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Abstract. We have generalized the fermionic coherent states to pseudo-fer-
mion oscillator system. The system of coherent states constructed consist of
two subsets, which are bi-normalized and bi-overcomplete. The two subsets
are built up as eigenstates of two annihilation operators b and b= nbn 1 of
respectively H and H " where 7 is the Hermitian and invertible operator that
ensures the pseudo-Hermiticity of the Hamiltonian H = n~1H 1.

1. Introduction

The coherent states which provide a quantum description of the evolution of a clas-
sical system [4] has been generalized to several quantum systems [9, 12]. In last
years the concept of coherent states was also introduced to non-Hermitian quan-
tum mechanics [1, 10]. In this perspective, we have constructed in a recent pa-
per [3] pseudo-fermionic coherent states for pseudo-Hermitian two-level Hamilto-
nians with real spectrum.

Our aim is to develops the ideas of [3] in the case of the single pseudo-fermion or
called “phermion” oscillator described by the Hamiltonian H = w (b#b — %) First
we start with a review in Section 2 of some main results on the pseudo-Hermiticity.
In Section 3 we construct pseudo-fermionic or “phermionic” coherent states for the
single phermion oscillator. In Section 4 we study the time evolution of coherent
states constructed. The paper ends with concluding remarks.

*Reprinted from JGSP 14 (2009) 13-19.
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2. Some Main Results on Pseudo-Hermiticity

By definition [5], an Hamiltonian H is called pseudo-Hermitian if it satisfies the
relation

H* =nHn™ 1)
where 7 is a linear, Hermitian, and invertible operator. One can also express the
definition (1) in the form

H#* = H )
where
H# =n~'H™ 3)
is the n-pseudo adjoint of A [5]. The condition (1) reduces to hermicity when the
operator 7 is equal to the identity. The pseudo-Hermitian conjugation # has the
same properties as the Hermitian conjugation ™, namely
a) (A%)* = A
b) (AB)* = B# A%
¢) (aA+ BB)* = a* A% + 3* B¥, where A and B are linear operators, and
« and 3 are complexes numbers.

3. Pseudo-Fermionic or “Phermionic” Coherent States

We consider the single pseudo-fermion “phermion” oscillator described by the fol-
lowing Hamiltonian

H=uw (b#b - %) 4)

where w is constant, b* and b are respectively the creation and annihilation op-
erators of the single-degree of freedom of what is called the pseudo-Hermitian
fermion or a phermion [6], which satisfies the standard anticommutation relations

[b,b#L =w*Lpth=1, ()2 =0*2=0 (5)

b# = n~'b*n [5], where 7 is a linear, Hermitian and invertible operator. The
phermion number operators is N = b¥b satisfy

[b, N] = b, [b#,N} — b, [b, b#] —1-2N. (6)

H* satisfies the pseudo-hermiticity relation [S] H* = nHn~'. We note that if n =
1, thus b# = bT, the pseudo-Hermitian fermion (phermion) algebra (5) reduces to
the usual fermion algebra [6]. By analogy with the Fock space representation of the
fermion algebra, the Fock space representation of the phermion algebra is spanned
by the two-dimensional simultaneous eigenbasis {|v1) , |12) } of the corresponding
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number operator b7 b. The operators b and b* allow transitions between the states
as

bli1) =0, blpa) = |91) (7
V¥ |ha) = 0, b¥[4n) = [¢h2). (8)

The operator b annihilates the lowest eigenstates |1/, ), and b¥ brings this state onto
the upper eigenstates |1)2).

We define the phermionic coherent states |£) in an analogue scheme as the fermi-
onic coherent states [2, 8] as follow

He_g* _lgx
€ = P ) = =5 () — € Jain))
where ¢ and £* are Grassmannian variables which satisfy the anticommutation
relations

{6,671 =¢85 +€7¢ =0, {¢€.¢1 =0, {€5.¢"=0. )
The ¢ and £* anticommute with b and b#

eh=—b,  Eb=-bE"

(10)
'Sb# — —b#f, g*b# — —b#f*
and have the following properties
Elb1) = )€, Elv2) = —¢2) (11)
Elo1) = [91)¢, Elp2) = —|92)¢. (12)

The pseudo-Hermitian conjugation reverses the order of all fermionic quantities,
both the operators and the Grassmann variables

(b7 + D) = £*b + bPe. (13)

The Grassmann integration and differentiation over the complex Grassmann vari-
ables are given by

/d§1:o, /dgg:L /d5*1:o, /dg*g*:1 (14)
d d

d d
—1=0 —&=1 1=0 =1, 15
The Grassmann integration of any function is equivalent to the left differentiation
0
d = . 16
[ a6 7€) = 5 1@ (16

The Hermitian adjoint of the coherent state is

(€] = e 28 (1] + % (o) - (17)
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In the same way, we introduce another family of coherent states associated to H ™
as follows

€)= e3¢ (161) — €l2)) (18)
where |¢1) and |¢2) are the eigenstates of H . The Hermitian adjoint of @ is
(€] = 725 ({g1] + €7 (@al) (19)

The scalar product between (£|¢) takes the form

(€l€) = (P1|o1) + ({P2|d2) — (H1]01))E7E — 2iIm(E(d1|2)) # 1 (20)

while

(€1€) = (P1|v1) + ((P2|h2) — (B1]11))E7E — 21 Im((Pp1[2p2)) = 1 (21)

and

(€1&) = (Wulo1) + ((va|d2) — (W1]¢1))€7E — 21 Im(E(Wnlp2)) =1 (22)

or more generally

e\ B * 1 * *
(€162) = (| DT(E)D(&)I¢n) = &€ + 7(2 - )2 - 6&).  (23)
By means of the two type of states |£) and E} the resolution of the identity is
realized in the following way

1= [agdle) el = [ aeagfeel. 24)

This leads to the statement: The system of phermionic coherent states {|£), [£)}

consists of two subsets {|£) } and {|¢) }, which are bi-normalized and bi-overcomp-
lete.

In the next Section we show that these phermionic coherent states satisfy also the
temporal stability property.

4. Time Evolution of Phermionic Coherent States

We study the time evolution of the phermionic coherent states constructed above.
We said that the evolution of a given coherent state is time-stable if the time evolu-
tion of any initial state from the set, governed by the Hamiltonian, leaves the state

in the set for any ¢ [7, 11]. In the case of our phermionic coherent states {|£), |N)}
the set parameter is the complex Grassmann variable &, the eigenvalue of the low-

ering operators b or b. The time evolution is stable if the evolved states |£; ¢) and
g op ;
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|E,¥) remain eigenstates of the operators b and l;respectively
blg;t) = £(1)|€:8) (25)
ble; t) = E(1)IE; ). (26)

This implies that the time evolved coherent states |£;¢) and |£;¢) should form bi-
normal and bi-overcomlete system. Let us first consider the time evolution of an
initial coherent states |¢). Clearly we have

6;6) = eIy (g5 0) = [6). 27)

Using the form (9) of |¢) and the facts that |1/} o) are eigenstates of H (with eigen-
values E; o) we get

) = e (1= 36°€) ) — e P, @8)

Taking into account that £, = —F and Ey = E we put £(t) = e~ 2E¢ and rewrite
the last equation in the form

€t = e (1= Se)€(t)) lyn) — @)la)) = e Ple())  29)

which manifests the stability of the time evolution of coherent states |£). In a
similar manner we establish, that the time evolution |¢; ¢) of an initial |), is stable
(remains eigenstate of b)

&) = eF0 (1= Le)e®)) |on) — £(1)1g2)) = e FV[E@).  (30)

The results (29) and (30) reveal the bi-normality and bi-overcompleteness of the

family of time evolved states {|{; 1), |£;t)} of the phermionic oscillator system (4)
—one has (t;£|&;t) = 1, and

1= [agaignine = [deagén e (1)

We observe that here the time evolved states |£;¢) and |¢;¢) differ from coherent

—n—

states |£(t)) and |£(t)) only in phase factors.

5. Concluding Remarks

In this paper, we have constructed phermionic coherent states for the single phermi-
onic oscillator. We have shown that these coherent states satisfy the usual proper-
ties of the coherent states: a) continuity of labelling, b) the resolution of identity,
c) the temporal stability.
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