Proposition 4. Let X be a separated complete (Cs-N) space (X, {pm}∞m=0)
and f an X-valued function defined on [a, b]. Then, the function f is differ-
entiable at t ∈ [a, b] if and only if, for m = 0, 1, 2, . . ., f̂m is differentiable at
t as an (X̂m, p̂m)-valued function. In this case, we have (f̂m)′(t) = {[f ′(t)]m}̂
for m = 0, 1, 2, . . . .

Proof. The “only if” part is clear. The “if” part: For a given non-negative
integer m, there exists x̂m ∈ X̂m such that we can find a δ(m) > 0 so that
p̂m((f̂m(s) − f̂m(t))/(s − t) − x̂m) < 1/2m whenever 0 < |s − t| < δ(m)
(s ∈ [a, b]). Since the set {{[x]m}̂ : x ∈ X} is dense in (X̂m, p̂m), there exists
an xm ∈ X such that

p̂m((f̂m(s)−f̂m(t))/(s−t)−{[xm]m}̂ ) < 1/2m if 0 < |s−t| < δ(m) (s ∈ [a, b]).

Hence, we have

pm((f(s)− f(t))/(s− t)− xm) < 1/2m if 0 < |s− t| < δ(m) (s ∈ [a, b]).

Therefore, for any n ≥ m , we have

pm((f(s)− f(t))/(s− t)− xn) < 1/2n if 0 < |s− t| < δ(n) (s ∈ [a, b]),

because pn(x) ≥ pm(x) in X. Fix a non-negative integer m. Given ε > 0,
take an n(ε) with n(ε) > m and 1/2n(ε) < ε/2. Then, for h and k with
h, k ≥ n(ε) we have pm(xh − xk) < ε . Hence, {xk}∞k=0 is a fundamental
sequence in (X, pm) for m = 0, 1, 2, . . . , and therefore in (X, {pm}∞m=0).
Since the space (X, {pm}∞m=0) is complete, the limit limxk = x exists in
(X, {pm}∞m=0). Now, for m = 0, 1, 2, . . . , take an n = n(m) such that n > m
and pm(xn − x) < 1/2m+1, then

pm((f(s)− f(t))/(s− t)− x)
≤ pm((f(s)− f(t))/(s− t)− xn) + pm(xn − x) < 1/2m

if 0 < |s − t| < δ(n) (s ∈ [a, b]). Thus, f is differentiable at t as an
(X, {pm}∞m=0)-valued function, and f ′(t) = x. The last part of the propo-
sition is clear from the demonstration above.
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IV. (UCs-N) space valued Bochner, McShane and
Henstock-Kurzweil integrals

1. (UCs-N) space valued Bochner integrals.
Definition 6. Let X be a separated (UCs-N) space with component

spaces (Xα, {pαm}∞m=0) (α ∈ Σ) and let (S,M, µ) be a non-negative finite
valued measure space. We say an X-valued function f on S is Bochner
integrable with respect to µ to z on S if there exists a component space Xα

such that:
(1) The image of S by f is contained in Xα and z ∈ Xα.
(2) The function f is Bochner integrable with respect to µ on S to z as

an (Xα, {pαm}∞m=0)-valued function.
When it is necessary to indicate explicitly such a space Xα , we say

the function f is Bochner integrable(Xα) with respect to µ. Definition 6 is
well defined by the facts that Σ is upward directed, and if f is Bochner
integrable(Xα) with respect to µ to z on S, then f is Bochner integrable(Xβ)
with respect to µ to the same element z on S for every β with β ≥ α. In
particular, we say an X-valued function f on S is µ-measurable(Xα) on S if
the image of S by f is contained in Xα and f is µ-measurable on S as an
(Xα, {pαm}∞m=0)-valued function. (Cf. [26, Definition 5, p. 75] for example.)

When ([a, b],M, µ) is a measure space such that M is the family of
Lebesgue measurable subsets of [a, b] and µ is Lebesgue measure on M,
we say f is Bochner integrable with respect to Lebesgue measure, or simply,
Bochner integrable, or measurable, etc. omitting “with respect to Lebesgue
measure”.

Proposition 5. Let X be a separated (UCs-N) space. Then, any simple
function is Bochner integrable with respect to µ on S.

Proposition 6. ([14, Proposition 21, p. 120], [18, p. 324]). If X is a
complete separated (Cs-N) space, then any continuous X-valued function on
[a, b] is Bochner integrable on [a, b].

Proposition 7. Let X be a separated (UCs-N) space with complete com-
ponent spaces for which the statement (UCs-N,c) is true. Then, any contin-
uous X-valued function on [a, b] is Bochner integrable on [a, b].

2. (UCs-N) space valued McShane and Henstock-Kurzweil in-
tegrals.
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Definition 7. Let X be a separated (UCs-N) space with component
spaces (Xα, {pαm}∞m=0) (α ∈ Σ) and ν a non-decreasing real valued function
on [a, b]. An X- valued function f on [a, b] is said to be McShane (resp.
Henstock-Kurzweil) integrable with respect to ν to z on [a, b] if there exists a
component space Xα such that:

(1) The image of [a, b] by f is contained in Xα and z ∈ Xα.
(2) The function f is McShane (resp. Henstock-Kurzweil) integrable with

respect to ν to z on [a, b] as an (Xα, {pαm}∞m=0)-valued function.
When it is necessary to indicate explicitly such an Xα, we say f is Mc-

Shane (resp. Henstock-Kurzweil) integrable(Xα) with respect to ν. Definition
7 is well defined by the same reason as in Definition 6. In particular, when ν
is the identity function on the real space R, i.e., ν(t) = t on R, we simply say
f is McShane (resp. Henstock-Kurzweil) integrable, omitting “with respect
to ν”.

Proposition 8. ([22, Proposition 13, p. 268]). Let X be a separated
(UCs-N) space. If an X-valued function f is Bochner integrable on [a, b],
then it is McShane integrable on [a, b], and both integrals coincide.

Proposition 9. Let X be a separated (UCs-N) space. A simple X-
valued function on [a, b] is Bochner and McShane integrable on [a, b] and
both integrals coincide.

Proposition 10. Let X be a complete separated (Cs-N) space. Any
continuous X-valued function on [a, b] is Bochner and McShane integrable
on [a, b] and both integrals coincide.

Proposition 11. Let X be a separated (UCs-N) space with complete
component spaces for which the statement (UCs-N,c) is true. Then, any
continuous X-valued function on [a, b] is Bochner and McShane integrable
on [a, b] and both integrals coincide.

Example 5
By Example 2, S, S ′, D and D′-valued continuous functions are Bochner

and McShane integrable on [a, b] and both integrals coincide.

V. McShane and Henstock-Kurzweil integrals for functions taking
values in a nuclear Hilbertian (UCs-N) space

We first show the following two key lemmas which are pivotal in our
theory.
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Key Lemma 1. Let X be a Hilbert space with a scalar product ( , ), and
p the norm associated with ( , ). Let zi ∈ X and let ai be real numbers for
i = 1, 2, . . . , q, and x ∈ X. Then

|
q∑
i=1

(aizi, x)| ≤ p(
q∑
i=1

aizi)p(x).

For the converse of Key Lemma 1, we have the following idea.

Key Lemma 2. Let Xα and Xβ be Hilbert spaces with scalar products
( , )α and ( , )β, and pα and pβ the norms associated with ( , )α and ( , )β,
respectively. Let Tαβ be a nuclear mapping of the space Xα into Xβ , i.e., a
mapping having the form:

N(α, β) : Tαβ (x) =
∞∑
k=1

λαβk(x, e
α
k )αe

β
k for x ∈ Xα,

where {eαk}∞k=1 and {eβk}∞k=1 are orthonormal systems of vectors in Xα and
Xβ, respectively, λαβk > 0, and

∑∞
k=1 λ

α
βk <∞.

Then, the following inequality holds for any finite sequence zi ∈ Xα (i =
1, 2, . . . , p).

p∑
i=1

pβ(Tαβ (zi)) ≤
∞∑
k=1

λαβk{
p∑
i=1

|(zi, eαk )α|}.

For example, we sketch here the proof of the following lemma, because it
is a typical way of proofs of propositions in the nuclear space valued case.

Lemma 1. Under the same assumption as in Key Lemma 2, the following
holds. Let f be an Xα -valued McShane (resp. Henstock-Kurzweil) integrable
function on [a, b], and let F be an indefinite integral of f . If δ is a positive
function on [a, b] such that

pα(
p∑
i=1

f(xi)(ti − ti−1)− F ([ti−1, ti])) < ε/(3
∞∑
k=1

λαβk)

for any δ-fine Lebesgue (resp. Perron) partition

{([t0, t1], x1), . . . , ([tp−1, tp], xp)}
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of [a, b], then for the same δ we have

p∑
i=1

pβ(Tαβ (f(xi))(ti − ti−1)− Tαβ (F ([ti−1, ti]))) < ε

for any δ-fine Lebesgue (resp. Perron) partition

{([t0, t1], x1), . . . , ([tp−1, tp], xp)}

of [a, b].
Proof. First we use the idea of Key Lemma 1. Put

zi = f(xi)(ti − ti−1)− F ([ti−1, ti]) for i = 1, 2, . . . , p.

For k = 1, 2, . . . , we have

|∑p
i=1((f(xi), e

α
k )α(ti − ti−1)− (F ([ti−1, ti]), e

α
k )α|

< pα(
∑p
i=1 f(xi)(ti − ti−1)− F ([ti−1, ti])) (by Key Lemma 1 )

< ε/(3
∑∞
k=1 λ

α
βk).

Using the property in the real valued case (which appears in the proof of
Saks-Henstock lemma in the real valued case), we have

p∑
i=1

|(f(xi), e
α
k )α(ti − ti−1)− (F ([ti−1, ti]), e

α
k )α| < ε/(

∞∑
k=1

λαβk).

Hence, using Key Lemma 2, we have∑p
i=1 pβ(Tαβ (f(xi))(ti − ti−1)− Tαβ (F ([ti−1, ti])))

≤ ∑∞
k=1 λ

α
βk{

∑p
i=1 |(f(xi), e

α
k )α(ti − ti−1)− (F ([ti−1, ti]), e

α
k )α|}

< ε.

VI. Nuclear Hilbertian (UCs-N) space valued McShane and
Henstock-Kurzweil integrals

In what follows, unless mentioned otherwise X denotes a nuclear Hilber-
tian (UCs-N) space with component spaces (Xα, {pαm}∞m=0) (α ∈ Σ) which
is defined in Definition 3. The following propositions are proved. The idea
of the proof is analogous to that of the corresponding proposition in Section
3 of [19] except Proposition 25. The idea of the proof of Proposition 25 is
analogous to that of Proposition 12 of [21].
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Proposition 13 (Saks-Henstock lemma). Let f be an X-valued Mc-
Shane (resp. Henstock-Kurzweil) integrable function on [a, b], and F an in-
definite integral of f . Then, there exists an α ∈ Σ such that the function f is
McShane (resp. Henstock-Kurzweil) integrable(Xα) and for m = 0, 1, 2, . . . ,
there exists a positive function δm on [a, b] such that for any δm-fine Lebesgue
(resp. Perron) partition {([c1, d1], x1), . . . , ([cp, dp], xp)} in [a, b] we have

p∑
i=1

pαm(f(xi)(di − ci)− F ([ci, di])) < 1/2m.

Proposition 14. If an X-valued function f is Henstock-Kurzweil inte-
grable on [a, b], then there exists an α ∈ Σ such that f is measurable(Xα) on
[a, b].

Proposition 15. An X-valued function f is McShane integrable on [a, b]
if and only if it is Bochner integrable on [a, b], and both integrals coincide.

Proposition 16. Let f be an X-valued Henstock-Kurzweil integrable
function on [a, b]. Then, there exists an α ∈ Σ such that if β ≥ α, for
m = 0, 1, 2, . . . , pβm(f(t)) is measurable on [a, b] and

pβm(
∫ d

c
f(t)dt) ≤

∫ d

c
pβm(f(t))dt for any [c, d] ⊂ [a, b].

A division of an interval [a, b] is a finite collection of non-overlapping
intervals whose union is [a, b]. Let X be a semi-normed space (X, p) with a
semi-norm p, and let F be an X-valued function. The variation of F on [a, b]
is the extended real number

V (F, [a, b]) = sup(
p∑
i=1

p(F ([ti−1, ti]))),

where the supremum is taken over all divisions {[t0, t1], [t1, t2], . . . , [tp−1, tp]}
of [a, b]. If V (F, [a, b]) < ∞, we say that F is of bounded variation on [a, b].
When the space X is a (Cs-N) space (X, {pm}∞m=0), we say that an X-valued
function F is of bounded variation on [a, b] if F is of bounded variation on
[a, b] as an (X, pm)-valued function for m = 0, 1, 2, . . .. When X is a (UCs-
N) space with component spaces (Xα, {pαm}∞m=0) (α ∈ Σ), we say that an
X-valued function F is of bounded variation on [a, b] if there exists an α such
that the image of [a, b] by F is contained in Xα and F is of bounded variation
on [a, b] as an (Xα, {pαm}∞m=0)-valued function.
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Proposition 17. Let f be an X-valued Henstock-Kurzweil integrable
function on [a, b] and F an indefinite integral of f . Then, f is McShane
integrable on [a, b] if and only if F is of bounded variation on [a, b]. In this
case, there exists an α such that for m = 0, 1, 2, . . . , pαm(f(t)) is McShane
integrable on [a, b] and

∫ b
a p

α
m(f(t))dt coincides with the variation on [a, b] of

F treated as an (Xα, p
α
m)-valued function.

1. Fundamental theorem of calculus
LetX be a separated (UCs-N) space with component spaces (Xα, {pαm}∞m=0)

(α ∈ Σ) and let f be an X-valued function defined on [a, b]. Let t ∈ [a, b]. If
there are an α and a neighborhood V (t) of t in [a, b] such that the image of
V (t) by f is contained in Xα and f is differentiable at t as an (Xα, {pαm}∞m=0)-
valued function, then f is said to be differentiable at t, or differentiable(Xα)
at t if necessary(see Chapter III, 3).

Proposition 18. Let f be an X-valued Henstock-Kurzweil integrable
function on [a, b] and let F be an indefinite integral of f . Then, there exists
an α such that F is differentiable(Xα) almost everywhere on [a, b] and F ′(t) =
f(t).

Proposition 19. Let F be an X-valued function on [a, b]. Suppose
that there exists an α such that the image of [a, b] by F is contained in
Xα, and F is continuous on [a, b] as an (Xα, {pαm}∞m=0)-valued function and
differentiable(Xα) except possibly at a countable set D ⊂ [a, b]. Then, the
function F ′(t) defined to be t he derivative of F at t if t ∈ [a, b] − D and
an arbitrary element of Xα if t ∈ D is Henstock-Kurzweil integrable on [a, b]
and

∫ b
a F

′(t)dt = F (b)− F (a).

2. Descriptive definition
Let X be a (Cs-N) space (X, {pm}∞m=0). An X-valued function F on

[a, b] is called AC∗ if, given a negligible set E in [a, b] (i.e. a set E of
measure zero) and a non-negative integer m, there exists a positive func-
tion δm on E such that

∑p
i=1 pm(F ([ci, di]) < 1/2m for any Perron partition

{([c1, d1], x1), . . . , ([cp, dp], xp)} in [a, b] (anchored in E) that is δm-fine. When
X is a (UCs-N) space with component spaces (Xα, {pαm}∞m=0) (α ∈ Σ), an X-
valued function F is called AC∗, or AC∗(Xα) if necessary, if there exists an
α such that the image of [a, b] by F is contained in Xα and F is AC∗ on [a, b]
as an (Xα, {pαm}∞m=0)-valued function.
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Proposition 20. Let F be an X-valued function on [a, b]. Suppose that
there exists an α such that the image of [a, b] by F is contained in Xα and
F is differentiable(Xα) almost everywhere on [a, b]. Let F ′ be an Xα-valued
function on [a, b] defined to be the derivative of F except for a set A of
measure zero. Then, the following holds.

(1) If F ′ is Henstock-Kurzweil integrable on [a, b] and F is an indefinite
integral of F ′, then the function F is AC∗ on [a, b].

(2) If F is AC∗ on [a, b], then F ′ is Henstock-Kurzweil integrable on [a, b]
and F is an indefinite integral of F ′.

Proposition 21 (Descriptive definition). Let f be an X-valued function
on [a, b]. The function f is Henstock-Kurzweil integrable on [a, b] if and only
if there exists an X-valued function F on [a, b] such that

(1) there exists an α such that F is differentiable(Xα) almost everywhere
on [a, b] and F ′(t) = f(t),

(2) F is AC∗ on [a, b].
In this case, F is an indefinite integral of f .

This follows from Propositions 18 and 20.

3. Convergence theorem
Proposition 22. Let f be an X-valued function on [a, b] for which there

exists an α such that f is Henstock-Kurzweil integrable(Xα) on [a, c] for every
c ∈ (a, b). Suppose that limc→b−

∫ c
a fdt exists in (Xβ, {pβm}∞m=0) for some β

and the limit is z. Then, f is Henstock-Kurzweil integrable to z on [a, b].

Proposition 23. Let {fj}∞j=1 be a sequence of X-valued functions such
that for some α each fj is McShane (resp. Henstock-Kurzweil) integrable(Xα)
on [a, b]. Suppose that there exists a β such that:

(1) The image of [a, b] by fj is contained in Xβ for every j, and there exists
an Xβ-valued function f such that limj→∞ fj(t) = f(t) as (Xβ, {pβm}∞m=0)-
valued functions almost everywhere on [a, b].

(2)
∫ b
a p

β
m(fj(t)− fk(t))dt→ 0 as j, k →∞ for m = 0, 1, 2, . . . .

Then, for some γ, f is McShane (resp.Henstock-Kurzweil) integrable(Xγ) on
[a, b] and for any figure B ⊂ [a, b],

lim
j→∞

∫
B
fj(t)dt =

∫
B
f(t)dt in (Xγ, {pγm}∞m=0),

where the convergence is uniform in B.
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Proposition 24. Let {fj}∞j=1 be a sequence of X-valued functions on
[a, b]. Suppose that :

(1) For some α, fj is McShane (resp. Henstock-Kurzweil) integrable(Xα)
on [a, b] for j = 1, 2, . . . .

(2) There exists a β′ such that for any β ≥ β′ and any e ∈ Xβ with
pβm(e) = 1, the following (∗) holds for m = 0, 1, 2, . . . .

(∗) (f1(t), e)βm ≤ (f2(t), e)βm ≤ · · · almost everywhere on [a, b].

(3) The limit limj→∞
∫ b
a fj(t)dt exists in X.

(4) For some γ, the limit limj→∞ fj(t) = f(t) exists in (Xγ, {pγm}∞m=0) for
almost all t ∈ [a, b].
Then, there exists a κ such that f is McShane (resp. Henstock-Kurzweil)
integrable (Xκ) on [a, b] and for any figure B in [a, b]

lim
j→∞

∫
B
fj(t)dt =

∫
B
f(t)dt in (Xκ, {pκm}∞m=0),

where the convergence is uniform in B.

Proposition 25 (Convergence theorem [4, Theorem 9.1]). Let fj (j =
1, 2, . . .) and f be X-valued functions on [a, b]. Suppose that for some α:

(1) fj is Henstock-Kurzweil integrable(Xα) on [a, b] for j = 1, 2, . . . .
(2) limj→∞ fj(t) = f(t) almost everywhere on [a, b] as (Xα, {pαm}∞m=0)-

valued functions.
(3) For m = 0, 1, 2, . . . there are an Mm ≥ 0 and a positive function δm

on [a, b] such that

pαm(
p∑
i=1

fj(x(i))(x(i))(ti − ti−1)) ≤Mm

for all δm-fine Perron partitions {([t0, t1], x(1)), . . . , ([tp−1, tp], x(p))} of [a, b]
and all choices of positive integer valued functions j(t) on [a, b].
Then for some β with β ≥ α, f is Henstock-Kurzweil integrable(Xβ) on [a, b]
and for any figure B ⊂ [a, b]

lim
j→∞

∫
B
fjdt =

∫
B
fdt as (Xβ, {pβm}∞m=0)-valued functions,

where the convergence is uniform in B.
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4. Integration by parts
Proposition 26. Let f be a Henstock-Kurzweil integrable X-valued func-

tion on [a, b] and G a non-decreasing real valued function on [a, b]. Let
F (t) =

∫ t
a fdt (t ∈ [a, b]). Then, fG is Henstock-Kurzweil integrable on

[a, b], F is McShane integrable with respect to G on [a, b] and∫ b

a
fGdt = F (b)G(b)−

∫ b

a
FdG.

Proposition 27. Let f be a McShane (resp. Henstock-Kurzweil) inte-
grable X-valued function on [a, b] and g a McShane (resp. Henstock-Kurzweil
) integrable real valued function on [a, b]. Let F (t) =

∫ t
a fdt and G(t) =

∫ t
a gdt.

Then, fG + Fg is McShane (resp. Henstock-Kurzweil) integrable on [a, b],
and ∫ b

a
(fG+ Fg)dt = F (b)G(b).

5. Ordinary differential equations
Let

X be a vector space,

g : [a, b]× E → X, where E ⊂ X,

x′ = g(t, x).

The methods of the Carathéodory and Henstock solutions for the ordinary
differential equations of the type above shown in the case when X is the real
space can be extended to the case when X is a nuclear countably Hilbert
space, i.e., nuclear Hilbertian (CN) space. See [20] and [21] in detail.

Finally we propose the following problem.
Problem. Develop the theory analogous to our theory to the case when

the space X is treated as a topological vector space.
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[ 6] K. Kunugi: Sur la méthod des espaces rangés, I, II, Proc. Japan
Acad., 42 (1966), 318-322, 549-554.
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