Eleventh International Conference on Geometry, Integrability and Quantization June 5–10, 2009, Varna, Bulgaria Ivaïlo M. Mladenov, Gaetano Vilasi and Akira Yoshioka, Editors Avangard Prima, Sofia 2010, pp 134–145

WEAK FORM OF HOLZAPFEL'S CONJECTURE*

AZNIV KASPARIAN and BORIS KOTZEV

Department of Mathematics and Informatics, Kliment Ohridski University of Sofia Sofia 1164, Bulgaria

Abstract. Let $\mathbb{B} \subset \mathbb{C}^2$ be the unit ball and Γ be a lattice of $\mathrm{SU}(2, 1)$. Bearing in mind that all compact Riemann surfaces are discrete quotients of the unit disc $\Delta \subset \mathbb{C}$, Holzapfel conjectures that the discrete ball quotients \mathbb{B}/Γ and their compactifications are widely spread among the smooth projective surfaces. There are known ball quotients \mathbb{B}/Γ of general type, as well as rational, abelian, K3 and elliptic ones. The present note constructs three non-compact ball quotients, which are birational, respectively, to a hyperelliptic, Enriques or a ruled surface with an elliptic base. As a result, we establish that the ball quotient surfaces of smooth projective surfaces.

1. Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a philosophy that "... up to birational equivalence and compactifications, all complex algebraic surfaces are ball quotients." By a complex algebraic surface is meant a smooth projective surface over \mathbb{C} . These have smooth minimal models, which are classified by Enriques in eight types - rational, ruled of genus ≥ 1 , abelian, hyperelliptic, K3, Enriques, elliptic and of general type. The compact torsion free ball quotients \mathbb{B}/Γ are smooth minimal surfaces of general type. Ishida [10], Keum [11, 12] and Dzambic [1] obtain elliptic surfaces, which are minimal resolutions of the isolated cyclic quotient singularities of compact ball quotients. Hirzebruch [2] and then Holzapfel [3], [7], [9] have constructed torsion free ball quotient compactifications with abelian minimal models. In [9] Holzapfel provides a ball quotient compactification, which is birational to the Kummer surface of an abelian surface,

^{*}Reprinted from JGSP 19 (2010) 29-42.