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Abstract. In the Batalin-Vilkovisky field-antifield formalism a classical
mechanical system is described by a solution of the classical master equation.
The quantization of this general gauge theory in the Lagrangian approach can
be accomplished in closed form [2]. The AKSZ-formalism is a geometrical
construction of such a solution as a QP-manifold [1]. This can be extended
and applied to topological quantum field theories.

1. Introduction

After a short review including the main topics of general gauge theory and the
notion of fields and antifields in the Batalin-Vilkovisky formalism I will introduce
the geometrical approach to these problems. This is the formalism of Alexandrov,
Kontsevich, Schwarz and Zaboronsky (AKSZ) which constructs in a geometrical
way the solutions of the master equation which are of physical interest by the use
ofQP -manifolds [1]. A specialQP -manifold,E = ΠT ∗X×Πg×g

∗, which leads
to the Batalin-Vilkovisky action of an irreducible theory with gauge invariance will
be constructed and discussed in detail.

2. General Gauge Theory

2.1. Canonical Formalism

The non-abelian Yang-Mills theory is the most familiar example of a gauge struc-
ture. In this case, when a choice of basis is made, the structure constants of the un-
derlying Lie group determine the commutator algebra. The Jacobi identity, which
expresses the associativity of the Lie group, must be satisfied.

Now I will recall the canonical formalism in a compact notation [11]. Consider
a system whose dynamics is governed by a classical actionS0[φ], depending on
n different fieldsφi with i = 1, . . ., n = n+ + n−, wheren+ is the number
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