
Nonabsolutely convergent Poisson integrals

Erik Talvila

Department of Mathematical and Statistical Sciences
University of Alberta

Edmonton AB Canada T6G 2E2
etalvila@math.ualberta.ca

Abstract. If a function f has finite Henstock integral on the boundary of the unit disk
of R2 then its Poisson integral exists for |z| < 1 and is o((1 − |z|)−1) as |z| → 1−. It is
shown that this is the best possible uniform pointwise estimate. For an L1 measure the
best estimate is O((1− |z|)−1).
AMS (MOS) subject classification: 26A39, 31A20

In this paper we consider estimates of Poisson integrals on the unit circle
with respect to Alexiewicz and Lp norms. Define the open disk in R2 as
D := {reiθ | 0 ≤ r < 1, −π < θ ≤ π} and let the unit circle T be its boundary.
Let f :T → R. The Poisson integral of f with respect to Lebesgue measure
is

P [f ](reiθ) =
(1− r2)

2π

π∫
φ=−π

f(φ) dφ

1− 2r cos(φ− θ) + r2
.

For the Poisson integral of f with respect to measure µ we write P [f, µ].
Since T has no end points, an appropriate form of the Alexiewicz norm of
f is ‖f‖ := supI⊆T

∣∣∫
I
f
∣∣ where I is an interval in T . Hence, we can have

I = [α, β] where α, β ∈ R and 0 ≤ β − α ≤ 2π. The Alexiewicz norm was
introduced in [1]. The variation of f on T is sup

∑N
i=1 |f(xi−1)−f(xi)| where

the supremum is taken over all finite sets of disjoint intervals {(xi−1, xi)}Ni=1

in [−π, π]. We denote the variation of f over I ⊆ T as VIf .
The following results are well known (see [4]). Suppose that 1 ≤ p ≤ ∞

and f ∈ Lp(T ). If eiθ0 ∈ T and z ∈ D, we say that z → eiθ0 nontangentially
if there is 0 ≤ α < π/2 such that z → eiθ0 with z remaining in the cone
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Kα(eiθ0) := {ζ ∈ D : | arg(ζ − eiθ0) − θ0| < α}. Write ur(θ) = P [f ](reiθ).
Then

1. ur is harmonic in D

2. ‖ur‖p ≤ ‖f‖p for all 0 ≤ r < 1

3. If 1 ≤ p <∞ then ‖ur − f‖p → 0 as r → 1−

4. ur → f almost everywhere on T as r → 1 nontangentially in D.

We examine analogues of these results when f is Henstock integrable. All
the results also hold when we use the wide Denjoy integral.

Necessary and sufficient for the existence of P [f ] as a Henstock integral
on D is that f be integrable, i.e., the Henstock integral

∫ π
−πf is finite. This is

because the kernel (1−r2)/[1−2r cos(φ−θ)+r2] is bounded away from 0 and
is of bounded variation in φ for each reiθ ∈ D. In [2], integration by parts
was used to show that we can differentiate under the integral sign. This in
turn shows that P [f ] is harmonic in D and that P [f ] → f nontangentially,
almost everywhere in T (4. above). In [3], Theorem 4, p. 238, necessary
and sufficient conditions were given for determining when a function that
is harmonic on D is the Poisson integral of a Henstock integrable function.
Corresponding results when ‖ur‖p are uniformly bounded have been known
for some time ([4], Theorem 11.30).

Our first result is to show that P [f ](reiθ) = o(1/(1 − r)) as r → 1−.
That is, supθ∈[−π,π](1 − r)|P [f ](reiθ)| → 0 as r → 1−. Thus, the manner of
approach to the boundary is unrestricted. This same estimate was obtained
for Lebesgue integrable functions in [6]. We show it is the best possible
pointwise estimate under our minimal existence hypothesis.

Theorem 1 i) Let f :T → R. If f is integrable then P [f ](reiθ) = o(1/(1−
r)) as r → 1−. This estimate is sharp in the sense that if ψ : D → R

and ψ(reiθ) = o(1/(1 − r)) then there is an integrable function f such that
P [f ] 6= o(ψ).
ii) Let µ be a positive measure on T . If f is in L1(µ) then P [f, dµ](reiθ) =
O(1/(1− r)). This estimate is sharp in the same sense as in i).

Proof: Let Φr(φ) := (1− r)2/(1− 2r cosφ+ r2) with Φ1(0) := 1 and fθ(φ) :=
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f((φ+ θ) mod 2π). Then

(1− r)P [f ](reiθ) =
(1 + r)

2π

π∫
φ=−π

fθ(φ) Φr(φ) dφ.

Write

2π(1− r)P [f ](reiθ)

1 + r
=

∫
|φ|<δ

fθ(φ)Φr(φ) dφ +

∫
δ<|φ|<π

fθ(φ)Φr(φ) dφ.

Let Fθ(φ) =
∫ φ
−δ fθ and integrate by parts. Then∣∣∣∣∣∣∣
∫
|φ|<δ

fθ(φ)Φr(φ) dφ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣Fθ(δ)Φr(δ)−
δ∫

φ=−δ

Fθ dΦr(φ)

∣∣∣∣∣∣
≤

∣∣∣∣∫ θ+δ

θ−δ
f

∣∣∣∣ (1 + VTΦr) . (1)

But VTΦr = 8r/(1 + r)2 ≤ 2. And, since the integral is continuous with
respect to its limits of integration, by taking δ > 0 small enough we can
make the right side of (1) as small as we please.

Letting Gθ(φ) :=
∫ φ
δ
fθ, we have∣∣∣∣∣∣

π∫
φ=δ

fθ(φ)Φr(φ) dφ

∣∣∣∣∣∣ =

∣∣∣∣∣∣Gθ(π)Φr(π)−
π∫

φ=δ

Gθ dΦr(φ)

∣∣∣∣∣∣
≤ ‖f‖

∣∣∣∣∣
(

1− r
1 + r

)2

+
(1− r)2

1− 2r cos δ + r2

∣∣∣∣∣
→ 0 as r → 1.

Similarly,
∫ −δ
−π fθ(φ)Φr(φ) dφ→ 0 as r → 1.

To prove sharpness, suppose ψ :D → R is given. It suffices to show that
P [f ](rne

iθn) 6= o(ψ(rne
iθn)) for some sequence {rneiθn} ∈ D with rn → 1−.

Take rne
iθn → 1 and θn ↓ 0. Let an = |ψ(rne

iθn)| and let {αn} and {fn} be
sequences of positive numbers. Define

f(φ) =

{
fn, |φ− θn| ≤ αn for some n
0, otherwise.
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For n = 1, 2, 3, · · · take 0 < αn ≤ π−θn and small enough so that the intervals
(θn−αn, θn+αn) are disjoint. This will be so if αn ≤ 1

2
min(θn−1−θn, θn−θn+1)

(θ0 := π). Now,

πP [f ](rne
iθn) = (1 + rn)(1− rn)

∞∑
k=1

fk

θk+αk∫
φ=θk−αk

dφ

r2
n − 2rn cos(θn − φ) + 1

≥ 2(1 + rn)(1− rn)fn αn
r2
n − 2rn cos(αn) + 1

≥ 2(1 + rn)(1− rn)fn αn
(1− rn)2 + rnα2

n

.

Hence, taking αn = min(1
2
(θn−1 − θn), 1

2
(θn − θn+1), 1 − rn) and fn = π(1 −

rn)an/αn gives P [f ](rne
iθn) ≥ an. And, f ∈ L1 if

∑
fk αk = π

∑
(1−rk)ak <

∞. Since (1 − rk)ak → 0 there is a subsequence {(1 − rn)an}n∈I defined by
an unbounded index set I ⊂ N such that

∑
k∈I ak < ∞. Then, f ∈ L1 and

P [f ](rne
iθn) ≥ |ψ(rne

iθn)| for all n ∈ I.
For ii), let f ∈ L1(dµ). Then

|P [f, µ](r, θ)| ≤ 1− r2

2π(1− r)2

∫ π

−π
| f | dµ = O

(
1

1− r

)
.

The estimate is realised with the Dirac measure, i.e., if φ0 ∈ [−π, π] then
(1− r)P [1, δφ0 ](r, φ0) = (1 + r)/(2π)→ 1/π as r → 1−. �

In part i), the sharpness is in fact realised with data that is positive (and
hence L1). The electrostatic interpretation of ii) is a unit charge at z = 1.

The analogues of properties 2. and 3. are now considered for the Alex-
iewicz norm.

Theorem 2 Let f : T → R be integrable. For reiθ ∈ D define ur(θ) :=
P [f ](reiθ). Then

i) ‖ur‖ ≤ ‖f‖ for all 0 ≤ r < 1

ii) ‖ur − f‖ → 0 as r → 1−

iii) In ii), the decay of ‖ur − f‖ can be arbitrarily slow.
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Proof: i) Let α ∈ R and 0 < β − α ≤ 2π. Then

β∫
θ=α

ur(θ) dθ =

β∫
θ=α

(1− r2)

2π

π∫
φ=−π

f(φ) dφ dθ

1− 2r cos(φ− θ) + r2
. (2)

If r = 0 it is clear that ‖u0‖ ≤ ‖f‖ so assume 0 < r < 1. By Theorem 57
(p. 58) or Theorem 58 (p. 60) in [3] or by [5] we can interchange the orders
of integration in (2). Let vr(θ) = P [χ[α,β]](re

iθ). Then

β∫
θ=α

ur(θ) dθ =

π∫
φ=−π

f(φ)vr(φ) dφ.

If β − α = 2π then vr = 1 on T and the result is immediate. Now
assume 0 < β − α < 2π. For fixed r the function vr has one maximum, at
φ1 := (α + β)/2, and one minimum, at φ2 := φ1 + π. Now use the Bonnet
form of the Second Mean Value Theorem for integrals ([3], p. 34) to write

β∫
θ=α

ur(θ) dθ =

φ2∫
φ=φ1

f(φ)vr(φ) dφ+

φ2+π∫
φ=φ2

f(φ)vr(φ) dφ

= vr(φ1)

∫ ξ1

φ1

f + vr(φ1)

∫ φ2+π

ξ2

f

= vr(φ1)

∫ ξ1

ξ2

f

where φ1 < ξ1 < φ2 and φ2 < ξ2 < φ2 + π. Now,∣∣∣∣∫ β

α

ur

∣∣∣∣ ≤ max
θ∈[−π,π]

vr(θ)

∣∣∣∣∫ ξ1

ξ2

f

∣∣∣∣
≤ ‖f‖.

It now follows that ‖ur‖ ≤ ‖f‖.
ii) Let α ∈ R and 0 < β − α ≤ 2π. Suppose ε > 0 is given. There

are functions a : (0, 1) → [−π, π] and b : (0, 1) → [−π, π] such that for each
0 < r < 1 we have

‖ur − f‖ ≤

∣∣∣∣∣∣∣
b(r)∫

θ=a(r)

[ur(θ)− f(θ)] dθ

∣∣∣∣∣∣∣+ ε.
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Let rn ↑ 1. There is then a subsequence {rnm} on which a converges, say
a(rnm) → α as rnm → 1. By taking a piecewise linear function that agrees
with a at the points rnm , we can assume a is continuous and has limit α.
Similarly, we can assume b is continuous and has limit β where 0 < β − α <
2π. Note that

b(r)∫
θ=a(r)

ur(θ) dθ −
β∫

θ=α

ur(θ) dθ =

π∫
θ=−π

f(θ)P [χ[a(r),b(r)] − χ[α,β]](re
iθ) dθ. (3)

The variation of P [χ[a(r),b(r)] − χ[α,β]](re
iθ) over θ ∈ T is at most 4. And,

P [χ[a(r),b(r)] − χ[α,β]](re
iθ) → 0 as r → 1 for θ 6= α, β. We can bring this

limit under the integral sign and it follows that both sides of (3) tend to
0 as r → 1. Since integrals are continuous with respect to their limits of
integration we will have

‖ur − f‖ ≤

∣∣∣∣∣∣
β∫

θ=α

[ur(θ)− f(θ)] dθ

∣∣∣∣∣∣+ 2ε,

for r close enough to 1. And,

β∫
θ=α

[ur(θ)− f(θ)] dθ =

π∫
φ=−π

f(φ)vr(φ) dφ−
β∫

φ=α

f(φ) dφ

=

π∫
φ=−π

f(φ)ψr(φ) dφ (4)

where ψr := vr − χ[α,β].
Now, ψr has variation at most 2. Hence, it is of bounded variation,

uniformly with respect to 0 ≤ r ≤ 1, α ∈ R and β ∈ R such that 0 ≤
β − α ≤ 2π. And,

ψr(φ)→
{

0, φ 6= α, β
−1/2, φ = α, β.

Taking the limit r → 1− inside the integral (4) now gives ‖ur − f‖ → 0 as
r → 1−.
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iii) Let f be positive on (0, 1) and vanish elsewhere. Then ur is positive
for 0 ≤ r < 1. We then have

‖ur − f‖ ≥
0∫

φ=−π

ur(φ) dφ

=

0∫
φ=−π

1− r2

2π

1∫
θ=0

f(θ) dθ dφ

1− 2r cos(θ − φ) + r2

=

1∫
θ=0

f(θ)P [χ[−π,0]](re
iθ) dθ.

Now, as r → 1

P [χ[−π,0]](re
iθ)→


0, 0 < θ < π

1/2, θ = −π, 0
1, −π < θ < 0.

But, the convergence is not uniform. Let a decay rate be given by A : (0, 1)→
(0, 1/2), where A(r) decreases to 0 as r increases to 1. By keeping θ close
enough to 0 we can keep P [χ[−π,0]](re

iθ) bounded away from 0 for all r. To
see this, write ρ := (1 + r)/(1− r). Then

‖ur − f‖ ≥
1−r∫
θ=0

f(θ)P [χ[−π,0]](re
iθ) dθ

=
1

π

1−r∫
θ=0

f(θ)

{
π

2
− arctan

[
ρ tan

(
θ

2

)]
+ arctan

[
1

ρ
tan

(
θ

2

)]}
dθ

≥
1−r∫
θ=0

f(θ)

{
1

2
− 1

π
arctan

[
ρ tan

(
θ

2

)]}
dθ

≥
1−r∫
θ=0

f(θ)

{
1

2
− ρθ

2π

}
dθ

≥
(

1

2
− 1

π

) 1−r∫
θ=0

f(θ)dθ.
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We can now let

f(θ) :=

{
−
(

1
2
− 1

π

)−1
A′(1− θ), 0 < θ < 1

0, otherwise.

And,

‖ur − f‖ ≥ −
1−r∫
θ=0

A′(1− θ) dθ = A(r). �

Remarks.
1. We have equality in i) when f is of one sign.
2. The triangle inequality and ii) show that ‖ur‖ → ‖f‖ as r → 1.
3. In iii), the decay of ‖ur − f‖ can be arbitrarily rapid. Take f to be con-
stant!
4. The same proof shows that we can choose f ∈ L1 to make ‖ur − f‖1 tend
to 0 arbitrarily slowly. Jensen’s inequality then shows the same holds true
for ‖ur − f‖p for some f ∈ Lp, for each 1 ≤ p <∞.

We now look at the interplay between the Alexiewicz and Lp norms. In
Theorem 1 we saw that P [f ](reiθ) has the same best pointwise estimate
o(1/(1 − r) when f is Henstock integrable or in L1. The L∞ norm is thus
too coarse for it to show a size difference. However, for 1 ≤ p < ∞ the Lp

norms of P [f ] are substantially larger when P [f ] can converge conditionally.

Theorem 3 Let f : T → R be integrable. For reiθ ∈ D define ur(θ) :=
P [f ](reiθ). Then ‖ur‖p = o(1/(1− r)) for 1 ≤ p <∞.

Proof: From Theorem 1 we can write ur(θ) = wr(θ)/(1 − r) where
supθ∈[−π,π] |wr(θ)| → 0 as r → 1. And, wr is periodic and real analytic on
[−π, π] for each 0 ≤ r < 1. Let 1 ≤ p <∞. Then

‖ur‖p =
1

1− r

 π∫
θ=−π

|wr(θ)|p dθ

1/p

≤ (2π)1/p

1− r
sup

θ∈[−π,π]

|wr(θ)|.

Hence, ‖ur‖p = o(1/(1− r)) as r → 1. �
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It is not known at this time whether or not this estimate is sharp. How-
ever, an example shows that for each 0 < α < 1 and 1 ≤ p < ∞ there is an
integrable function f so that lim sup ||ur||p(1− r)α =∞ as r → 1.
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