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Abstract.
In a compact metric measure space with measure µ, we define an integral by

partitions of the unity such that a µ−integrable function is also integrable and a
function which is integrable but it is not µ−integrable is constructed in a suitable
non Euclidean space.
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Introduction

In [5], a type of integral defined by partitions of the unity (PU-integral) is
defined on an abstract compact metric measure space and it is proved that a PU-
integrable function is µ−integrable and that the µ−integral is equivalent to the
PU-integral. Moreover an example of a non Euclidean space on which is defined
this type of integral is given. The PU-integral is obtained by approssimations of
type Riemann sums. The advantage to use a such integral is that it does not use
the geometry of the space so it can be defined in any abstract space.

In this paper X denotes a compact metric space, M a σ-algebra of subsets
of X such that each open set is in M, µ a non-atomic, finite, complete Radon
measure on M such that:

α) each ball U(x, r) centered at x with radius r has a positive measure,
β) for every x in X there is a number h(x) ∈ < such that µ(U [x, 2r]) ≤

h(x) · µ(U [x, r]) for all r > 0 (where U [x, r]) is the closed ball),
γ) µ(∂U(x, r)) = 0 where ∂U(x, r) is the boundary of U(x, r).

Definition 1 A partition of unity (PU-partition) in X is, by definition,
a finite collection P = {(θi, xi)}pi=1 where xi ∈ X and θi are non negative, µ-
measurable and µ-integrable real functions on X such that

∑p
i=1 θi(x) = 1 a.e. in

X.
The PU-partition is a PU∗-partition if xi ∈ Sθi = {x ∈ X : θi(x) 6= 0}.

Definition 2 If δ is a positive function on X, a PU-partition P = {(θi, xi)}pi=1
is said to be δ-fine if Sθi ⊂ U(xi, δ(xi)) (i = 1, 2, .., p).

Definition 3 A real function f on a compact set A ⊆ X is said to be (PU)-
integrable on A if there exists a real number I with the property that, for every
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given ε > 0, there is a positive function δ such that |
∑p
i=1 f(xi) ·

∫
A
θidµ− I |< ε

for each δ-fine (PU)-partition P = {(θi, xi)}pi=1 in A.
The number I is called the (PU)-integral of f on A and we write I =

(PU)
∫
A
f .

For (PU)∗-partitions, we have the (PU)∗-integral and set I = (PU)∗
∫
A
f.

Main results

Proposition 1 If δ is a positive function on a compact set A ⊆ X then
there is a δ-fine PU∗-partition in A.

Proof . See the Proof of Proposition 1.1 in [5].
Denoting by PU∗(A) the family of all the PU∗-integrable real functions on A,

the following Proposition is an immediate consequence of the Definition 4.

Proposition 2 If A ⊆ X is compact, then:
1) PU∗(A) is a linear space and the map f → (PU)∗

∫
A
f is a non negative

linear functional on PU∗(A);
2) if k ∈ < and f(x) = k for each x ∈ A then f ∈ PU∗(A) and (PU)∗

∫
A
f =

kµ(A).
3) if f , g ∈ PU∗(A) and f ≤ g then (PU)∗

∫
A
f ≤ (PU)∗

∫
A
g.

If P = {(θi, xi)}ni=1 is a partition in A, set σ(f, P ) =
∑n
i=1 f(xi)

∫
A
θidµ.

Proposition 3 If A is a compact subset of X and if f ∈ PU∗(X) then
f ∈ PU∗(A).

Proof . See Proposition 1.3 in [5].

Proposition 4 If f is a real function on a compact set A ⊆ X, then
f ∈ PU∗(A) if and only if for each ε > 0 there is a positive function δ on A such
that |σ(f, P ) − σ(f,Q)| < ε for every P = {(θi, xi)}ni=1 and Q = {(θ′i, x′i)}

p
i=1

δ−fine PU∗-partitions in A.
Proof . See proposition 1.2 in [5].

Proposition 5 If f is µ−measurable and µ−integrable on X, then f ∈
PU∗(X) and (PU)∗

∫
X
f =

∫
X
fdµ.

Proof. It follows by the equivalence between the PU-integral and the µ−inte-
gral (see [5]) and because a PU∗-partition is also a PU-partition.

Proposition 6 A PU∗-integrable function is µ−measurable.
Proof It is analogue to that used in [5] Propositions 2.3 and 2.4.

Proposition 7 If f, g are two real functions on X and f = g a.e. in X
then g is (PU)∗-integrable if and only if f is (PU)∗-integrable and the two integral
coincide.
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Proof If f is (PU)∗-measurable then by Proposition 6 it is µ−measurable
and by completeness of measure also g is µ−measurable, then f−g = 0 a.e. and it
is µ−measurable, µ−integrable and (PU)∗-integrable with (PU)∗

∫
X

(f − g) = 0.
So g = f − (f − g) is (PU)∗-integrable.

Lemma 1 If f is a real µ−integrable function on X, A, B ∈ M, with
A ⊂ B, and if c ∈ < and

∫
A
fdµ ≤ c ≤

∫
B
fdµ then there exists a µ−measurable

set C such that A ⊂ C ⊂ B and
∫
C
fdµ = c.

Proof Consider the σ−algebra D = {D ∈ M : D ⊂ B −A} and the signed
measure α : D →

∫
D
fdµ for D ∈ D.

By Liapounoff theorem (see [7]), the set {α(D) : D ∈ D} is a compact interval.
So

α(∅) = 0 < c−
∫
A

fdµ <

∫
B−A

fdµ

and exists D1 ∈ D such that ∫
D1

fdµ = c−
∫
A

fdµ

c =
∫
A∪D1

fdµ, A ⊂ A ∪D1 ⊂ B.

Proposition 8 If f is a µ−measurable and PU∗-integrable function on X,
then for each ε > 0 there is a µ−measurable set E such that µ(X − E) < ε, f is
µ−integrable on E and

∫
E
fdµ = (PU)∗

∫
X
f.

Proof Suppose that f be not µ−integrable; set

En = {x ∈ X : n−1 ≤ f(x) < n}, Fn = {x ∈ X : −n ≤ f(x) < −n+1} n = 1, 2, 3, ...,

then

X =
∞⋃
n=1

(En ∪ Fn) =
∞⋃
n=1

(
n⋃
i=1

(Ei ∪ Fi)) =
∞⋃
n=1

Hn,

where Hn =
⋃n
i=1(Ei ∪ Fi) is an increasing sequence of measurable sets.

By a property of the measure, it results limn→∞ µ(Hn) = µ(X) and for each
ε > 0 there is n̄ ∈ N such that for n0 > n̄ it is

µ(X)− µ(Hn0) = µ(X −Hn0) < ε (∗)

f is bounded on Hn0 so it is µ−integrable on Hn0 .
Suppose that

∫
Hn0

fdµ < (PU∗)
∫
X
f ; since f is not µ−integrable, then the

series
∑
n

∫
En
fdµ and

∑
n

∫
Fn
fdµ are divergent to +∞ and to −∞ respectively.

In fact, if
∑
n

∫
En
fdµ = +∞ and

∑
n

∫
Fn
fdµ > −∞, consider the functions

f1(x) = f(x) if x ∈
⋃
n

En and f1(x) = 0 elsewhere,
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f2(x) = f(x) if x ∈
⋃
n

Fn and f2(x) = 0 elsewhere,

then f2(x) is µ−integrable and hence (PU)∗-integrable and f1(x) = f(x) − f2(x)
is (PU)∗-integrable, but it is also µ−integrable with integral +∞ and this is im-
possible. So for ε > 0 there exists K > n0 such that∫

Hn0

fdµ+
∫
En0+1

fdµ+ .....+
∫
En0+k

fdµ > (PU)∗
∫
X

f

and set H = Hn0 ∪ En0+1 ∪ .... ∪ En0+k, it results∫
Hn0

fdµ < (PU)∗
∫
X

f <

∫
H

fdµ.

By Lemma 1 there exists a µ−measurable set E with Hn0 ⊂ E ⊂ H such that∫
E
fdµ = (PU)∗

∫
X
f and by relation (*) we have:

µ(X − E) ≤ µ(X −Hn0) < ε.

Lemma 2 If f is µ−measurable and there exists finite
∫
X
fdµ, given ε > 0

there is a positive function δ on X such that∑
i

|(f(xi)
∫
X

θidµ−
∫
X

fθidµ)| < ε

for each δ−fine (PU)∗-partition P = {(θi, xi)} in X.
Proof See Proposition 3.1 in [5]

Proposition 9 A µ−measurable function f is (PU)∗-integrable on X if and
only if given ε > 0 there is a positive function δ on X and a µ−measurable set E
such that µ(EC) < ε, f is µ−integrable on E and |

∑
i fχEC (xi)

∫
X
θidµ| < ε for

each δ−fine (PU)∗-partition P = {(θi, xi)}. Moreover
∫
E
fdµ = (PU)∗

∫
X
f.

We have set EC = X − E.
Proof If f is (PU)∗-integrable, by previous Proposition, let ε > 0 there is

E ∈ M such that µ(EC) < ε, f is µ−integrable on E and
∫
E
fdµ = (PU)∗

∫
X
f ;

so fχE is µ−integrable and hence (PU)∗-integrable and

(PU)∗
∫
X

fχE =
∫
X

fχEdµ =
∫
E

fdµ = (PU)∗
∫
X

f.

By the (PU)∗-integrability of f and fχE , at correspondence of ε > 0 there is
a positive function δ on X such that for each δ−fine (PU)∗-partition {(θi, xi)}, it
results

|
∑
i

f(xi)
∫
X

θidµ− (PU)∗
∫
X

f | < ε

2
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and ∑
i

f(xi)χE
∫
X

θidµ− (PU)∗
∫
X

f | < ε

2
.

So we have

|
∑
i

f(xi)χEC
∫
X

θidµ| = |
∑
i

f(xi)
∫
X

θidµ−
∑
i

f(xi)χE
∫
X

θidµ| ≤

≤ |
∑
i

f(xi)
∫
X

θidµ− (PU)∗
∫
X

f |+ |
∑
i

fχE(xi)
∫
X

θidµ− (PU)∗
∫
X

f | < ε.

Conversely, for ε > 0 let E be a µ−measurable and µ−integrable set with
µ(EC) < ε and let δ be a positive function on X such that |

∑
i fχ

C
E(xi)

∫
X
θidµ| <

ε
2 for each δ−fine (PU)∗-partition P in X.

By the µ−integrability of f on E , then also the function fχE is µ−integrable
and, by lemma 2, there is a positive function δ1 on X such that

|
∑
i

fχE(xi)
∫
X

θidµ−
∫
X

fχEdµ| <
ε

2
.

If δ̄(x) = min(δ(x), δ1(x)) for each x ∈ X, then for each δ̄−fine (PU)∗-
partition P consider:

|
∑
i

f(xi)
∫
X

θidµ−
∫
E

fdµ| ≤ |
∑
i

fχE(xi)
∫
X

θidµ−
∫
E

fdµ|+

+|
∑
i

fχCE(xi)
∫
X

θidµ| <
ε

2
+
ε

2
= ε.

So f is (PU)∗-integrable and (PU)∗
∫
X
f =

∫
E
fdµ.

Proposition 10 If f and |f | are (PU)∗-integrable then f is µ−integrable.
Proof If f and |f | are (PU)∗-integrable, consider the bounded sequence

fn = |f | ∧ n for each n ∈ N it converges increasing to |f | and it is µ−integrable
and ∫

X

|f |dµ = lim
n

∫
X

fndµ = lim
n

(PU)∗
∫
X

fn ≤ (PU)∗
∫
X

|f | < +∞.

So |f | and f are µ−integrable.
Proposition 11 If (fn)n is an increasing sequence of (PU)∗-integrable

functions converging to f pointwise and limn(PU)∗
∫
X
fn < ∞ then f is (PU)∗-

integrable and (PU)∗
∫
X
f = limn(PU)∗

∫
X
fn.
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Proof Consider the increasing sequence (fn − f1)n converging to f − f1;
since the functions (fn − f1)n are non negative, then by Proposition 10, they are
µ−integrable and

lim
n

∫
X

(fn − f1)dµ = lim
n

(PU)∗
∫
X

(fn − f1) =

= lim
n

(PU)∗
∫
X

fn − (PU)∗
∫
X

f1 < +∞.

So by the monotone theorem for the µ−integrable functions, the function (f − f1)
is µ−integrable and hence (PU)∗-integrable. Therefore f = (f −f1)+f1 is (PU)∗-
integrable.

Proposition 12 If (fn)n is a sequence of (PU)∗ integrable functions con-
verging to f and such that there are two functions h and g (PU)∗-integrable
with h ≤ fn ≤ g for each n ∈ N then f is (PU)∗-integrable and (PU)∗

∫
X
f =

limn(PU)∗
∫
X
fn.

Proof Consider the sequence (fn − h)n; it is non negative and (PU)∗-
integrable, so it is µ−integrable and results:

0 ≤ (fn − h) ≤ (g − h).

Since the function g−h is non negative and (PU)∗-integrable, it is µ−integrable and
by the dominate convergent theorem, the sequence of functions (fn−h) converges
to f − h which is a µ−integrable function and hence (PU)∗-integrable. By the
equality f = (f − h) + h it follows the (PU)∗-integrability of f .

Proposition 13 If f is µ−measurable and exists finite
∫
X
fdµ but∫

X
|f |dµ = +∞ then f is (PU)∗-integrable and

∫
X
fdµ = (PU)∗

∫
X
f.

Proof If ε > 0, by lemma 2, there is positive function δ on X such that if
P = {(θi, xi)} is a (PU)∗-partition in X, then we have:

ε > |
∑
i

(f(xi)
∫
X

θidµ−
∫
X

fθidµ)| = |
∑
i

f(xi)
∫
X

θidµ−
∑
i

fθidµ| =

= |
∑
i

(f(xi)
∫
X

θidµ−
∫
X

fdµ)|.

An example of a function which is PU∗-integrable but it is not PU-
integrable.

Consider the space X = {0, 1}N . Let ᾱ = α1α2...αk be a finite string of 0
and 1; consider the set Aᾱ = [ᾱ]k = {γ ∈ X : γ = ᾱβ, for some β ∈ X}, it is a
clopen set (i.e. an open and closed set) with respect to the topology induced by
the metric ρ so defined:
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if α, β ∈ X ρ(α, β) = 1
2n if α 6= β and α1 = β1, ...., αn = βn, αn+1 6= βn+1

ρ(α, α) = 0.
With respect to this metric ρ, X = {0, 1}N is a complete, separable and

compact metric space ( see [3]). Define on the family {Aᾱ} the following set
function m:

m(Aᾱ) =
1
2k

and let m∗ be the outer measure induced by m on the family of all the subsets of X.
IfM is the σ−algebra of all the subsets of X m∗−measurable in the Caratheodory
sense, then the space (X,M,m∗) satisfies the conditions α), β), γ) (see [3] and [5]).

Define on X the following real function

f(α) =


a1 if α1 = 0
a2 if α1 = 1, α2 = 0
an if α1, α2, ...αn−1 = 1, αn = 0
...
.

f(1111...111..) = 0

where α = (α1, α2, ...) ∈ {0, 1}N and an = (−1)n 2n

n .
Then, by Proposition 13, we have:∫

X

fdm =
∞∑
n=1

an
1
2n

=
∞∑
n=1

(−1)n
1
n

= (PU)∗
∫
X

f,

so f is PU∗-integrable but |f | is not µ-integrable so it is not also (PU)-integrable.
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