Nonabsolutely convergent Poisson integrals

Erik Talvila

Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton AB Canada T6G 2E2

etalvila@math.ualberta.ca

Abstract. If a function f has finite Henstock integral on the boundary of the unit disk
of R? then its Poisson integral exists for |z| < 1 and is o((1 — |2|)7!) as |2] — 17. It is
shown that this is the best possible uniform pointwise estimate. For an L! measure the
best estimate is O((1 — |z])71).

AMS (MOS) subject classification: 26A39, 31A20

In this paper we consider estimates of Poisson integrals on the unit circle
with respect to Alexiewicz and LP norms. Define the open disk in R? as
D :={re?|0<r <1, —7 < 6 < 7} and let the unit circle T’ be its boundary.
Let f:T — R. The Poisson integral of f with respect to Lebesgue measure
is

(1-r)

P[f](rew) — / f(¢) d¢

1—2rcos(¢p —0) +r?

2T
p=—m
For the Poisson integral of f with respect to measure p we write P|[f, u.
Since T has no end points, an appropriate form of the Alexiewicz norm of
fis || f|l == sup;cp U1f| where [ is an interval in 7. Hence, we can have
I = [a, B] where o, € R and 0 < § — a < 27. The Alexiewicz norm was
introduced in [1]. The variation of f on T'is sup S~ | | f(2;_1) — f(z;)| where
the supremum is taken over all finite sets of disjoint intervals {(x;_1, ;) }¥,
in [—m,7m]. We denote the variation of f over I C T as Vf.
The following results are well known (see [4]). Suppose that 1 < p < 0o
and f € LP(T). If ¢ € T and 2 € D, we say that z — ¢ nontangentially
if there is 0 < a < 7/2 such that z — €% with z remaining in the cone
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Ko (e?) == {¢ € D : |arg(¢ — ) — | < a}. Write u,(0) = P[f](re®).
Then

1. w, is harmonic in D

2. |lurlly < || fllp forall 0 <r <1

3. If 1 <p < oo then ||u, — f|[, = 0asr — 1

4. u, — f almost everywhere on 7" as r — 1 nontangentially in D.

We examine analogues of these results when f is Henstock integrable. All
the results also hold when we use the wide Denjoy integral.

Necessary and sufficient for the existence of P[f] as a Henstock integral
on D is that f be integrable, i.e., the Henstock integral f_ﬂﬂ f is finite. This is
because the kernel (1—7r?)/[1—2r cos(¢—6)+7r?] is bounded away from 0 and
is of bounded variation in ¢ for each re? € D. In [2], integration by parts
was used to show that we can differentiate under the integral sign. This in
turn shows that P[f] is harmonic in D and that P[f] — f nontangentially,
almost everywhere in T' (4. above). In [3], Theorem 4, p. 238, necessary
and sufficient conditions were given for determining when a function that
is harmonic on D is the Poisson integral of a Henstock integrable function.
Corresponding results when ||u,||, are uniformly bounded have been known
for some time ([4], Theorem 11.30).

Our first result is to show that P[f](re?) = o(1/(1 — 7)) as r — 1°.
That is, supge(_r (1 = 7)|P[f](re’)] — 0 as r — 17. Thus, the manner of
approach to the boundary is unrestricted. This same estimate was obtained
for Lebesgue integrable functions in [6]. We show it is the best possible
pointwise estimate under our minimal existence hypothesis.

Theorem 1 i) Let f:T — R. If f is integrable then P[f](re??) = o(1/(1—
r)) as r — 17. This estimate is sharp in the sense that if v : D — R
and ¥(re?) = o(1/(1 — 1)) then there is an integrable function f such that

P[f] # o(t). ‘
i) Let p be a positive measure on T. If f is in L*(u) then P[f,du](re?) =

O(1/(1 —r)). This estimate is sharp in the same sense as in i).

Proof: Let @,.(¢) := (1 —7)%/(1—2r cos ¢+ r?) with ®1(0) := 1 and fp(¢) :=
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f((¢+6) mod 27). Then

(1= Piee?) = 4

20 [ hto)@iio)do
¢p=—m
Write
2m(1 — r)P[f](re?) _
1+7r

/ fo(@)B(0)dd + / Jo(0)®, () do.

|¢l<é 5<|g|l<m
Let Fy(¢) = fz fo and integrate by parts. Then

)

/ Jo( ). (0)do| = |Fo(6)®,(5) - / Fyd,(9)

[p|<é ¢=—4

< /9 iéf‘ (14 V4,). 1)

But Vr®, = 8r/(1 +r)?> < 2. And, since the integral is continuous with
respect to its limits of integration, by taking ¢ > 0 small enough we can
make the right side of (1) as small as we please.

Letting Gy(¢) := ff fo, we have

™

/ o). (B)dd| = |Go(m)®, (r) - / Gy d, ()
¢=5 ¢=5

1—7\?2 (1—r)?
< |Ifll + — 5
14+7r 1—2rcosd+r
— 0 asr—1.

Similarly, f:: fo(@)®.(¢)dp — 0 asr — 1.

To prove sharpness, suppose ¢/: D — R is given. It suffices to show that
P[f](rne") # o(h(rnei)) for some sequence {r,e?»} € D with r, — 1-.
Take 7, — 1 and 6,, | 0. Let a, = [(r,e?")| and let {a,} and {f,} be
sequences of positive numbers. Define

f(¢):{f”’ | — 0, <, for some n

0, otherwise.
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Forn=1,2,3,--- take 0 < o,, < m—0,, and small enough so that the intervals
(0, —aun, 0,4a,) are disjoint. This will be so if a, < % min(60,_1—60,,0,—0,11)
(6p := 7). Now,

O +ag
ony N . d¢
TP [fl(rae™) = (147,)(1 T”>kz:;£’“0k/_akr§ — 2rp cos(fn, — @) + 1

21+ 7)) (1 — 7)) fr i,
r2 — 2r, cos(a,) + 1
21+ 7))L =) fr o

(1—r)2+r,02

Hence, taking o, = min(%(&n,l —6,), %(Hn —0p11),1 —ry) and f, = 7(1 —
T0)an/tn gives P[f](rne?®") > a,. And, f € L*if Y frap = 7> (1—rp)ap <
oo. Since (1 — 7g)ar — 0 there is a subsequence {(1 — 7,,)a, }ner defined by
an unbounded index set I C N such that >, ;a; < oo. Then, f € L' and
P[f](rnen) > |ih(rpe?)| for all n € I.

For ii), let f € L'(du). Then

PUACO < s [T a=0 ().

The estimate is realised with the Dirac measure, i.e., if ¢y € [—m, 7| then
(1 —=7)P[1,04,](1,00) = (1 +7)/(27) = 1/masTr —1". N
In part i), the sharpness is in fact realised with data that is positive (and
hence L'). The electrostatic interpretation of ii) is a unit charge at z = 1.
The analogues of properties 2. and 3. are now considered for the Alex-
iewicz norm.

Theorem 2 Let f: T — R be integrable. For re? € D define u,(0) :=
P[f](re). Then

i) ||url] < |f]l for all0 <r <1
it) lup — fl| =0 asr— 1"

iii) In i), the decay of |u, — f|| can be arbitrarily slow.
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Proof: 1) Let « € R and 0 < f — o < 27. Then

8 6 .
(1—r?) f(¢)dodb
/u,«(e)dez/ o / o oos(d 6 T 2)

0= O=a ¢p=—m

If r = 0 it is clear that [Jug|| < ||f|| so assume 0 < r < 1. By Theorem 57
(p. 58) or Theorem 58 (p. 60) in [3] or by [5] we can interchange the orders
of integration in (2). Let v,(#) = P[X[a,5](re”). Then

B T
[ w@d= [ fepa
0=« p=—m
If 6—a = 27 then v, = 1 on T and the result is immediate. Now
assume 0 < § — «a < 27w. For fixed r the function v, has one maximum, at
¢1 = (a+ (3)/2, and one minimum, at ¢, := ¢; + 7. Now use the Bonnet
form of the Second Mean Value Theorem for integrals ([3], p. 34) to write

8 ¢2 b2tm
/ w(0)do — / F(6)un(6) o+ / £(6)0,(6) do
f=a o=0¢1 Pp=¢2

¢potm

&1
= () /¢ fruon [ f

&1
= u(d) [ f
&2

where ¢1 < & < @9 and ¢ < & < P9 + m. Now,
< (0
= oy

/ﬂur /&f'
) )

It now follows that ||u.|| < [|f]|-

i) Let « € R and 0 < B — a < 27. Suppose € > 0 is given. There
are functions a:(0,1) — [—m, 7] and b:(0,1) — [—m, 7] such that for each
0 <r <1 we have

b(r)
lay — £l < / [y (0) — £(0)] | + .

0=a(r)
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Let 7, T 1. There is then a subsequence {r,, } on which a converges, say
a(rp,) — a as r, — 1. By taking a piecewise linear function that agrees
with a at the points r, , we can assume a is continuous and has limit a.
Similarly, we can assume b is continuous and has limit 7 where 0 < § — a <
2m. Note that

b(r)

9)db - / 0)do = / FO)P[Xatr) btr)] — Xpag)) (re”?) dB. (3)

0=a(r) O=—m

The variation of P[X[a(r)s(r)] — X[aﬁﬂ(reie) over # € T is at most 4. And,
PXla(r)p(r)] — X[aﬁ]](rew) — 0asr — 1 for § # «,3. We can bring this
limit under the integral sign and it follows that both sides of (3) tend to
0 as r — 1. Since integrals are continuous with respect to their limits of
integration we will have

B

s — £l < / [, (0) — £(6)] dB)] + 2¢.

0=«

for r close enough to 1. And,

/ﬂ[urw)—f(@)]d@ = /f v () do — /f

where ¥, 1= v, — X[a,3)-

Now, 1, has variation at most 2. Hence, it is of bounded variation,
uniformly with respect to 0 < r < 1, a € R and # € R such that 0 <
0 —a <2r. And,

0, ¢#ap
¢T(¢) - { _1/27 o= a, (.
Taking the limit » — 1~ inside the integral (4) now gives ||u, — f|| — 0 as
r—1".
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iii) Let f be positive on (0, 1) and vanish elsewhere. Then w, is positive
for 0 <r < 1. We then have
0

lar — fIl > /ur<¢>d¢

p=—
0 1
B / 1—r? / f(6)dode
B 27 1 —2rcos(d — @) +r?
¢>—77T =0

= /f PX[—r 0] (re®) do.

Now, as r — 1

4 0, O0<fO<m
P[X[,mo]](rew) —< 1/2, 6=—-m,0
1, —7m<6<O.

But, the convergence is not uniform. Let a decay rate be given by A:(0,1) —
(0,1/2), where A(r) decreases to 0 as r increases to 1. By keeping 6 close
enough to 0 we can keep P[x[_rq](re?) bounded away from 0 for all 7. To
see this, write p := (14 r)/(1 —r). Then

lar— £l > /f PIX(ng))(re™) df

- & 0 - fn (3)] s n o (£)] s
[ 1041~ Lt e (2)]

v

v
—
—
—
=
—N
DO | =
|
¥R
H/_/
U
)
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We can now let

£(6) ;:{ (-7 An-9), 0<o<1

0, otherwise.

And,

1—r

o=l =~ [ A(-0)do = A).
6=0

Remarks.
1. We have equality in i) when f is of one sign.
2. The triangle inequality and ii) show that ||u.|| — ||f]| as r — 1.
3. In iii), the decay of ||u, — f|| can be arbitrarily rapid. Take f to be con-
stant!
4. The same proof shows that we can choose f € L' to make ||u, — f||; tend
to 0 arbitrarily slowly. Jensen’s inequality then shows the same holds true
for ||u, — f||, for some f € LP, for each 1 < p < oc.

We now look at the interplay between the Alexiewicz and LP norms. In
Theorem 1 we saw that P[f](re’) has the same best pointwise estimate
o(1/(1 —r) when f is Henstock integrable or in L!'. The L* norm is thus
too coarse for it to show a size difference. However, for 1 < p < oo the LP
norms of P[f] are substantially larger when P[f] can converge conditionally.

Theorem 3 Let f: T — R be integrable. For re? € D define u,.(0) :=
P[f](re®). Then |lu.||, = o(1/(1 = 7)) for 1 < p < oco.

Proof: From Theorem 1 we can write u,(0) = w,(0)/(1 — r) where
SUPge[—rq [Wr(0)] — 0 as 7 — 1. And, w, is periodic and real analytic on
[—m, 7] for each 0 <7 < 1. Let 1 < p < co. Then

- 1/p
1
lly = 1= | [ lworas
O=—m
2m) /P
< B0 p u o))

1—r oe[—m,x]

Hence, |lu.||, =0o(1/(1 —17)) asr — 1. N
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It is not known at this time whether or not this estimate is sharp. How-
ever, an example shows that for each 0 < a < 1 and 1 < p < oo there is an
integrable function f so that limsup ||u,||,(1 —7)* = co as r — 1.
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