Sixth International Conference on Geometry, Integrability and Quantization June 3–10, 2004, Varna, Bulgaria Ivaïlo M. Mladenov and Allen C. Hirshfeld, Editors SOFTEX, Sofia 2005, pp 276–283

GALTON-WATSON TREE AND BRANCHING LOOPS

REMI LEANDRE

Institut de Mathématiques, Faculté des Sciences, Université de Bourgogne 21000 Dijon Cedex France

Abstract. We define a kind of branching process on the loop space by using the branching mechanism of a loop of string theory.

1. Introduction

In conformal field theory or in string theory [7, 17] people look at random applications ψ from a Riemann surface Σ into a Riemannian manifold M endowed with the probability measure:

$$d\mu(\psi) = Z^{-1} \exp[-I(\psi)] dD(\psi) \tag{1}$$

where $dD(\psi)$ is the formal Lebesgue measure over the set of maps ψ and $I(\psi)$ is the energy of the map ψ . If Σ has boundaries, let us say exit boundaries which are circles S_i^1 and input boundaries which are circles S_i^2 , the amplitude related to the measure (1) should realize a map from $\otimes_{output} H$ into $\otimes_{input} H$ where H is an Hilbert space associated to the loop space [42].

In the case where the manifold is the linear space \mathbb{R}^n , (1) is a Gaussian measure, which corresponds to the free field measure. Since in two dimension, the Green kernel associated to the Laplacian has a singularity on the diagonal, the random field lives on random distributions [18]. It is difficult to state what is a distribution with values in a curved manifold, because the notion of distribution is linear.

If $\Sigma = [0,1] \times [0,1]$, there is another process indexed by Σ with values in \mathbb{R} , which is the Brownian sheet and which is continuous. $\frac{\partial^2}{\partial s \partial t} \psi$ is the white noise over $[0,1] \times [0,1]$. On Σ , there is a natural order, and it is possible after the work of Cairoli [11] to study the stochastic differential equation in Itô meaning:

$$\delta_{s,t} x_{s,t} = A(x_{s,t}) \delta_{s,t} \psi \tag{2}$$

by using martingale theory, where A is a vector field over \mathbb{R} . This gives an example of a non-gaussian random field parametrized by the square. In the Gaussian case, this gives the Brownian motion over the path space. Doss and Dozzi [13] have