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Abstract.

In a compact metric measure space with measure p, we define an integral by
partitions of the unity such that a y—integrable function is also integrable and a
function which is integrable but it is not u—integrable is constructed in a suitable
non Euclidean space.
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Introduction

In [5], a type of integral defined by partitions of the unity (PU-integral) is
defined on an abstract compact metric measure space and it is proved that a PU-
integrable function is p—integrable and that the p—integral is equivalent to the
PU-integral. Moreover an example of a non Euclidean space on which is defined
this type of integral is given. The PU-integral is obtained by approssimations of
type Riemann sums. The advantage to use a such integral is that it does not use
the geometry of the space so it can be defined in any abstract space.

In this paper X denotes a compact metric space, M a o-algebra of subsets
of X such that each open set is in M, p a non-atomic, finite, complete Radon
measure on M such that:

«) each ball U(x,r) centered at & with radius r has a positive measure,

B) for every x in X there is a number h(z) € R such that p(Ulz,2r]) <
h(z) - w(U[z,r]) for all » > 0 (where Ulz,r]) is the closed ball),

v) w(0U(z,r)) = 0 where U (z,r) is the boundary of U(z, ).

Definition 1 A partition of unity (PU-partition) in X is, by definition,
a finite collection P = {(6;,2;)}’_, where z; € X and 6, are non negative, -
measurable and p-integrable real functions on X such that 7 6;(z) =1 a.e. in
X.

The PU-partition is a PU*-partition if z; € Sp, = {x € X : 6;(x) # 0}.

Definition 2 If § is a positive function on X, a PU-partition P = {(6;,z;)}}_;
is said to be d-fine if Sy, C U(x;,d(x;)) (i=1,2,..,p).

Definition 3 A real function f on a compact set A C X is said to be (PU)-
integrable on A if there exists a real number I with the property that, for every
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given € > 0, there is a positive function § such that | Y27, f(2;) - [, idp— I |<e
for each é-fine (PU)-partition P = {(0;,z;)}}_; in A.

The number I is called the (PU)-integral of f on A and we write I =
(PU) [, .

For (PU)*-partitions, we have the (PU)*-integral and set I = (PU)* [, f.

Main results

Proposition 1 If § is a positive function on a compact set A C X then
there is a 0-fine PU*-partition in A.

Proof . See the Proof of Proposition 1.1 in [5].

Denoting by PU*(A) the family of all the PU*-integrable real functions on A,
the following Proposition is an immediate consequence of the Definition 4.

Proposition 2 If A C X is compact, then:

1) PU*(A) is a linear space and the map f — (PU)* [, f is a non negative
linear functional on PU™(A);

2) if k € R and f(x) = k for each x € A then f € PU*(A) and (PU)* [, f =
ku(A).

3)if f, g € PU™(A) and f < g then (PU)* [, f < (PU)* [, 9.

If P ={(6;,2;)}]—, is a partition in A, set o(f,P) =", f(x;) [, Oidp.

Proposition 3 If A is a compact subset of X and if f € PU*(X) then
f e PU(A).
Proof . See Proposition 1.3 in [5].

Proposition 4 If f is a real function on a compact set A C X, then
f € PU*(A) if and only if for each € > 0 there is a positive function § on A such
that [o(f, P) — o(f,Q)| < ¢ for every P = {(6;,z:)}, and Q = {(02))}_,
d—fine PU*-partitions in A.

Proof . See proposition 1.2 in [5].

Proposition 5 If f is gy—measurable and p—integrable on X, then f €
PU*(X) and (PU)* [ f = [y fdp.

Proof. It follows by the equivalence between the PU-integral and the y—inte-

gral (see [5]) and because a PU*-partition is also a PU-partition.

Proposition 6 A PU*-integrable function is g—measurable.
Proof Tt is analogue to that used in [5] Propositions 2.3 and 2.4.

Proposition 7 If f,g are two real functions on X and f = g a.e. in X
then g is (PU)*-integrable if and only if f is (PU)*-integrable and the two integral
coincide.



Proof If fis (PU)*-measurable then by Proposition 6 it is g—measurable
and by completeness of measure also g is p—measurable, then f—g = 0 a.e. and it
is p—measurable, y—integrable and (PU)*-integrable with (PU)* [, (f —g) = 0.
Sog=f—(f—g)is (PU)*-integrable.

Lemma 1 If f is a real u—integrable function on X, A, B € M, with
A C B, and if ¢ €  and fA fdp <c< fB fdu then there exists a p—measurable
set C' such that A C C C B and [ fdu=c.

Proof Consider the o—algebra D = {D € M : D C B — A} and the signed
measure o : D — [, fdu for D € D.

By Liapounoff theorem (see [7]), the set {a(D) : D € D} is a compact interval.

SO

and exists Dy € D such that

dp=c— d
leu c /Afu

c=/ fdu, ACAUD; CB.
AUD,

Proposition 8 If f is a p—measurable and PU*-integrable function on X,
then for each € > 0 there is a y—measurable set E such that u(X — F) <, f is
p—integrable on E and [, fdu = (PU)* [ f

Proof Suppose that f be not p—integrable; set

={reX:n-1<f(x)<n}, F,={zeX:—n<f(z)<-n+tl} n=1,23, ..

then - - -
UE uF,) = JWJEuR) U
= n=1 i=1 n=1

where H,, = |J_,(E; U F}) is an increasing sequence of measurable sets.
By a property of the measure, it results lim, ., u(H,) = p(X) and for each
€ > 0 there is n € N such that for ng > n it is

M(X) - :U’(Hno) = :u(X - Hno) <e€ (*)

f is bounded on H,,, so it is p—integrable on H,,.
Suppose that [,, fdu < (PU*) [ f; since f is not pu—integrable, then the
no
series ) fE fdpand )" fF fdp are divergent to 400 and to —oo respectively.
In fact, if ), [, fdp=+ocand ) [, fdu > —oo, consider the functions

filx)=f(z) if ze€ UE” and fi(z) =0 elsewhere,
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fa(x) = f(z) if xGUF and fo(xr) =0 elsewhere,

then fo(x) is p—integrable and hence (PU)*-integrable and fi(x) = f(x) — fa(x)
is (PU)*-integrable, but it is also u—integrable with integral +oco and this is im-
possible. So for € > 0 there exists K > ng such that

and set H = H,,, UEp 11U ....UEp 1k, it results

/ fdu < (PU)* /f</fdu

By Lemma 1 there exists a p—measurable set E with H,,, C E2 C H such that
Ji fdu = (PU)* [ f and by relation (*) we have:

(X = B) < u(X — Hy,) < e

Lemma 2 If f is y—measurable and there exists finite fX fdu, given € > 0
there is a positive function § on X such that

fa:) /X Oy — /X fordp)] < e

for each d—fine (PU)*-partition P = {(6;,x;)} in X.
Proof See Proposition 3.1 in [5]

Proposition 9 A p—measurable function f is (PU)*-integrable on X if and
only if given € > 0 there is a positive function § on X and a g—measurable set
such that 4(E) <, f is u—integrable on E and | Y, fxge (%;) [y Oidp| < € for
each d—fine (PU)*-partition P = {(0;,x;)}. Moreover [, fdu= (PU)* [ f
We have set E¢€ = X — E.

Proof If f is (PU)*-integrable, by previous Proposition, let € > 0 there is
E € M such that u(EY) <¢, f is p—integrable on E and [, fdu = (PU)* [ f;
so fxg is p—integrable and hence (PU)*-integrable and

vy [ pxe= [ sxedu= [ fau=evy [ 1

By the (PU)*-integrability of f and fx g, at correspondence of € > 0 there is
a positive function § on X such that for each —fine (PU)*-partition {(8;,z;)}, it

results
. €
56w [ oan= ooy [ g1<

4



and
. €
Xi:f(xi)XE/Xeidﬂ_(PU) /Xf|<§-

So we have

I3 Fwxse /X bidul =13 f(z:) /X i = 3 F(o)xs /X Budy] <

<13 fw) /X budys — (PU)* /X S+ st /X 0.y — (PU)* /X fl<e

Conversely, for € > 0 let E be a y—measurable and p—integrable set with
1(EY) < € and let § be a positive function on X such that | Y-, fx%(z;) [y 0idp| <
§ for each §—fine (PU)*-partition P in X.

By the p—integrability of f on E , then also the function fxg is p—integrable
and, by lemma 2, there is a positive function d; on X such that

|ZfXE(JU¢)/X‘9idﬂ—/XfXEdu\ < %

If §(z) = min(d(x),d;(z)) for each z € X, then for each §—fine (PU)*-
partition P consider:

DD /X by — [E faul <13 fx(e) /X by — /E fdul+

€

c € _
HZfXE(xi)/XGidM <gtg=e

So f is (PU)*-integrable and (PU)* [, f = [ fdp.
Proposition 10 If f and |f| are (PU)*-integrable then f is u—integrable.
Proof If f and |f| are (PU)*-integrable, consider the bounded sequence
fn = |f| An for each n € N it converges increasing to |f| and it is yu—integrable
and

[ an =t [ g =smpoy [ g <0y [ 11< 00

So |f| and f are p—integrable.

Proposition 11 If (f,), is an increasing sequence of (PU)*-integrable
functions converging to f pointwise and lim, (PU)* [y f, < oo then f is (PU)*-
integrable and (PU)* [ f = lim,(PU)* [ fn.

5



Proof  Consider the increasing sequence (f,, — f1), converging to f — fi;
since the functions (f,, — f1)n are non negative, then by Proposition 10, they are
p—integrable and

tim [ (£, = fo)dn = tin(PU)” [ (7= 1) =

X

— lim(PU)" / fu— (PU)" / fi < 400,
n X X

So by the monotone theorem for the p—integrable functions, the function (f — f1)
is p—integrable and hence (PU)*-integrable. Therefore f = (f — f1)+ f1 is (PU)*-
integrable.

Proposition 12 If (f,), is a sequence of (PU)* integrable functions con-
verging to f and such that there are two functions h and g (PU)*-integrable
with h < f, < g for each n € N then f is (PU)*-integrable and (PU)* [, f =
lim, (PU)* [y fn.

Proof Consider the sequence (f, — h),; it is non negative and (PU)*-
integrable, so it is p—integrable and results:

0<(fu—h)<(g—h)

Since the function g—h is non negative and (PU)*-integrable, it is u—integrable and
by the dominate convergent theorem, the sequence of functions (f,, — h) converges
to f — h which is a p—integrable function and hence (PU)*-integrable. By the
equality f = (f — h) + h it follows the (PU)*-integrability of f.

Proposition 13 If f is y—measurable and exists finite fX fdu but

Jx |fldp = +o0 then f is (PU)*-integrable and [ fdu = (PU)* [ f.

Proof If € > 0, by lemma 2, there is positive function § on X such that if
P = {(0;,x;)} is a (PU)*-partition in X, then we have:

€> |Z(f(95z)/x Oidp — /X fOidp)| = |Zf($i)/X€¢du — Zf&idu\ =

:|Z(f($i)/xeidﬂ—/xfd,u)|.

An example of a function which is PU*-integrable but it is not PU-
integrable.

Consider the space X = {0,1}". Let & = ajas...ay be a finite string of 0
and 1; consider the set A5z = [a]r = {y € X : v = af, for some § € X}, it is a
clopen set (i.e. an open and closed set) with respect to the topology induced by
the metric p so defined:



ifa,3e X p(O@ﬁ) = _n if 7é B and a; = B, ..., = /6n7an+1 7é /BnJrl

pla,a) = 0.
With respect to this metric p, X = {0,1}"V is a complete, separable and

compact metric space ( see [3]). Define on the family {As} the following set

function m:

and let m* be the outer measure induced by m on the family of all the subsets of X.
If M is the o—algebra of all the subsets of X m*—measurable in the Caratheodory
sense, then the space (X, M, m*) satisfies the conditions «), 3), ) (see [3] and [5]).

Define on X the following real function

a1 Zf a1 = 0
ag iqu:l,OQ:O
f(a) = (075 'Lf a1,02,...0p_1 = ]-7an =0

f(1111..111.) =0

where a = (a1, a9, ...) € {0,1}" and a,, = (_1)71%_
Then, by Proposition 13, we have:

/dem Zan :Z— %:PU /f,
n=1

so f is PU*-integrable but | f| is not p-integrable so it is not also (PU)-integrable.
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